
Developement of usage scripts for Virgo users

A Project Report

submitted by

M B PRASANNA KUMAR, EE14B034

in partial fulfilment of requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF Electrical Engineering
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

MAY 2018

THESIS CERTIFICATE

This is to certify that the thesis titled Developement of usage scripts for Virgo users, submitted

by M B Prasanna Kumar, EE14B034, to the Indian Institute of Technology Madras, for the

award of the degree of Bachelor of Technology, is a bona fide record of the research work

done by him under our supervision. The contents of this thesis, in full or in parts, have not been

submitted to any other Institute or University for the award of any degree or diploma.

Prof. Harishankar Ramachandran
Project Guide
Professor
Dept. of Electrical Engineering
IIT Madras, 600036

Place: Chennai

Date: 25 May 2018

ACKNOWLEDGEMENTS

This work would not have been possible without the guidance and the help of several people. I

take this opportunity to extend my sincere gratitude to all those who made this thesis possible.

First, I would like to thank all my teachers who bestowed me with good academic knowledge. I

am indebted to my advisor Prof. Harishankar Ramchadran whose expertise, generous guidance

and support made it possible for me to work on a topic that was of great interest to me. I would

like to thank my family for giving support and guidance all through my life. I would also like to

thank all my friends and well-wishers for helping me in difficult times and being a good source

of support and guidance.

i

ABSTRACT

KEYWORDS: IBM loadleveler, Slurm, Commands, Workload manager, Dae-

mons, Architecture

Workload management(WLM) is a process for determining the proper jobs distribution in or-

der to provide optimal performance for applications and users. WLM also manages the use

of system resources, such as processors and storage. The workload management softwares

under discussion are IBM’s Loadleveler(1) and Slurm(2). IBM’s LoadLeveler schedules jobs,

and provides functions for building, submitting, and processing jobs quickly and efficiently

in a dynamic environment. SLURM is Linux Cluster’s locally developed C-language Simple

Linux Utility for Resource Management. Slurm is designed to be a replacement for IBM’s

LoadLeveler. This report gives a brief introduction to the fundamentals of both architectures

and analyses their similarities and differences. It explains the work done in the attempt to De-

velop usage scripts for Virgo (IITM Super computer,uses Loadleveler for workload managing)

users which will be available to users who logs in with their userid and password.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

1 Loadleveler 1

1.1 Introduction . 1

1.2 Job Scheduling . 1

1.3 Loadleveler Daemons . 2

1.4 Job Cycle . 3

2 SLURM 4

2.1 Introduction . 4

2.2 Slurm Features . 5

3 Comparision of architectures 7

3.1 Analysis of Commands . 7

3.2 Usage of environment variables . 8

3.3 Performance Comparison . 9

4 Development of usage scripts 10

4.1 Intial work done . 10

4.2 Finding average job time . 11

4.3 Implementation in SLURM . 16

5 Conclusion 17

CHAPTER 1

Loadleveler

1.1 Introduction

LoadLeveler is a job management system that allows users to run more jobs in less time by

matching the jobs’ processing needs with the available resources. LoadLeveler schedules jobs,

and provides functions for building, submitting, and processing jobs quickly and efficiently in

a dynamic environment.

LoadLeveler has three types of interfaces that enable users to create and submit jobs and

allow system administrators to configure the system and control running jobs.They are control

files(configuration files, administration files, job command files), command line interface and

application program interface(API).The commands and APIs permit different levels of access

to administrators and users.

Each machine in the LoadLeveler cluster performs one or more roles in scheduling jobs. De-

pending on the roles performed in scheduling jobs by each machine in the LoadLeveler cluster,

a machine can be one of the following type: Job Manager Machine, Central Manager Machine,

Executing Machine, Resource Manager Machine, Region Manager Machine and Submitting

Machine. The Resource Manager is responsible for managing all machine and job resources,

and the scheduler is responsible for scheduling jobs on the resources provided by the resource

manager.

1.2 Job Scheduling

After a job is submitted, LoadLeveler examines the job command file to determine which

machine, or group of machines, is best suited to provide the resources required, then dispatches

the job to the appropriate machines. This process is aided by Job Queues. A job queue is a

list of jobs that are waiting to be processed. When a user submits a job to LoadLeveler, the job

is entered into an internal database, which resides on one of the machines in the LoadLeveler

cluster, until it is ready to be dispatched to run on another machine.

A job can be dispatched to either one machine, or in the case of parallel jobs, to multiple

machines. LoadLeveler examines the requirements and characteristics of the job and the avail-

ability of machines, and then determines the best time for the job to be dispatched which need

not necessarily be first come first serve basis.

LoadLeveler also uses Job Classes to schedule jobs to run on machines. A Job Class is a

classification to which a job can belong. The system administrator can define these job classes

and select the users that are authorized to submit jobs of these classes. LoadLeveler also exam-

ines a job’s priority to determine when to schedule the job on a machine. A priority of a job is

used to determine its position among a list of all jobs waiting to be dispatched.

1.3 Loadleveler Daemons

The LoadLeveler daemons are programs that run continuously and control the processes

that move jobs through the LoadLeveler cluster. A Master daemon (LoadL-master) runs on all

machines in the LoadLeveler cluster and manages other daemons.The Schedd daemon (LoadL-

schedd) receives jobs from the llsubmit command and manages them on machines selected by

the negotiator daemon. The Startd daemon (LoadL-startd) monitors job and machine resources

on local machines and forwards information to the negotiator daemon.

The Negotiator deamon (LoadL-negotiator) runs on the central manager machine. It mon-

itors the status of each job and machine in the cluster and responds to queries from llstatus

and llq commands. The Keyboard daemon (LoadL-kbdd) monitors keyboard and mouse ac-

tivity. The Gsmonitor daemon (LoadL-GSmonitor) monitors for down machines based on the

heartbeat responses of the MACHINE-UPDATE-INTERVAL time period.

2

1.4 Job Cycle

Figure 1.1: Job Cycle (1)

The job is submitted to the scheduling machine on the loadleveler. The Schedd daemon,

on the scheduling machine, stores all of the relevant job information on local disk. Later the

Schedd daemon sends job description information to the Negotiator daemon. At this point, the

submitted job is in the Idle state.

The Negotiator daemon checks to determine if a machine exists that is capable of running

the job. Once a machine is found, the Negotiator daemon authorizes the Schedd daemon to

begin taking steps to run the job. This authorization is called a permit to run. At this point, the

job is considered Pending or Starting.

Later, the Schedd daemon contacts the Startd daemon on the executing machine and requests

it to start the job. The executing machine can either be a local machine (the machine from which

the job was submitted) or a remote machine (another machine in the cluster). Then the Startd

daemon on the executing machine spawns a starter process for the job. The Schedd daemon

sends the starter process the job information and the executable. The Schedd daemon notifies

the negotiator daemon that the job has been started and the negotiator daemon marks the job as

running.

When the job completes, the starter process notifies the Startd daemon, which in turn no-

tifies the Schedd deamon. The Schedd daemon examines the information it has received, and

forwards it to the Negotiator daemon. At this point, the job is in Completed or Complete Pend-

ing state.

3

CHAPTER 2

SLURM

2.1 Introduction

Slurm is an open source, fault-tolerant, and highly scalable cluster management and job

scheduling system for large and small Linux clusters. Its features suit it to large-scale, high-

performance computing environments, and its design avoids known weaknesses (such as inflex-

ibility or fault intolerance) in available commercial resource management products for super-

computers. It requires no kernel modifications for its operation and is relatively self-contained.

Slurm is the workload manager on about 60 percent of the TOP500 supercomputers with six

of the top ten systems including the number 1 system, Sunway TaihuLight with 10,649,600

computing cores.

As a cluster workload manager, Slurm has three key functions. Allocate nodes - Give users

access to computer nodes for some specified time range so their job(s) can run. Control job

execution - Provide the underlying mechanisms to start, run, cancel, and monitor the state of

parallel (or serial) jobs on the nodes allocated. Manage contention - Reconcile competing

requests for limited resources, usually by managing a queue of pending jobs.

At LC, an adequate cluster resource manager needs to meet some other general requirements

like scalability, portability, fault tolerant, open source and modular. No commercial (or existing

open source) resource manager meets all of these needs. So since 2001 Livermore Computing,

in collaboration with Linux NetworX and Brigham Young University, has developed and refined

the "Simple Linux Utility for Resource Management" (SLURM).

SLURM was originally used as a resource manager for Linux (specifically for CHAOS)

systems. But starting in 2006, LC began gradually replacing IBM’s native LoadLeveler with

SLURM on its AIX(Advanced Interactive eXecutive) systems as well. The AIX-SLURM com-

bination behaves slightly differently than the CHAOS-SLURM combination.

2.2 Slurm Features
SLURM consists of two kinds of daemon and five command-line user utilities, whose rela-

tionships appear in this simplified architecture diagram:

Figure 2.1: SLURM Architecture (4)

SLURM’s central control daemon is called SLURMCTLD. SLURMCTLD runs on a single

management node, reads the SLURM configuration file, and maintains state information on

nodes, partitions, jobs and job steps. The SLURMCTLD daemon in turn consists of three

software subsystems namely Node Manager, Partition Manager and Job Manager, each with a

specific role.

Node Manager monitors the state and configuration of each node in the cluster. It receives

state-change messages from each compute node’s SLURMD daemon. Partition Manager groups

nodes into disjoint sets (partitions) and assigns job limits and access controls to each partition.

It also allocates nodes to jobs based on job and partition properties. Job Manager accepts job

requests, places them in a priority-ordered queue, and reviews that queue periodically or when

any state change might allow a new job to start.

The SLURMD daemon runs on every compute node of every cluster that SLURM manages

and it performs the lowest level work of resource management. SLURMD carries out five

key tasks and has five corresponding subsystems namely Machine Status, Job Status, Remote

Execution, Stream Copy Service and Job Control.

The command line utilities offer users access to remote execution and job control and permit

administrators to dynamically change the system configuration. These commands use SLURM

APIs that are directly available for more sophisticated applications.

scancel cancels a running or a pending job or job step, subject to authentication and autho-

rization. This command can also be used to send an arbitrary signal to all processes on all nodes

5

associated with a job or job step. scontrol performs privileged administrative commands such

as bringing down a node or partition in preparationfor maintenance. sinfo displays a summary

of status information on SLURM-managed partitions and nodes.

squeue displays the queue of running and waiting jobs (or "job steps"), including the JobId

and the nodes assigned to each running job. A wide assortment of filtering, sorting, and output

format options are available for both squeue and sinfo commands. srun is used for allocating re-

sources, submitting jobs to the SLURM queue, and initiating parallel tasks (job steps). SLURM

associates every set of parallel tasks ("job steps") with the SRUN instance that initiated that set,

and SRUN gives you elaborate control over node choice and I/O redirection for your parallel

job.

SLURM achieves portability (hardware independence) by using a general plugin mechanism

with about 100 optional plugins. SLURM’s configuration file tells it which plugin modules to

accept. A SLURM plugin is a dynamically linked code object that the SLURM libraries load

explicitly at run time. Each plugin provides a customized implementation of a well-defined API

connected to some specific tasks.

By means of this plugin approach, SLURM can easily change its interconnect support, se-

curity techniques, metabatch scheduler, low-level job scheduler for locally prioritizing and ini-

tiating SRUN-managed jobs and between-node communication "layers".

SLURM is not a comprehensive cluster administration or monitoring package. While SLURM

knows the state of its compute nodes, it makes no attempt to put this information to use in other

ways, such as with a general purpose event logging mechanism or a back-end database for

recording historical state. It is expected that SLURM will be deployed in a cluster with other

tools performing those functions. SLURM was expressly designed to provide high-performance

parallel job management while leaving scheduling decisions to an external entity.

6

CHAPTER 3

Comparision of architectures

3.1 Analysis of Commands

The primary SLURM job-control tool is SRUN, which fills the general role of PRUN (on

former Compaq machines) or POE (on IBM computers). The choice of run mode ("batch" or

interactive) and the allocation of resources with SRUN strongly affect the job’s behavior on

machines where SLURM manages parallel jobs. SLURM works collaboratively with POE on

AIX machines where SLURM has replaced IBM’s LoadLeveler.

To monitor the status of SRUN-submitted jobs, the SLURM utility called SQUEUE is used.

Similar work is done by the command llq in case of IBM’s Loadleveler. To monitor the sta-

tus of SLURM-managed compute nodes the complementary tool called SINFO is used. In

Loadleveler cluster llstatus is used to return status information about machines. All these com-

mands can be formated and sorted to get data in required format.

On BlueGene/L only, SLURM provides an additional user tool called SMAP to reveal to-

pographically how nodes are allocated among current jobs or partitions. SMAP takes over the

terminal window in which it runs. So executing it as a controllee of XTERM, in a separate

window dedicated to its output, is a good strategy. The xterm program is a terminal emula-

tor for the X Window System. SMAP needs a window wider than 80 characters to display

its character-based "map" of job/node allocations effectively. Generally a 100-character-wide

window is requested with XTERM’s geometry option.

Because of its prerequisites (above), a typical appropriate SMAP run could begin with an

execute line such as this xterm -geometry 100x30 -e /usr/bin/smap -Dj > /dev/null

SMAP’s character-based map of job/node allocations typically looks like this

Figure 3.1: Sample smap output (4)

3.2 Usage of environment variables

SRUN and IBM-AIX(Advanced Interactive eXecutive)’s POE (Parallel Operating Environ-

ment) both use UNIX environment variables to manage the resources for each parallel job that

they run. Environmental variables for a job helps to know certain things about how it was sched-

uled,what is the job’s working directory, or what nodes were allocated for it.Examples for en-

vironmental variables in SLURM are SLURM_CPUS_PER_TASK, SLURM_JOB_NODELIST,

SLURM_NTASKS_PER_NODE etc.Examples for environmental variables in Loadleveler are

LOADL_STEP_CLASS, LOADL_STEP_NAME, LOADL_PROCESSOR_LIST etc. The vari-

ables with comparable roles have different names under each system and both systems have

many other environment variables for other purposes too.

Three major differences in usage of environment-variable by SRUN and POE are as follows:

SRUN assigns values to its resource-management variables by means of its own interactive

options, one option for each environment variable (plus extra control options, such as -j). In-

stead, POE uses the usual SETENV or EXPORT utilities to assign values to its environment

variables.

POE’s LoadLeveler ignores many environment variables when it run batch jobs under AIX

on LC machines. SLURM does not ignore the corresponding environment variables when set

by SRUN, even for batch runs.

On LC Linux clusters, the completion of your SLURM-managed batch job on any compute

node(s) also automatically terminates any accompanying interactive processes run by you on

those same compute nodes (a policy started in August, 2007). Such processes may continue to

8

run on AIX machines.

This chart lists the SLURM (SRUN-set or inferred) resource-management environment vari-

ables for which direct POE counterparts exist.

Figure 3.2: (4)

3.3 Performance Comparison

For research purposes some SLURM tests were performed on a 1000-node cluster in Novem-

ber 2002. Some development was still underway at that time and tuning had not been per-

formed.The results for executing the program/bin/hostname on two tasks per node and various

node counts are shown in figure below. It was observed that SLURM performance is compara-

ble to the Quadrics Resource Management System (RMS) for all job sizes and about 80 times

faster than IBM LoadLeveler at tested job sizes.

Figure 3.3: Performance comparison(4)

9

CHAPTER 4

Development of usage scripts

4.1 Intial work done

The initial idea of the project was to Develop usage scripts for Virgo (IITM Super com-

puter,uses Loadleveler for workload managing) users which will be available to users who logs

in with their userid and password. They are meant to display user’s own data along with general

usage information so he can understand how to use the system. The scripts would help the users

to get a rough estimate of the time taken to finish a particular job given it’s requirements. This

was expected to be done using the details of jobs already available in the queue and the data

about previously finished jobs under various conditions which can be known from history and

log files.

After learning the Loadleveler basics and useful commands, I received log files of negotiator,

resource manager and scheduler daemons besides LoadL-admin, LoadL-config and History

files. These log files include messages indicating what the daemon or process is doing and when

the processing is occurring, using timestamps. This includes what transactions being received

from and sent to other daemons or processes, and indication of error conditions encountered.

The NegotiatorLog contains details about the machines that are contacted for various job-

steps given by various users. The SchedLog contains information about the job state for various

Step ids’ at various time instances. The LoadL-admin file consists of machine, machine-group,

class, group, region stanzas. For each type defaults are defined along with required varieties in

them. The LoadL-config file consists of definitions of various kinds of schedulers, various

daemons macros and other system related information.

All these log files were either giving status of the machine or whether a job-step has started

but didn’t have information about the exact end time of those jobs. That information is expected

to be available in the history file which is a large file(20 GB) containing data of finished jobs,

collected from all the machines identified in the administration file, but when tried to read, it

is showing strange characters in maximum part of the file. The result remained the same even

after using various text editors for the reading purpose.

After this, I started working with llsummary files which contain job resource information

on completed jobs. In standard listing format it provides number of jobs, number of steps per-

formed and total CPU time utilized by each user in required range of time interval. The main

issue with llsummary command is that we don’t have formatting and sorting options for the out-

put generated by the llsummary command except for three different listing options. The Long

Listing would give much more than the required details about each job which is unproductive

for the considered task.

4.2 Finding average job time

With the available shortlisting format of llsummary, I wrote an algorithm to find the average

cpu time consumed per job for all users that submitted job during the required time interval. It

accepts one or more llsummary files as input and generates the combined output.

Listing 4.1: Finding Active Rays

1 import sys

2 import re

3

4 def main():

5 a= [x for x in input().split(",")]

6 name = []

7 jobs = []

8 job_cpu = []

9 avg_cpu_time_value = []

10 avg_cpu_time=[]

This algorithm accepts one or more llsummary files as input, which are separated by ",".

Five different lists are dcreated to store the user names, number of jobs they performed, total

cpu time utilised, the average cpu time taken in seconds and hours formats respectively.

1 for x in a:

2 f = open(x,"r")

3 fr = f.readlines()

4 for l in fr:

11

5 m = re.search(r’(\w+)\s+(\d+)\s+(\d+)\s+(\d+)\+(\d+:\d←↩

+:\d+)\s+’,l)

6 if m:

7 user_name = m.group(1)

8 no_of_jobs = int(m.group(2))

9 job_cpu_time = (int(m.group(4))*24+int(m.group(5).←↩

split(":")[0]))*3600 + int(m.group(5).split(":")←↩

[1])*60 + int(m.group(5).split(":")[2])

10 if(name.count(user_name)>0):

11 index = name.index(user_name)

12 no_of_jobs = no_of_jobs + jobs[index]

13 job_cpu_time = job_cpu_time + job_cpu[index]

14 avg = job_cpu_time/no_of_jobs

15 k = str(int(avg/3600))+":"+str(int(int(avg←↩

%3600)/60))+":"+str(int(avg%60))

16 jobs[index]= no_of_jobs

17 job_cpu[index] = job_cpu_time

18 avg_cpu_time_value[index] = avg

19 avg_cpu_time[index] = k

20 else:

21 avg = job_cpu_time/no_of_jobs

22 k = str(int(avg/3600))+":"+str(int(int(avg←↩

%3600)/60))+":"+str(int(avg%60))

23 name.append(user_name)

24 jobs.append(no_of_jobs)

25 avg_cpu_time_value.append(avg)

26 job_cpu.append(job_cpu_time)

27 avg_cpu_time.append(k)

28

29 else:

30 n = re.search(r’(\w+)\s+(\d+)\s+(\d+)\s+(\d+:\d+:\d←↩

+)’,l)

31 if n:

32 user_name = n.group(1)

33 no_of_jobs = int(n.group(2))

34 job_cpu_time = int((n.group(4).split(":")[0]))←↩

12

*3600 + int(n.group(4).split(":")[1])*60 + ←↩

int(n.group(4).split(":")[2])

35 if(name.count(user_name)>0):

36 index = name.index(user_name)

37 no_of_jobs = no_of_jobs + jobs[index]

38 job_cpu_time = job_cpu_time + job_cpu[index←↩

]

39 avg = job_cpu_time/no_of_jobs

40 k = str(int(avg/3600))+":"+str(int(int(avg←↩

%3600)/60))+":"+str(int(avg%60))

41 jobs[index]= no_of_jobs

42 job_cpu[index] = job_cpu_time

43 avg_cpu_time[index] = k

44 avg_cpu_time_value[index] = avg

45 else:

46 avg = job_cpu_time/no_of_jobs

47 k = str(int(avg/3600))+":"+str(int(int(avg←↩

%3600)/60))+":"+str(int(avg%60))

48 name.append(user_name)

49 jobs.append(no_of_jobs)

50 job_cpu.append(job_cpu_time)

51 avg_cpu_time.append(k)

52 avg_cpu_time_value.append(avg)

The first for loop runs until all the input files are parsed. In the input file the total cpu time

utilized can be in two formats. One is days + hours:minutes:seconds and the other is hours

:minutes :seconds. The two cases are dealt separately. The pattern is recognized using regex

in python. A for loop parses through all the lines one at a time till it reaches the end of the file.

Once if the pattern matches with one of the two possible patterns, the information regarding the

username, number of jobs and job cpu time are retrieved to new variables. Then it is checked

whether the username is already available or not. If it is previously available the details associ-

ated with the username are updated with the new data. Else it gets appended as new username

and it’s information is stored.

13

1 z=0

2 print("Davg CPU Time = Avg CPU Time for the user - Total Avg ←↩

CPU Time for all the users")

3 print ("User Name Jobs Avg CPU Time(h:m:s) Davg CPU←↩

Time(h:m:s) ")

4 for i in range(0,len(name)):

5 if(str(name[i])=="TOTAL"):

6 z=i

7 break

8 for i in range(0,len(name)):

9 if(i!=z):

10 if(avg_cpu_time_value[i]> avg_cpu_time_value[z]):

11 diff = avg_cpu_time_value[i] - avg_cpu_time_value[z←↩

]

12 val = "+" + str(int(diff/3600))+":"+str(int(int(←↩

diff%3600)/60))+":"+str(int(diff%60))

13 else:

14 diff = avg_cpu_time_value[z] - avg_cpu_time_value[i←↩

]

15 val = "-" + str(int(diff/3600))+":"+str(int(int(←↩

diff%3600)/60))+":"+str(int(diff%60))

16 print (str(name[i]).ljust(10)+" "+str(jobs[i]).ljust←↩

(10)+" "+str(avg_cpu_time[i]).ljust(15)+" "+←↩

val.ljust(10))

17

18

19 print (str(name[z]).ljust(10)+" "+str(jobs[z]).ljust(10)+" ←↩

"+str(avg_cpu_time[z]).ljust(10))

20

21 if __name__ == "__main__":

22 main()

The index of the username as "TOTAL" is found out using a for loop. Using this the dif-

ference between the total average cpu time and average cpu time is calculated and displayed in

the output. Due to the inavailability of admin access to me, I wrote the algorithm which takes

14

Figure 4.1: Sample Input

Figure 4.2: Sample Output

15

the input manually. This can be implemented either as a command or as a Cron job to gather

information on average cpu times consumed by various users in required time intervals.

4.3 Implementation in SLURM

Accounting information for jobs invoked with Slurm are either logged in the job accounting

log file or saved to the Slurm database. The sacct command displays job accounting data

stored in a variety of forms for the analysis. This can be useful for monitoring job progress or

diagnosing problems that occurred during job execution. By default, sacct will report Job ID,

Job Name, Partition, Account, Allocated CPU Cores, Job State, and Exit Code for all of the

current user’s jobs that completed since midnight of the current day.

The -o, –format option allows the users to customize output of job usage statistics. For the

required data the following format of sacct command can be used:

sacct –format=User,JobID,time,start,end,elapsed,NCPUS,NNodes,NTasks

Using the above command we will get information about the time at which the job was

submitted, started, ended, number of cpus, nodes and tasks associated with it. From this we

can get the average waiting time, cpu time for all users, formulate a dependence between them

and number of cpus and nodes used, number of tasks per cpu and number of tasks per job using

machine laearning concepts. For more useful results, we have to include the queue length at

the time of submission of the job, finding the expected time to finish the jobs in the queue and

updating the dependency relation by comparing with the actual time taken to finish those jobs.

16

CHAPTER 5

Conclusion

In this technical report a comparison of two workload managers: IBM’s Loadlelveler and

SLURM is provided with the aim of helping the readers to get a brief understanding about

their architectures and advantages of using SLURM over Loadleveler.

LoadLeveler is a parallel job scheduling system that allows users to run more jobs in less

time by matching each job’s processing needs and priority with the available resources, thereby

maximizing resource utilization. It was primarily available only for AIX operating system,

however it is now also available for POWER and x86 architecture Linux systems.

SLURM is an open-source, fault tolerant job scheduling system started at LLNL and that is

now very popular in large supercomputing centers because it offers high scalability and pretty

complete functionality by using additional SLURM plugins. Being a Free Open Source Soft-

ware means that one has access to the code so that they are free to use it, study it, and/or

enhance it. These reasons contribute to Slurm being subject to active research and development

worldwide, displacing proprietary software in many environments.

As of now, IBM seems to have ended the development of Loadleveler and continuing efforts

concentrated around OpenPower, using accelerators such as FPGAs and GPUs. The inadequate

availability of documentation and support from IBM for the Loadleveler users and administra-

tors is a huge setback for Loadleveler. In terms of future development,SLURM seems to be

the most promising compared to batch systems like SGE(Sun Grid Engine), TORQUE etc,

evaluated including a strong development community.

REFERENCES

[1] "Using and Administering"for IBM LoadLeveler for AIX 5L,

http://www.hpcx.ac.uk/support/documentation/IBMdocuments/a2278810.pdf

[2] SLURM Workload Manager Documentation, https://slurm.schedmd.com/

[3] "Analysis of Batch Systems" Technical Report - Cesga,

https://cesga.es/en/biblioteca/downloadAsset/id/753

[4] "SLURM Reference Manual", https://support.hpe.com/hpsc/doc/public/display?docId=emrna−

c01858965

[5] "SLURM: Simple Linux Utility for Resource Management" by Moris Jette and Mark Gron-

dona, https://e-reports-ext.llnl.gov/pdf/241984.pdf

[6] "User Commands PBS/Torque Slurm LSF SGE LoadLevel",

https://slurm.schedmd.com/rosetta.pdf

18

http://www.hpcx.ac.uk/support/documentation/IBMdocuments/a2278810.pdf
https://slurm.schedmd.com/
https://cesga.es/en/biblioteca/downloadAsset/id/753
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c01858965
https://e-reports-ext.llnl.gov/pdf/241984.pdf
https://slurm.schedmd.com/rosetta.pdf

	ACKNOWLEDGEMENTS
	ABSTRACT
	Loadleveler
	Introduction
	Job Scheduling
	Loadleveler Daemons
	Job Cycle

	SLURM
	Introduction
	Slurm Features

	Comparision of architectures
	Analysis of Commands
	Usage of environment variables
	Performance Comparison

	Development of usage scripts
	Intial work done
	Finding average job time
	Implementation in SLURM

	Conclusion

