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ABSTRACT

KEYWORDS: skew-normal distribution, non-linear optimization, artificial neural

network

A technique for extracting Statistical Compact Model(SCM) parameters for skewed

Normal parameters is proposed. Existing techniques handle non-Gaussian variations

through non-linearity in model equations. However, hardware data on certain tech-

nologies suggest that non-Gaussian variations are observed even on linear parameters

like Idlin/Idsat. We propose to model such variations through skewed Normal random

variables. Analytical expressions relating the statistics of the skewed Gaussian process

and performance parameters are derived. Statistical measures of process parameters are

extracted using back propagation algorithm.
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Chapter 1

INTRODUCTION

As the semiconductor devices scale down, the process variations become more signifi-

cant. Circuit designer needs to assess the impact of these variations on the performance

of the circuit using existing statistical or analytical models. The classic approach of

running the Monte-Carlo(MC) simulations to match the resulting parameter distribu-

tions with that of predicted or measured distributions is time-consuming trial and error

method. As the technology further scales down these variations start deviating from the

Gaussian distributions making the MC simulations even more cumbersome.

Building an analytical model relating the Process parameters and Performance pa-

rameters can help in speeding up the extraction process to a better extent. Analytical

model helps in deriving the dependence of the statistical measures of Performcance

parameters on Process parameters which can be used in extracting the required param-

eters.

Existing techniques of Statistical Compact Modelling(SCM) do handle the case

when the performance parameters are non-Gaussian. However the reason is considered

to be non-linear dependence between the process parameters and performance param-

eters while considering the process variations to be Gaussian. However this is not the

case, since hardware data of some of the technologies show that even linear parameters

like Idlin, Idsat have also skewed histograms. Attempts have be made to model the pro-

cess parameters to be skew-Gaussian to model the skewness in the linear parameters.

But considering skew-Gaussian variation in performance parameters have created diffi-

culties in modelling non-linear parameters like Ioff. In this report we attempt to model

the non-Gaussian variations in process parameters using skew-Normal variables with

certain constraints which will also be able to model the non-linear parameters like Ioff.



1.1 Literature Review

Building analytical models to extract the variations in the process parameters is one of

the major areas of research in semiconductor industry. The prime models as described

in [1] and [3] implements the Back Propagation Algorithm (BPA) efficiently for non-

linear relationships that be accurately modelled using the quadratic and linear terms.

These work well if the degree of non-linearity is not too high.

However as the device size keeps scaling down, the sub threshold leakage current

becomes one of the considerable performance parameters as the leakage power con-

tributes to nearly 50% of the total device power . It is also well known that the leakage

current is exponentially dependent on process parameter variation[5] . The above de-

scribed methods fail to model the leakage current efficiently.

The modelling in [6] shows that ANN can be used to efficiently model the perfor-

mance parameters including the leakage current in a scenario of Multiple Input Multiple

Output(MIMO) within an error of 1%. [7] uses the ANN based approach to extract the

statistical parameters with an underlying assumption that the variation in process pa-

rameters are Gaussian. However as proposed by Kovac et.al with the scaling down of

technology, the variations in process parameters deviates from Gaussian, which can be

pretty much modelled using skew-normal distributions.

This report using the model described in [6] tries to build up on the footsteps of [7]

to device an analytical model when the variations in process parameters is skew-normal.

1.2 Problem Formulation

Inline measurements determine the distributions of the performance parameters and

some process parameters. Hence the inputs of ANN model generation are the sta-

tistical measures of performance parameters like Idlin(linear region ON current), Id-

sat(saturation region ON current), Ioff(subthreshold leakage at Vgs = 0), Vtlin(linear

region threshold voltage), Vtsat(saturation region threshold region). The goal is to ob-

tain the statistical measures of process parameters like mobility, oxide thickness etc..,

with that of the known parameters keeping constant at the measured values which result

in the same variations as the measured results.
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Let the process parameters which see the variations due to manufacturing pro-

cess be denoted by P = [P1P2...PN ]
T . The Performance parameters which depend on

these underlying process parameters through complicated functions be denoted by Y =

[Y1Y2...YM ]T . The statistical measures of P be denoted by sP = [sP1 s
P
2 ...s

P
N ]

T and that

of Y be denoted by sY = [sY1 s
Y
2 ...s

Y
M ]T .

The statistical measures of Y are measured inline and added with suitable guard

bands to take into account for the varying process conditions with time and limited

sample size are supplied as targets to the ANN model. Let these be denoted as sTarget

= [sTarget1 sTarget2 ...sTargetM ]T . The problem that needs to be solved is to determine the

statistical measures of the process parameters sP that result in sY = sTarget. This can be

expressed as inversion problem as follows

sreq = {sP : sY (sP ) = sTarget} (1.1)

The key to solve this problem is to evaluate sY as function of sP which completely

depends on fi which relates Yi and P as follows

Yi = fi(P) (1.2)

The physics based equations are quite complex. Hence [5] uses ANN to model these

complex relations so that the equations relating the statistical measures can be analyti-

cally derived. In the next section, we look at ANN based modelling, statistical parame-

ters involved, deriving the relation between sY and sP which can be subsequently used

in optimizing problem.
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Chapter 2

ANN Modelling and Optimization

2.1 MIMO modelling using ANN

Neural network modelling involves two phases - training phase and testing phase.

Figure 2.1: Basic Structure of ANN used

The basic structure of a MIMO ANN with one hidden layer is shown in Fig. 1.

As shown in the figure ANN consists of three layers: input, hidden and output. The

hidden layer consists of hidden units where weighted sum of inputs is passed through

a non-linear activation function. The activation function chosen is exponential-sigmoid

as described in Eq. 2.1 in contrast to standard activation functions like tan-sigmoid and

log-sigmoid to ease the analytical derivation of relationship between input and output.

φ(x)

(1− e−x), x ≥ 0

−(1− ex), x ≤< 0

(2.1)

The weighted outputs of the hidden layers are again linearly combined to get the

required outputs. The values (W I , BI) and (WO, BO) are unknown variables and are

determined during training of ANN. The relation between output and input of an ANN

is given by

Y = WO × φ(W I × P +BI) +BO (2.2)



The ANN is trained using the Levenberg and Marquardt algorithm as described in [2].

2.2 Statistical Parameters involved

As described in [4] skew-normal distributions can be best represented as linear combi-

nation of standard normal and half normal random variable

Z = λ|U |+ V (2.3)

P = σZ (2.4)

where U and V are N(0,1) and λ and σ are real numbers with σ ≥ 0. The mean and

variance of P are as follows

µ = λ

√
2

π
(2.5)

σ2 = λ2(1−
√

2

π
) + 1 (2.6)

Hence a skew normal distribution can be best described with the help of λ and σ as

parameters instead of mean and variance.

To ease the analytical derivation of propagation of skew random variables through

ANN, all the process parameters distributions are considered to be represented by same

half normal distribution.

Pi = σi(λi|U |+ Vi) (2.7)

Since the propogation of variance of skew-normal distribution through ANN would

be quite difficult, so instead of modelling the variance and higher moments of perfor-

mance parameters, the squares and cubes of the performance parameters are modelled.

Their expectations E[Y], E[Y 2] and E[Y 3] are used to achieve the targets in variance

and higher order moments, instead of passing them through ANN.

5



2.3 Statistical Analysis

In the previous section, we built the ANN which models the required relations and also

the stated the statistical measures of our interest. In this section our goal is to determine

analytical relations between the statistical measures of Performance parameters and

Process parameters.

The key for deriving the required relations is to evaluate the expectation at the output

of the hidden layer for a given skew-normal input. The hidden layer can be broken down

into two stages - Linear combination of weighted inputs and Passing through activation

function.

The random variable description after stage 1 of hidden layer is as follows

Si =
N∑
j=1

W I
ijPj +BI

j

=
N∑
j=1

W I
ijσj(λj|U |+ Vj) +BI

j

=
N∑
j=1

W I
ijσjλj|U |+

N∑
j=1

W I
ijσjVj

= λsi|U |+ Vsi

(2.8)

The form of random variable S describes it to be a skew-normal random varible whose

mean and variance are given by

µsi = λsi

√
2

π
+ µvsi (2.9)

σ2
si = λ2si(1−

√
2

π
) + σ2

vsi (2.10)

The Probability distribution function of Si is given by

fSi(z) = αe−
(z−µvsi)

2

σ erfc[(µvsi − z)γ] (2.11)
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where,

α =
1√

2π(σ2
vsi + λ2siσ

2
u)

σ = 2(σ2
vsi + λ2siσ

2
u)

γ =
λsiσu

σvsi
√

2(σ2
vsi + λ2siσ

2
u)

(2.12)

The random variable when passed through the exponential sigmoid activation function

gives random variable K which has expectation given by

µki =
α
√
πσ

2

[
erfc
(
− µvsi

σ

)
− erfc

(µvsi
σ

)]
+ αe

σ
4

[
f(µvsi)− f(−µvsi)

]
+ αe

σ
4

(
γσ

3
2

2
+
γ3σ

5
2 (6 + σ)

24

)[
f(µvsi) + f(−µvsi)

]
+
αγe−

µ2vsi
σ

√
π

(
2σ
(µ4

vsiγ
4

10

)
+ 2σ2

(µ2
vsiγ

4

5

)
+ 2σ3

(γ4
5

+
γ2

12

))
(2.13)

where,

f(x) = ex
(

erfc
( x√

σ
+

√
σ

2

))
(2.14)

The output of ANN as described is the linear combination of the weighted outputs

of hidden layers whose description and expectation are given by

Yi =
R∑
j=0

KjW
O
ji +BO

j (2.15)

µY i =
R∑
j=0

µKjW
O
ji +BO

j (2.16)

The Derivations of all the above equations are given in Appendix A
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2.4 Non Linear Optimization Formulation

The objective function for non-linear optimization can be formulated as follows

min
σ,λ

M∑
i=1

(
sTargeti − sYi
sTargeti

)2

+
N∑
i=1

(
λ3iσ

3
i 12

√
2

π

)2

Subject to 0 ≤ σPi ≤ sMAX
i and − λMAX

i ≤ λPi ≤ λMAX
i

(2.17)

where σMAX
i and λMAX

i denotes the maximum deviation in process parameters with in

which the targets are expected to be achieved.

The first term in the above formulation minimizes the relative error between the

achieved value and target specified. The second term penalizes the deviation of the

simulated distribution from the Gaussian distribution. The second term is necessary

since the minimization of first term can solely be achieved by choosing large skew

which is not generally observed in practice. So in order to keep check on the deviation

from the Gaussian it is necessary to penalize this deviation.
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Chapter 3

Results

In this section we validate the theory presented in the previous section starting with the

training of ANN and then proceeding to the optimization results.

3.1 ANN training

The MIMO ANN is trained to model five performance parameters(Idlin, Idsat, Ioff,

Vtlin, Vtsat) and their squares and cubes as function of nine process parameters.

Table 3.1: Summary of ANN Structure

Technology 20nm
No of Inputs(N) 9

No of hidden layers(R) 27
No of outputs(M) 14

Table 3.2: Summary of ANN Training Process

Parameter Maximum Testing Error (%) Mean Testing Error(%)
idlin 0.3801 0.01846
idsat 0.2198 0.01866
ioff 1.9712 0.0830
vtlin 0.0915 0.01349
vtsat 0.2517 0.02146
idlin2 0.6208 0.02891
idsat2 0.3307 0.0402
ioff2 4.681 0.163
vtlin2 0.1784 0.02582
vtsat2 0.5120 0.04162
idlin3 0.8285 0.0444
idsat3 0.6565 0.0644
vtlin3 0.5159 0.04146
vtsat3 0.6108 0.06412



The training of ANN was performed using the Matlab neural networks toolbox. As

described in Table 3.1 the ANN has 9 input layers, 27 hidden layers, and 14 output

layers. From Table 3.2 one can observe that the maximum sample error on the testing

set is less than 5% whereas the mean error is less than 0.2 %. This shows that the ANN

can accurately model the required parameters. The training process takes less than 5

minutes on a typical laptop of 1.77GHz and 6GB RAM.

3.2 Optimization Results

We now look at the results of the optimization formulation, The optimizaion executed

on two cases,

1. when the performance parameters are Guassian with skew less than 0.1.

2. When the Performance parameters deviate from Gaussian with skewness reach-
ing 0.8 in idlin and idsat and other performance parameters remaining nearly
Guassian.

The optimization results are presented for both the cases in Table. 3.3 and Table.

3.4 respectively.

Table 3.3: Results of Optimization for Gaussian distribution in performance parameters

Process Parameters Performance Parameters
σP λP λPσP µsimY µtargetY Error (%)

P1 0.3333 0 0 idlin 0.999 0.9991 0.01
P2 0.2021 1.00E-04 2.03E-05 idsat 1.001 1.0013 0.02
P3 0.3333 0 0 ioff 1.187 1.187 0.04
P4 0.3575 -2.2E-02 -7.90E-03 vtlin 1.000 0.999 0.01
P5 0.3582 -1.06E-02 -3.78E-03 vtsat 0.997 0.997 0.00
P6 0.3333 0 0 idlin2 1.001 1.001 0.01
P7 0.226 1.00E-01 2.28E-02 idsat2 1.006 1.006 0.01
P8 0.3333 0 0 ioff2 1.903 1.903 0.01
P9 0.228 -1.49E-01 -3.41E-02 vtlin2 1.000 1.0005 0.00

vtsat2 0.997 0.997 0.02
idlin3 1.007 1.007 0.00
idsat3 1.013 1.014 0.02
vtlin3 1.003 1.003 0.01
vtsat3 1.000 1.000 0.04
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Table 3.4: Results of Optimization for skew-normal distribution in performance param-
eters

Process Parameters Performance Parameters
σP λP σPλP µsimY µtargetY Error (%)

P1 0.3333 0 0 idlin 1.012 1.0148 0.32
P2 0.184 -2.7E-04 -5.14E-05 idsat 1.012 1.0145 0.29
P3 0.3333 0 0 ioff 1.211 1.2058 0.43
P4 0.3666 -1.61E-01 -5.93E-02 vtlin 0.995 0.9979 0.31
P5 0.3206 -1.73E-01 -5.55E-02 vtsat 0.994 0.995 0.12
P6 0.3333 0 0 idlin2 1.027 1.0330 0.63
P7 0.3654 2.44E-01 8.94E-02 idsat2 1.027 1.0326 0.57
P8 0.3333 0 0 ioff2 1.963 1.964 0.11
P9 0.3657 2.87E-01 1.05E-01 vtlin2 0.991 0.9971 0.59

vtsat2 0.991 0.9935 0.22
idlin3 1.046 1.0551 0.91
idsat3 1.046 1.0545 0.84
vtlin3 0.989 0.9975 0.86
vtsat3 0.991 0.9941 0.32

The process parameters (P1, P3, P6, P8) are measured inline and hence their sta-

tistical measures are fixed and used for forward propagation. Matlab’s optimization

toolbox is used to solve the non-linear optimization problem. The algorithm used for

minimization is interior-point method.

The optimization routine when implemented on Gaussian distribution in Perfor-

mance parameters produced skew-normal distributions with very small λσ,such distri-

bution can be considered as Gaussian distribution and the targets are modelled within an

max error of 0.1%. The process parameters being Gaussian is highly expected since any

linear combination of Gaussian distribution gives Gaussian distribution. This proves

that the given equations are analytically correct for the propagation of mean through

ANN.

Skew-normal implementation of optimization routine models the targets within an

error of 1%. This error can be expected as a Taylor Series approximation of three terms

for the pdf of skew-normal distribution is used in the derivation of results. The error can

be further reduced by considering higher order terms of Taylor series thereby reducing

the error in approximation.

Intuitively, one can observe that the process parameter P9 has the highest skew.
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This is expected since only skew in Idlin, Idsat is considered for simulation and process

parameter P9 is mobility, as the skew in mobility only effects Idlin and Idsat. The results

can also be seen correct intuitively.

3.3 Conclusion

The ANN can be used to model multiple performance parameters of CMOS devices as

a function of multiple process parameters. The numerical model can then be used to

predict the statistical measures of performance parameters as a function of statistical

measures of process parameters using accurate analytical expressions.It can also be

observed that instead of passing higher order moments through ANN, higher powers

of outputs can be modelled and their means can be considered for modelling higher

order moments. The problem of statistical compact modelling can then be solved with a

nonlinear optimization problem. Results showed that, with five performance parameters

and nine process parameters the proposed algorithm matched with in an error of 0.5%

in mean targets and with in an error of 1% for targets of higher moments.
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Appendix A

A.1 Probability distribution function of Si

fSi(z) =

∫ ∞
−∞

fλsi|U |(x)fv(z − x)dx

=
1

πλsiσvsi

∫ ∞
0

e
− x2

2λ2
si e
− (z−x−µvsi)

2

2σ2
vsi

Expanding the second exponent gives integral of form

= β

∫ ∞
0

e−(ax
2+bx)dx

converting the exponent of e into perfect squares gives

= βe−k
∫ ∞
h

e−ax
2

dx

Using the standard integral∫ ∞
x

e−u
2

du =

√
π

2
erfc(x)

gives

fSi(z) = αe−
(z−µvsi)

2

σ erfc[(µvsi − z)γ]

where α, σ and γ are given by (2.12)

(A.1)



A.2 Mean of Ki

µKi = E[φ(si)]

=

∫ ∞
−∞

φ(x)fsi(x)dx

Substituting φ(x) and fsi(x) as given by (2.1) and (2.11)

= −
∫ 0

−∞
(1− ex)αe−

(z−µvsi)
2

σ erfc[(µvsi − z)γ]dz

+

∫ ∞
0

(1− e−x)αe−
(z−µvsi)

2

σ erfc[(µvsi − z)γ]dz

Substituting (µvsi − z) = x in the equation gives

=

∫ µvsi

−∞
α(1− ex−µvsi)e−

x2

σ erfc(xγ)dx

−
∫ ∞
µvsi

α(1− eµvsi−z)e−
z2

σ erfc(xγ)dx

Considering, Taylor series approximation for erfc(x) given by

erfc(x) = 1− 2√
π
(x− x3

3
+
x5

10
− x7

42
+ ...)

Considering till power of 5 and Substituting gives

= α

(
1−

√
2

π

(
z − z3

5
+
z5

10

))[∫ µvsi

−∞
e−

z2

σ erfc(zγ)dz

−
∫ µvsi

−∞
e(−

z2

σ
+z−µvsi)erfc(zγ)dz −

∫ ∞
µvsi

e−
z2

σ erfc(zγ)dz

+

∫ ∞
µvsi

e(−
z2

σ
−z+µvsi)erfc(zγ)dz

]
Splitting the terms into individual integrals of the form∫ b

a

zme−kxand

∫ b

a

zme−kx
2

and then using Integration by Parts with appropriate substitutions

gives the Equation (2.13) as the mean of Ki

(A.2)
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