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ABSTRACT

KEYWORDS: Deep Learning, User Privacy, Split NN

When it comes to applying deep learning to a problem which involves medical,

financial, or other types of sensitive data, it is not enough to have accurate predictions,

one must pay careful attention in maintaining data privacy and security. Legal and

ethical requirements may prevent the use of cloud-based deep learning solutions for

such tasks. In this work we propose a framework where the user rely on cloud-based

services to achieve the results for his deep learning models. Since the definition of

privacy is task dependent, we define what is means for the user data to be private, and

accordingly define the goal of the adversary in the current situation. We also classify

the adversary based on the information he has and what he is capable of. The efficiency

and effectiveness of our framework are demonstrated with CIFAR-10 dataset.
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CHAPTER 1

INTRODUCTION

In recent times, the progress in neural networks enabled us to achieve remarkable re-

sults in a wide range of applications including image classification, speech recognition,

object detection, etc. These advances were enabled, partly because of the availability of

large representative datasets for training neural networks. Often these datasets may con-

tain sensitive information. When applying deep learning to a problem which involves

medical, financial, or other types of sensitive data, it's not enough if the predictions are

accurate, we should also take into consideration the privacy and security aspects of the

data involved.

One way to guarantee the privacy of user data is to perform the training and infer-

ence of neural network in a local trusted machine. We cannot expect everyone to have

access to resources which can accomplish this task. This problem can be solved by

using a third party to bear the computation load. This idea is known as Deep Learning

as a Service(DLaaS). When using DLaaS one has to be mindful about the privacy of

user data.

The notion of privacy can be discussed during the training phase and the inference

phase. To get a notion of training the neural network in such a setting refer privacy-

preserving data-mining [1]. One possible solution to training while preserving privacy

lies in the concept of differential privacy [2]. The current work focuses on preserving

the privacy of user data during the inference phase.

We assume that a trained model is already loaded on to the server and we discuss the

steps the user has to take to protect his data against the adversary. In these models, the

notion of privacy is task specific. Hence we define the notion of privacy for the current

task at hand. We also analyze the capabilities of adversary based on the amount of data

he can access.



CHAPTER 2

PREVIOUS WORKS

Let's take a look at some of the previous approaches used to solve this problem and

discuss the pros and cons of some of the corresponding works.

Approaches Works

Homomorphic Encryption (HE) Cryptonets
[3]

, CryptoDL
[4]

Garbled Circuits (GC) DeepSecure
[5]

Additive Secret Sharing (A-SS) Sharemind
[6]

Hybrid (Mixture of various approaches) Chameleon [7], SecureML
[8]

, MiniONN
[9]

Table 2.1: Previous works

2.1 CryptoNets

This framework allows a data owner to send their data in an encrypted form to a cloud

service that hosts the network. The encryption ensures that the data remains confidential

since the cloud does not have access to the keys needed to decrypt it. Nevertheless,

the cloud service is capable of applying the neural network to the encrypted data to

make encrypted predictions, and also return them in encrypted form. These encrypted

predictions can be sent back to the owner of the secret key who can decrypt them.

Therefore, the cloud service does not gain any information about the raw data nor about

the prediction it made.

This cryptosystem allows computing the polynomial functions of a fixed maximal

degree on the encrypted data. High degree polynomial computation requires the use of

large parameters in the scheme, which results in larger encrypted messages and slower

computation times. Hence, a primary task in making practical use of this system is to

present the desired computation as a low-degree polynomial.



The training phase requires non-linear activation functions, but evaluation phase

needs low-degree polynomial functions. Hence non-linear low degree polynomial func-

tions are incorporated in training phase also. This will result in slight decline in accu-

racy which can be considered as a fair tradeoff to achieve privacy. For the sake of

time-efficient evaluation, consecutive layers that use only linear transformations, such

as the weighted-sum or mean pooling, can be collapsed.

Figure 2.1: CryptoNets framework

2.2 DeepSecure

This framework enables scalable execution of the state-of-the-art Deep Learning (DL)

models in a privacy-preserving setting. DeepSecure targets scenarios in which neither

of the involved parties including the cloud servers that hold the DL model parameters

or the delegating clients who own the data is willing to reveal their information. The

secure DL computation in DeepSecure is performed using Yao's Garbled Circuit(GC)

[10] protocol. This work performs GC-optimized realization of various components

used in DL.

DeepSecure enables computing the pertinent data inference label in a provably-

secure setting while keeping both the DL model's parameters and data sample private.

To perform a particular data inference, the netlist of the publicly known DL architecture

should be generated prior to the execution of the GC protocol. The execution of the GC

protocol involves four main steps

3



1. The client (data owner) garbles the Boolean circuit of the DL architecture.

2. The client sends the computed garbled tables from the first step to the cloud server
along with her input wire labels. Both client and the cloud server then engage in
a 1-out-of-2 Oblivious Transfer (OT) [11] protocol to obliviously transfer the
wire labels associated with cloud server's inputs.

3. The cloud server evaluates (executes) the garbled circuit and computes the corre-
sponding encrypted data inference.

4. The encrypted result is sent back to the client to be decrypted using the garbled
keys so that the true inference label is revealed.

2.3 Chameleon

The main design goal behind Chameleon is to create a framework that combines the

advantages of the previous secure computation methodologies. This is a hybrid (mixed-

protocol) framework for secure function evaluation(SFE) which enables two parties to

jointly compute a function without disclosing their private inputs. Chameleon combines

the best aspects of generic SFE protocols with the ones that are based upon additive

secret sharing.

In particular, the framework performs linear operations using the additively secret

shared values and nonlinear operations using Yao's Garbled Circuits. Chameleon de-

parts from the common assumption of additive or linear secret sharing models where

three or more parties need to communicate in the online phase: the framework allows

two parties with private inputs to communicate in the online phase under the assumption

of a third node generating correlated randomness in an offline phase. Almost all of the

heavy cryptographic operations are precomputed in an offline phase which substantially

reduces the communication overhead.

4



Figure 2.2: Chameleon framework

Pros Cons

Cryptonets

Can encode n values into a single poly-
nomial, operate on this polynomial and
decode the n different results

No support for floating-point numbers

The user need not be online during the
evaluation phase

Noise growth is strong in multiplica-
tion => Bigger the network slower the
computation

Well suitable for batch settings Have to retrain the network with poly-
nomial activation functions => trade
off between accuracy and privacy

DeepSecure

This method does not have pri-
vacy/accuracy trade-off

Have to retrain the network after map-
ping training images into sparse sub-
space - data preprocessing

Well suitable for streaming settings User has to be online during the evalu-
ation phase

Non-linear activation functions can be
accurately represented by Boolean cir-
cuits

DL network is pruned prior to netlist
generation

Chameleon

Less computation and communication
overhead

Involves a Semi-honest Third Party

User has to be online during the evalu-
ation phase

Table 2.2: Pros and Cons of previous works
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CHAPTER 3

PROPOSED FRAMEWORK

The goal of this work is to come up with a framework that protects the privacy of user

data in a DLaaS setting and at the same time make sure it is time and compute efficient.

To this end, we propose a Split NN framework where a NN split into two parts, the

first part (M1) resides at the user end, while the second part (M2) resides at the server

end. Ideally speaking the split is made in such a way that less computation is performed

at the user end and more computation is performed at the server end. Now instead

of sending the features directly from M1 to M2, the intermediate features are passed

through a perturbation layer(P). The purpose of P is to perturb the features before

sending them to the server. The functionality of this layer depends on various factors

which are discussed in further sections.

In this work the focus is on one particular task, Image Classification. The user has

a set of images, and a pre-trained model to classify these images. When he uses our

proposed framework for inference, the process goes like this:

1. Split the NN into M1 and M2

2. Load M2 on to the server.

3. Pass the image through M1 and get the intermediate features

4. Pass the intermediate features through P and get the perturbed features

5. Pass the perturbed features to M2 and get the class label as output.

Figure 3.1: Proposed Framework



CHAPTER 4

ADVERSARY

4.1 Adversarial Model

Now that we have defined our framework it is time to define the adversarial model we

are considering for the current setting.

A reasonable definition of privacy would be, ‘the ability of an individual or group

to seclude themselves, or information about themselves, and thereby express them-

selves selectively’. Even though we have a general idea of privacy, when it comes to

defining privacy in the current context, we have to place some constraints when defining

what it means to keep the user data private.

For example,

1. If the data-set at hand was obtained by conducting a survey, the people partici-
pated in the survey and the answers they gave need not be private individually,
but the relation between them (who answered what? should be kept private).

2. If the data-set at hand is a set of images, then all the images in the data-set have
to kept private if they might reveal something about the user.

On these lines, we say that the notion of privacy is dependent on the task at hand

and the constraints posed by the user.

Here we consider the case where the user wants to keep all the images he uses for

classification to be private. Hence we define our adversary as an entity who wishes to

obtain these images. In this work we focus on the network adversary. We assume that

the adversary can eavesdrop on the communication channel between the user and the

server and gain access to the data beign transferred.

Since the user is sending the output of P to M2 rather than sending the images them-

selves, obtaining the images used for classification is not a straightforward task. The

adversary has to reconstruct the images from the intermediate features. For this im-

age reconstruction task, we use the state-of-the-art generative NN architecture based



Figure 4.1: Adversarial Model

on ResNet blocks [12], which has demonstrated good performance for different im-

age recovery tasks, including super-resolution [13], denoising autoencoder [14]. Refer

appendix for the exact architecture of the Super Resolution Generative Adversarial Net-

work (SRGAN) used for this work.

Given the adversary knows the situation he is trying to tackle, he knows the dis-

tribution of the data that is being used. For example, if the adversary knows that he

is targeting a hospital then he can take a guess at what kind of images are being used

(X-rays, MRI scans, etc). To consider the worst case scenario let us assume that the ad-

versary knows the training set that has been used to train our model. Using this data-set

the adversary trains his SRGAN to accept the intermediate features and reconstruct the

image.

4.2 How powerful is the chosen adversary?

To get an idea of how well the reconstructed images are, we pass these images through

a classifier and measure the accuracy. From here on, we term this quantity as SRGAN

Accuracy. Higher SRGAN Accuracy implies more powerful adversary. In this work

we used VGG16 as the image classifier which the user splits across himself and the

server. We used CIFAR-10 data to train it. The reconstruction results when there is no

perturbation layer (P) are shown in figure 4.2 .

Figure 4.2: Reconstructed images when there is no perturbation layer
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We further claim that the adversary need not have access to all the intermediate

features of the images in the training dataset to perform this well. Let's have a look at

how the adversary performs if he has access to limited amount of data.

Figure 4.3: SRGAN Accuracy (vs) Fraction of data

Figure 4.4: Reconstructed images when the adversary has access to partial data

Just by getting access to 25% of the data the adversary is able to achieve ~70% SR-

GAN Accuracy. From this, we conclude that we are considering a remarkably powerful

adversary.

9



CHAPTER 5

CLASSIFICATION OF ADVERSARIAL MODELS

As the notion of privacy varies across tasks and the constraints posed by the user, be-

fore proposing our defensive mechanism (action performed by perturbation layer), we

classify the adversary based on the information he has and what he is capable of. The

classification is as follows:

Naive Adversary (A1):

Is oblivious to the fact that a defensive mechanism is being deployed.

Strong Adversary (A2):

Knows that a defensive mechanism is being deployed, but has no idea what it is.

Best Adversary (A3):

Knows the defensive mechanism that is being deployed.

To get a better understanding of this classification, we consider one particular defen-

sive mechanism and observe how each adversary performs. Consider the perturbation

layer in this case to be Noise layer.

Figure 5.1: Framework for comparing adversaries



The user adds noise sampled from a Normal distribution N(µ,σ) to the output of M1

and sends the noisy features to server. For this particular example assume that the server

also knows this (µ, σ). Once the noisy features are sent to the server it then subtracts

the noise sampled from the same distribution N(µ, σ) and performs the classification.

We vary (µ, σ) and observe how the user is performing.

Figure 5.2: Test Accuracy of pre-trained VGG16 with noise layer

The above results are as expected. Since we are subtracting the noise sampled from

the same distribution, as long as the noise is sampled from a low variate distribution we

can remove it completely. As the variance increase the samples we pick will become

more dispersed which will decrease the Test Accuracy.

Now let us observe how each adversary is performing. For comparison, here we

only consider the cases when the noise is sampled from N(0,0.01), N(0,1.0), N(5,0.01),

N(5,1.0). The results for the remaining distributions can be found in chapter 7.

Naive Adversary (A1): Since A1 does not know that a defensive mechanism is

being deployed, he uses the noisy features directly to reconstruct the images.

Stronger Adversary (A2): Since A2 knows that a defensive mechanism is being

deployed, he knows that the features he accessed are noisy and hence retrains his SR-

GAN and then tries to reconstruct the images.

Best Adversary (A3): Since A3 is aware that the defensive mechanism being de-

ployed is additive noise, he normalizes the features and then trains the SRGAN to per-

form the reconstruction.

11



Figure 5.3: Comparing A1, A2, A3

By comparing the results we find that,

• A1 performs poorly as µ or σ increases.

• A2 performs relatively well compared to A1, for high µ and σ.

• A3 performs well in all the cases.

12



CHAPTER 6

PROPOSED DEFENSIVE MECHANISM

In the current context we use the SRGAN Accuracy (i.e. classification accuracy of the

images reconstructed by the adversary) as our privacy metric. High SRGAN Accuracy

implies less privacy. Our goal is to minimize this quantity without compromising on

the Test Accuracy (i.e. classification accuracy of the user data-set).

X - Test Accuracy when no defensive mechanism is applied

Y - Test Accuracy when defensive mechanism is applied

Z - SRGAN Accuracy when defensive mechanism is applied

Objective: maximize Y-Z and minimize X-Y

From the discussion in the previous chapter, it is clear that A3 is a more powerful

adversary when compared to A2 and A1. If we propose a defensive mechanism which

works against A3, we don't have to worry about the other two. Hence from here on we

consider A3 as our adversary.

Consider the single split model discussed in the previous chapter. The idea was

to pass the intermediate features through a noise layer while training and control the

amount of noise being added to find a trade-off between Y and Z.

Figure 6.1: Noise Layer

To control the magnitude of the noise added, we modified the loss function as,

L'= L - λ1 * (Σ|ni|) + λ2 * (Σn2
i )

ni - parameters of the noise layer λ1, λ2 - hyperparameters



As the objective of the NN during training is to reduce the loss, λ1 tries to increase

ni but λ2 tries to decrease it. Hence the final magnitude of the noise added will depend

on the ratio λ1/λ2. The problem with this idea is the BatchNorm layer present in the

network. This layer normalizes the input before propagating it to the next layer. So

the noise added will not propagate to the last layer. Hence the Test Accuracy does not

take a hit, and SRGAN Accuracy will be high as the adversary normalizes the features

before using them.

This result motivates that the magnitude of the noise being added does not play a

crucial role in deciding the accuracy (both for the user and the adversary). Hence we

focus on the variance of the noise. We increase the variance of the noise being added in

a controlled fashion while training the model itself so that the trained model is robust

enough to account for this noise but the adversary fails to reconstruct the images. The

training process goes like this,

Pass the image through M1

If (epoch == 0):

Initialize the parameters of the noise layer by sampling them from N(0,1)

If (epoch != 0):

Form a normal distribution with the (µ, σ) of the updated parameters of the Noise layer

Sample the parameters of the noise layer from this N(µ, σ)

Pass the output of M1 to Noise layer

Perform forward and backward prop

Update the parameters of the Noise layer

If (epoch == last epoch):

exit

Repeat

To control the variance of the noise added, we modify the loss function as,

L’= L - λ1*(σ) + λ2*(σ2)

We start off with N(0,1). As the goal of the NN during training is to minimize

the loss(L'), λ1 tries to increase the variance of the noise being added and λ2 tries to

14



Figure 6.2: Training process for proposed defensive mechanism

decrease it. So the ratio of λ1/λ2 decides the variance of the noise being added finally.

Higher the ratio of λ1/λ2 higher the variance. Each time we train the network, it learns

to fit a different hyperplane and hence our accuracy varies across different trails. This

variation in accuracy is proportional to the ratio of σ which depends on λ1/λ2.

Now based on the situation in which our framework is used and the constrains placed

by the user we can tune λ1 and λ2 to get the desired results. As the server is oblivious

to the values of λ1 and λ2, this mechanism can also be implemented in situations where

the user does not trust the server.

Let's compare the performance of user and the adversary for λ1/λ2 = 25.

Figure 6.3: Comparing the performance of user and the adversary for λ1/λ2 = 25

We can see a significant difference in Test Accuracy (user) and SRGAN Accuracy

(adversary). The results for different values of λ1/λ2 can be found in chapter 7.

15



CHAPTER 7

EXPERIMENTS AND RESULTS

Data set → CIFAR − 10 Framework → PyTorch

User→ V GG16 Adversary→ SRGAN

7.1 Validation of the Single Split model

This experiment validates the proposed single split neural network model for training.

• Neural Network before performing the split is termed as Vanilla NN.

• Neural Network after performing the split is termed as Single Split NN.

1. Initialize the parameters of Vanilla NN

2. Save the parameters of the network(Params before for Vanilla NN)

3. Perform forward prop and backward prop for one image

4. Save the parameters of the network(Params after for Vanilla NN)

5. Split the NN into two parts M1 and M2

6. Load Params before for Vanilla NN into Single Split NN

7. Save the parameters of the network(Params before for Single Split NN)

8. Perform forward and backward prop for the same image

9. Save the parameters of the network(Params after for Single Split NN)

10. Compare the results from steps 4 and 9



Figure 7.1: Validation of Single Split
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7.2 Comparing A1, A2, A3

The performance of A1, A2 and A3 is compared for different N(µ, σ).

Figure 7.2: Performance of A1 for fixed µ and varying σ

18



Figure 7.3: Performance of A1 for fixed σ and varying µ

Figure 7.4: Performance of A2 for fixed µ and varying σ

19



Figure 7.5: Performance of A2 for fixed σ and varying µ

Figure 7.6: Performance of A3 for fixed σ and varying µ

Figure 7.7: Performance of A3 for fixed σ and varying µ

20



7.3 Test (vs) SRGAN Accuracy for varying λ1/λ2

Figure 7.8: User performance for varying λ1/λ2

Figure 7.9: Adversary performance for varying λ1/λ2

21



Figure 7.10: Comparing the performance of user and the adversary for λ1/λ2 = 50

Figure 7.11: Comparing the performance of user and the adversary for λ1/λ2 = 100

22



CHAPTER 8

CONCLUSION

The growing interest in Deep Learning As a Service (DLaaS), where a marketplace of

predictors is available on a pay-per-use basis, requires attention to the security and pri-

vacy of this model. Not all data-sets are sensitive, but in many applications in medicine,

finance, and marketing the relevant data on which predictions are to be made is typically

very sensitive.

We discussed the notion of privacy in the context of Deep Learning As a Service.

We proposed the split framework and defined the goal of the adversary for the current

task at hand.

We defined three different adversaries based on the information they have and their

capabilities. We have shown the variation in their performance for one particular defen-

sive mechanism. Finally we proposed a defensive mechanism against the most powerful

adversary. Unlike previous works our framework is time and compute efficient as we

are just including one extra layer which performs sampling and addition operations.



CHAPTER 9

FUTURE WORK

9.1 Shuffling

Recent experiments have shown that we get a significant decrease in the adversarial per-

formance by just shuffling channels of the intermediate features, before sending them

to M2. We have found that with increase in the number of channels at the split, perfor-

mance of the adversary decreases. Work can be done on how the number of shuffling

orders used affects the performance of adversary. This can further be discussed in a

setting where we do not trust the server.

Figure 9.1: Shuffling framework

9.2 Keeping the labels also private

Instead of cutting the network at one single point if we cut the network at two different

points such that a significant portion of the network in the middle is loaded onto the

server whereas the initial and final parts are with the user itself. In this case we need not

share the labels of our dataset with the server. This might further improve our privacy

guarantees as the server does not the number of classes or the class labels of the user's

dataset



Figure 9.2: Double Split model

9.3 Effect of gradients on privacy

In the case where we deploy our framework during training, we can look into the fact

that the adversary is also getting access to gradients sent from server to user. Will this

harm user's privacy in any manner.

Figure 9.3: Attack on gradients
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Appendix A

STRUCTURE OF NEURAL NETWORKS USED

A.1 VGG16

Figure A.1: VGG16 with the single split



A.2 Super Resolution Generative Adversarial Network

(SRGAN)

Figure A.2: Discriminator and Generator of SRGAN
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