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ABSTRACT

The main objective of this report is the design and integration of various modules that
help in betterment of advertising through Digital signage systems. This report describes
Face Detection, tracking and design of emotion recognition. We present a method
for classifying emotions from sequence of images. Our approach leverages on the re-
cent success of Convolutional Neural Networks (CNN) and Long-short term memory

(LSTM) Networks on Activity recognition.
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Chapter 1

Introduction and Motivation

Modern applications of digital signage are interfaces to public or internal information,
advertising, brand building and making enhanced customer experience. Digital signage
displays have the advantage over static signs because they can display the multimedia
content such as images, animations, video and audio. The content can be adapted in real
time to a different context and audience, making it attractive for use at airports, hotels,
universities, retail stores and various outdoor public spaces. However, the displayed
content is frequently generic and uninteresting for observers. To make digital signage
more effective as an information interface, the displayed content should be informative,
dynamic and attractive. The actual attention that people pay to public displays is one of
the key parameters of digital signage. Paying attention to public displays is a complex
process, which depends on several criteria such as positioning of the display, display
size, content format and content dynamics and most importantly, measuring the target’s
interpretation. Therefore, to maximize the attention to digital signage, these parameters

should be considered already during the design phase of the digital signage system.

Facial emotions are important factors in human communication that help us under-
stand the intentions of others. In general, people infer the emotional states of other peo-
ple, such as joy, sadness, and anger using facial expressions and vocal tone. According
to many surveys verbal components convey one-third of human communication, and
non-verbal components convey two-thirds. Among several nonverbal components, by
carrying emotional meaning, facial expressions are one of the main information chan-

nels in interpersonal communication.

The remainder of this report is organized as follows. In Chapter 2, the steps re-
quired to carry through Emotion recognition are described along with the previous
works. Chapter 3 focuses on realizing emotion recognition as activity recognition and
describes the architecture to achieve it. Chapter 4 proposes our method and the experi-

ments carried out and their results.



Chapter 2

Previous Work

2.1 Steps in Emotion Recognition

For any type of recognition task, the first critical step is face tracking. This is followed
by extraction of useful features after suitable preprocessing of raw data. Face tracking
itself has to be done only after face detection. We will now review some of the existing

techniques for face detection.

2.2 Face Detection

Face detection is a crucial step in various problems involving verification, identification,
tracking, expression analysis etc. We are going to look at two deep learning based face

detection algorithms YOLO(1) and SSH(2).

2.2.1 You Only Look Once: Unified, Real-Time Object Detection

YOLO is a generic object detection algorithm. For our purpose we have trained it on
face data. The object detection is framed as single regression problem, straight from
image pixels to bounding box coordinates and class probabilities. Hence the name

YOLO i.e., you look (process) only once at an image to predict where the objects are.

Figure 2.1 shows an overview of the YOLO network architecture. YOLO has 24

convolutional layers followed by 2 fully connected layers.

Unified Detection

The network uses features from the entire image to predict each bounding box. It also

predicts all bounding boxes across all classes for an image simultaneously. This means
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Figure 2.1: YOLO network architecture

it reasons globally about the full image and all the objects in the image. The YOLO
design enables end-to-end training and realtime speeds while maintaining high average

precision.

The system divides the input image into an S x S grid. If the center of an object
falls into a grid cell, that grid cell is responsible for detecting that object. Each grid cell
predicts B bounding boxes and confidence scores for those boxes. These confidence
scores reflect how confident the model is that the box contains an object and also how
accurate it thinks the box is that it predicts. If no object exists in that cell, the confidence
scores should be zero. Otherwise we want the confidence score to equal the intersection
over union (IOU) between the predicted box and the ground truth. Each bounding box
consists of 5 predictions: x, y, w, h, and confidence. The (x, y) coordinates represent
the center of the box relative to the bounds of the grid cell. The width and height are
predicted relative to the whole image. Finally the confidence prediction represents the

IOU between the predicted box and any ground truth box.

Each grid cell also predicts C conditional class probabilities. These probabilities are
conditioned on the grid cell containing an object. It only predicts one set of class prob-
abilities per grid cell, regardless of the number of boxes B. At test time it multiplies the
conditional class probabilities which gives us class-specific confidence scores for each
box. These scores encode both the probability of that class appearing in the box and

how well the predicted box fits the object and the individual box confidence predictions.
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Figure 2.2: YOLO models detection as a regression problem. It divides the image into
S x S grid and for each grid cell predicts B bounding boxes, confidence for
those boxes, and C class probabilities. These predictions are encoded as S .
S.(B.5+C)tensor.

2.2.2 SSH: Single Stage Headless Face Detector

SSH performs detection in a single stage. Unlike the state-of-art CNN based detectors,
SSH does not have a ’head’. The head is referred to the fully connected layers in
VGG-16. It is able to achieve state-of-art performance without having the head of its
underlying VGG-16 network. SSH is also scale-invariant by design. SSH detects faces
from various depths of the underlying network. This is achieved by placing an efficient
convolutional detection module on top of the layers with different strides, each of which

is trained for an appropriate range of face scales.

Network Architecture

Figure 2.3, shows the general architecture of SSH. It is a fully convolutional network
which localizes and classifies faces early on by adding a detection module on top of
feature maps with strides of 8, 16, and 32, depicted as M1, M2 and M3 respectively to
detect small, medium and large faces. The detection module consists of a convolutional

binary classifier and a regressor for detecting faces and localizing them respectively.

To solve the localization sub-problem, SSH regresses a set of predefined bounding
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Figure 2.3: SSH network architecture
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Figure 2.4: Detection and Context Modules

boxes called anchors, to the ground-truth faces. The anchors are defined in a dense
sliding window fashion. At each sliding window location, K anchors are defined which
have the same center as that window and different scales. For the detection module,
a set of convolutional layers are deployed to extract features for face detection and lo-
calization as shown in Figure 2.4. This includes a simple context module to increase
the effective receptive field. Finally, two convolutional layers perform bounding box re-
gression and classification. At each convolution location , the classifier decides whether
the windows at the filter center and corresponding to each of the scales contains a face.
At each location during the convolution, the regressor predicts the required change in

scale and translation to match each of the positive anchors to faces.

In unconstrained settings, faces in images have varying scales. SSH detects large



and small faces simultaneously in a single forward pass of the network. This gives it

scale invariant design.

In state-of-art two stage detectors, it is common to incorporate context by enlarging
the window around the candidate proposals. SSH mimics this strategy by applying a
larger filter, which resembles increasing window size around proposals in two-staged

detector.

2.2.3 Dataset and Comparison

SSH and YOLO are trained and tested on WIDER dataset. This dataset contains 32, 203
images with 393, 703 annotated faces, 158, 989 of which are in the train set, 39, 496
in the validation set and the rest are in the test set. This is one of the most challenging
public face datasets mainly due to the wide variety of face scales and occlusion. We

evaluate both SSH and YOLO on the test set. Figure 2.5, shows the test results visually.

Figure 2.5: YOLO vs SSH

As we can see, SSH is more versatile i.e., scale-invariant and works better. Hence,

we choose SSH for the task of face detection.



2.3 Face Tracking

2.3.1 GOTURN: Generic Object Tracking using Regression net-

works

GOTURN ) is an off-line tracker, that benefits from the large number of videos that are
already available for off-line training. The tracker learns a generic relationship between
object motion and appearance and can be used to track novel objects that do not appear
in the training set. GOTURN tracks generic objects at 100fps. While most trackers
take classification based approach using sliding windows, GOTURN uses a regression
based approach requiring just a single feed forward pass through the network to regress

directly the location of the target object.

Current frame Conv Layers
Search Region R —
Crop
e d > > >\ Fully-Connected
Layers
> >
N > Predicted location
of target
L within search region

) What to track
Previous frame Conv Layers

Figure 2.6: GOTURN network

The network only passes two images through the network, and the network regresses
directly to the bounding box location of the target object.At a high level, we feed frames
of a video into a neural network, and the network successively outputs the location of

the tracked object in each frame.

What to track

We input an image of the target object into the network. We crop and scale the previous
frame to be centered on the target object, as shown in Figure 2.6. This input allows
our network to track novel objects that it has not seen before; the network will track

whatever object is being input in this crop. We pad this crop to allow the network to
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receive some contextual information about the surroundings of the target object. In
more detail, suppose that in frame t-1, our tracker previously predicted that the target
was located in a bounding box centered at ¢ = (cx, cy) with a width of w and a height of
h. At time t, we take a crop of frame t-1 centered at (cx, cy) with a width and height of
kl.w and k1.h, respectively. This crop tells the network which object is being tracked.
The value of k1 determines how much context the network will receive about the target

object from the previous frame.

Where to look

To find the target object in the current frame, the tracker should know where the object
was previously located. Since objects tend to move smoothly through space, the previ-
ous location of the object will provide a good guess of where the network should expect
to currently find the object. We achieve this by choosing a search region in our current
frame based on the object previous location. We crop the current frame using the search
region and input this crop into our network, as shown in Figure 2.6. The goal of the
network is then to regress to the location of the target object within the search region.
In more detail, the crop of the current frame t is centered at cO = (cOx, cOy),where c0 is
the expected mean location of the target object. We set cO = ¢, which is equivalent to
a constant position motion model, although more sophisticated motion models can be
used as well. The crop of the current frame has a width and height of k2 w and k2 h,
respectively, where w and h are the width and height of the predicted bounding box in
the previous frame, and k2 defines our search radius for the target object. In practice,
we use k1 = k2 =2. As long as the target object does not become occluded and is not

moving too quickly, the target will be located within this region.

Network

For single-target tracking, an image-comparison tracking architecture is used, as shown
in Figure 2.6. In this model, we input the target object as well as the search region each
into a sequence of convolutional layers. The output of these convolutional layers is a set
of features that capture a high-level representation of the image. The outputs of these

convolutional layers are then fed through a number of fully connected layers. The role



of the fully connected layers is to compare the features from the target object to the

features in the current frame to find where the target object has moved.

Between these frames, the object may have undergone a translation, rotation, light-
ing change, occlusion, or deformation. The function learned by the fully connected
layers is thus a complex feature comparison which is learned through many examples
to be robust to these various factors while outputting the relative motion of the tracked
object. The convolutional layers in GOTURN are taken from the first five convolutional

layers of the CaffeNet architecture.

Training

The network is trained with a combination of videos and still images. Videos contain a
set of labeled frames. For each successive pair of frames in the training set, we crop the
frames and we feed this pair of frames into the network and attempt to predict how the

object has moved from the first frame to the second frame.

Previous
video frame
centered on

object

Current video frame,
shifted, with
ground-truth
bounding box

Image
centered on
object

Shifted image
with ground-truth
bounding box

Figure 2.7: Training on videos and still images

For training on still images, we shift the image with small motions and attempt to

predict how the object has moved in the new shifted image. This way the network takes

10



advantage of labeled still images in order to prevent overfitting.

Tracking

During test time, we initialize the tracker with a ground-truth bounding box from the
first frame, as is standard practice for single-target tracking. At each subsequent frame
t, we input crops from frame t-1 and frame t into the network to predict where the object
is located in frame t. We continue to re-crop and feed pairs of frames into our network
for the remainder of the video, and our network will track the movement of the target

object throughout the entire video sequence.

2.4 Emotion Recognition

In general, humans express their emotions using facial expressions and vocal tone. Fa-
cial expressions are solely movements in facial muscles. In vision terms, it is a sequence
of movements. In this chapter, we are going to focus on the problem of recognizing fa-

cial expressions.

2.4.1 Conventional Methods

In conventional Facial expression recognition, the recognition task is composed of three

major steps, as shown in Figure 2.8:

250 T o0 gls-0s =

(b) Face detection
& landmark detection

(a) Inpru*t imag' (c) Feature extraction (d) FE classification

Figure 2.8: Figure shows conventional approach for Emotion Classification.

Face and Facial component detection, feature extraction and expression classification.

First, a face image is detected from an input image, and facial landmarks are detected

11



from face region. Second, various spatial features are extracted from the facial com-
ponents. Third, the pre-trained classifiers, produce the recognition result using the ex-

tracted features.

2.4.2 Deep learning methods

In contrast to conventional approaches using handcrafted features, deep learning ap-
proach highly reduces the dependence on face and condition specific models, and other
pre-processing techniques by enabling end-to-end learning directly from the input im-
ages. Face emotion recognition can also be divided into two types based on whether it

uses frame or video images.

2.4.3 Spatial information

Frame based facial recognition relies solely on static facial features obtained by extract-
ing features from peak expression frames of image sequences. Convolutional Neural

Networks (CNN) are used for this purpose. Figure 2.9 shows the procedure used by

1 [

subsampling convolution subsampling full connection

CNN-based facial emotion recognition.

conVqution
(a) Input images (b) Feature maps & pooling (c) Full connection  (d) Softmax

Figure 2.9: CNN based network that extracts only spatial information
The input image is convolved through a filter collection in the convolution layers to pro-
duce a feature map. Each feature map is then combined to fully connected networks,

and the face expression is recognized as belonging to a particular class based on the

output of the softmax algorithm.
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2.4.4 Temporal Information

CNN based methods utilize only the static (spatial) information and cannot account for
the temporal variations in a facial expression. To incorporate temporal features, we in-
troduce Long sort-term memory (LSTM) a special type of deep leaning network and

combine them with existing CNN network.

Emotion prediction yt=1 ¥ it
L L LJ.LLLLL*LLLI_l L
— LSTM LSTM

Input frames

Figure 2.10: A general Hybrid CNN-LSTM structure

2.5 Activity recognition

(4) work proposes a Long-term Recurrent Convolutional Network (LRCN) model com-
bining deep hierarchical visual feature extractor (CNN) with an LSTM model that can
learn to recognize activities. (4) considers activity recognition as a sequential learning
task with the goal of predicting a static output (label) from a sequential input (video).
Figure 3.4, shows an overview of the network proposed by (4). We build our network
inspired by (4). The general framework of the hybrid CNN-LSTM based approach will
have a structure as shown in Figure 2.10. The basic framework of CNN-LSTM is to
combine an LSTM with a deep hierarchical visual feature extractor such as a CNN
model. Therefore, this hybrid model can learn to recognize and synthesize temporal

dynamics for tasks involving sequential images. As shown in Figure 2.11, each visual

13



Activity Recognition
Sequences in the Input

I HighJump |
Input Visual Sequence Output
Features Learning

Figure 2.11: Emotion Recognition as Activity Recognition

feature is determined through a CNN is passed to the corresponding LSTM, and pro-
duces a fixed length vector representation. The outputs are then computed by applying

softmax algorithm.
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Chapter 3
Emotion Recognition as activity recognition

As mentioned before, emotion is basically an activity involving facial muscles. We base

this as a central idea in building a suitable network for emotion recognition.

3.1 Dataset

The Extended Cohn-Kanade Dataset (CK+)(S) CK+ contains 593 video sequences of
facial expressions, out of which 323 are labeled. The videos are collected from 210
adults in which 69% are female, 81% are Euro-American, 13% are Afro-American and
6% are from other groups. Participants are 18 to 50 years of age. A total of 7 basic
expressions are labeled in the dataset: Anger, Contempt, Disgust, Fear, Happy, Sad,
Surprise. All of the image sequences in CK+ start from the neutral face and end at the
peak frame. We chose CK+ dataset for our experiments because it is one the only few
Facial Expression Datasets that are publicly available. The dataset is pre-processed to

have only the face-cropped videos.

3.2 Implementing Emotion Recognition

In this chapter, we propose a network that focuses to recognize facial expressions. Fig-

~(

Figure 3.1: Emotion Recognition Network

ure 3.2 shows an overview of the network.

nput Vided
FC
LSTM
FC

Each frame in a sequence is the input to a single convolutional network(i.e;, the con-

vnet weights are tied across time). We consider normalized RGB images as inputs to our



system. During training, videos are resized to 240 X 320 and we augment our data by
using 227 X 227 crops and mirroring. Additionally, we train the Long-term Recurrent
Convolutional Networks (LRCN) network with video clips of 8 frames, even though the
CK+ dataset videos are generally much longer. For training with shorter video clips, we
repeat the first frame(neutral frame) and augment it to make them at least of length 8.
LRCN is trained to predict the video’s class at each time step. To produce a single label
prediction for an entire video clip, we average the label probabilities - the outputs of the
network’s softmax layer - across all frames and choose the most probable label. At test
time, we extract 8 frame clips with a stride of 4 frames from each video and average
across all clips from a single video. The CNN base of LRCN in our emotion recognition
experiments is the CaffeNet(6)) reference model (a minor variant of AlexNet).This gives
a strong initialization to facilitate faster training and avoid overfitting to our small CK+

dataset.

16



Chapter 4

Experiments

The following experiments have been performed while training the network.

1. Training all layers: The base CNN model of LRCN is randomly initialized and
all the layers including CNN are trained from scratch.

2. Pre-trained weights from CaffeNet: The base CNN model of LRCN is loaded
with weights from CaffeNet and all the convolutional layers are locked from train-
ing phase. Only the Fully connected layers and LSTM are trained.

3. Re-training weights from CaffeNet: The base CNN model is reconstructed (made
another copy) and initialized with weights from CaffeNet. This model is trained
on CK+ dataset and the resulting trained weights are copied to the base CNN
model of LRCN, and all the conv layers are locked. Only the fully connected
layers and LSTM are trained.

4.1 Results

In theory, as the training data is very small, training all the layers would not be effective.
But to reaffirm this, we compare the test results for all the above mentioned experiments.

The results are shown in Figure 4.1.



Training all layers:

Anger Contempt Disgust Fear Happy Sad Surprise
Anger 37 2 2 0 g 0 13
Contempt 11 72 11 0 0 0 5
Disgust 6 0 13 0 3 0 75
Fear 16 0 0 4 4 0 75
Happy 1 0 2 0 24 0 71
Sad 11 0 18 0 7 3 55
Surprise 2 1 0 0 3 0 92

Pre-trained:

Anger Contempt Disgust Fear Happy Sad Surprise
Anger 13 0 2 0 0 4 80
Contempt 0 83 0 0] 0] 0 16
Disgust 3 0 36 0 0 0 60
Fear 0 0 0 20 0] 4 75
Happy 1 0 1 0 13 1 82
Sad 3 0 3 0] 0] 11 81
Surprise 0 0 0 0 0 0 100

|
Re-training:

Anger Contempt Disgust Fear Happy Sad Surprise
Anger 28 11 15 0 0 0 44
Contempt 0 94 0 0] 0] 0 5
Disgust 3 0 75 0 0 0 20
Fear 8 8 0 16 4 0 62
Happy 0 0 2 0 60 0 36
Sad 7 3 3 0] 0] 37 43
Surprise 0 1 0 0 1 0 97

Figure 4.1: Confusion Matrix for experiments

We therefore conclude that, Retraining CaffeNet gave us the best results.

18




4.2 Comparison

We now compare the results of LRCN model with other works. As we can see from

Figure 4.2, we are able to achieve comparable results with lesser training data.

Emotion Recognition in the wild, Hassner T et al., ICMI 2015

Anger Disgust Fear Happy Neutral Sad Surprise
Anger 54 2 16 10 2 5 7
Disgust 66 0 16 16 0 0 0
Fear 22 0 19 9 16 25 6
Happy 3 8 3 75 0 6 3
Neutral 4 4 4 4 62 16 2
Sad 9 5 12 14 14 37 5
Surprise 11 2 19 0 2 14 50

Kanade T et al., CVPRW 2010

Anger Contempt | Disgust Fear Happy Sad Surprise
Anger 35 0 40 0 5 5 15
Contempt | 15 25 3 [ 0 15 34
Disgust 8 2 68 0 15 5 0
Fear 8 13 0 21 21 8 26
Happy 0 0 0 0 98 1 0
Sad 28 24 4 12 0 4 28
Surprise 0 0 0 0 0 0 100

Results

Anger Contempt | Disgust Fear Happy Sad Surprise
Anger 28 11 15 0 0 0 44
Contempt | O 94 0 0 0 0 5
Disgust 3 0 75 0 0 0 20
Fear 8 8 0 16 4 0 62
Happy 0 0 2 0 60 0 36
Sad 7 3 3 0 0 37 48
Surprise 0 1 0 0 1 0 97

Figure 4.2: Comparing our results to other works
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