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ABSTRACT

KEYWORDS: Light Field, Coded Aperture, Disparity Map, Compressive sensing,

Code Design, Reconstruction

Consumer cameras have long been trying to use light field and provide a rich imaging

experience. Light fields provide a rich viewing experience with features like refocusig

and changing the viewpoint. Recent improvements made the availability of light field in

consumer based cameras but such cameras often pose a problem with resolution. With

the usage of compressive light field imaging, studies have been made to generate a high

resolution light fields but compressive sensing requires some heavy hardware modifi-

cations. To ease the process we suggest a deep learning model using coded aperture

to generate light fields. We adapted the same network used in compressive light field

sensing and tried to obtain an optimal code design.
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CHAPTER 1

Introduction

Light fields provide a rich representation of real-world scenes, enabling exciting ap-

plications such as refocusing and viewpoint change.Generally, they are obtained by

capturing a set of 2D images from different views or using a micro lens array. The early

light field cameras required custom-made camera setups which were bulky and expen-

sive, and thus, not available to the general public. Recently, there has been renewed

interest in light field imaging with the introduction of commercial light field cameras

such as Lytro. However, because of the limited resolution of the sensors, there is an

inherent trade-off between angular and spatial resolution, which means the light field

cameras sample sparsely in either the angular or spatial domain.

To reduce the curse of dimensionality when sampling light fields, we turn to compres-

sive sensing (CS). CS states that it is possible to reconstruct a signal perfectly from small

number of linear measurements, provided the number of measurements is sufficiently

large, and the signal is sparse in a transform domain. Thus CS provides a principled way

to reduce the amount of data that is sensed and transmitted through a communication

channel. Moreover, the number of sensor elements also reduces significantly, paving a

way for cheaper imaging.Marwah et al. (4) proposed a dictionary-based learning for lo-

cal light field atoms (or patches) coupled with sparsity-constrained optimization. Gupta

et al.(2017)(5) proposed a end to end light field reconstruction method using traditional

auto encoders and 4D CNNs. Kalantari et al.(2016)(2) used learning based methods for

view synthesis. Anil Kumar, Kaushik Mitra and others (1) proposed a learning based

solution for full sensor resolution light field reconstruction from a single coded image.

But, introducing a sensor between the sensor and lens involves some complex hardware

changes. We want to go after a simpler method of using a coded aperture and propose

a optimal design for code to obtain best results.



CHAPTER 2

Background

2.1 Light Field

Plenoptic function describes the possible radiant energy that can be perceived from the

point of view of source. In case of a dynamic scene where we are also characterizing

the wavelength it’s a 7 dimensional function written as :

p = P (θ, φ, λ, x, y, z, t)

In case of static scene where we do not care about capturing wavelength specific infor-

mation as well it becomes a 5d function as represented

p = P (θ, φ, x, y, z)

The radiance along the direction of ray remains constant for all practical purposed so

we can discard the redundant information coming from one dimension which is z and

this results into a 4d plenoptic function. This information in the 4D constitutes light

field.

Figure 2.1: Light field



2.2 Coded Aperture

Coded Apertures or Coded-Aperture Masks are grids, gratings, or other patterns of

materials opaque to various wavelengths of electromagnetic radiation.By blocking ra-

diation in a known pattern, a coded "shadow" is cast upon a plane. The properties of the

original radiation sources can then be mathematically reconstructed from this shadow.

In a coded aperture more complicated than a pinhole camera, images from multiple

apertures will overlap at the detector array. Later the original image is reconstructed

using separate algorithms or through more modern procedures involving deep learning.

A conventional camera captures blurred versions of scene information away from the

plane of focus. Using a coded aperture is an example of computational photography

where an optical element alters the incident light array so that the image captured by

the sensor is not the final desired image but is coded to facilitate the extraction of infor-

mation. Levin et al. (6) used coded apertures for extracting depth information from the

coded image as well as reconstructing the original image.

Figure 2.2: Normal Camera Functioning
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Figure 2.3: Camera with Coded Aperture Functioning

When an object is placed at the focus distance, all the rays from a point in the scene

will converge to a single sensor point and the output image will appear sharp. Rays

from an object away from the focus distance, land on multiple sensor points resulting

in a blurred image. The pattern of this blur is given by the aperture cross section of the

lens and is often called a circle of confusion. The amount of de-focus, characterized by

the blur radius, depends on the distance of the object from the focus plane.For a simple

planar object at a distance , the imaging process can be modeled as a convolution:

y = fk ∗x(1) where y is the observed image, x is the true sharp image and the blur filter

fk is a scaled version of the aperture shape.

We have tried to use coded aperture for reconstruction of light field. This is different

from the other methods as this method is hardware friendly as this requires minimum

hardware changes when compared to the methods using compressive light field sensing.

We have done several experiments using deep learning so as to propose the best optimal

design for the code to be used for creating the coded aperture.

4



CHAPTER 3

Prior Work

In compressive sensing, a coded image is generated by placing a code nearer to the

sensor. This coded image was later used to generate light field. Marwah et al. (4)

has done this with the help of using dictionary based learning. Anilkumar et al.(1) has

designed a deep learning based model and successfully generated good results of light

field. We aim to generate an optimal design for code by supplementing our code design

network with their disparity network. The network was taken from the work of Anil

Figure 3.1: Network Architecture

Kumar(1) on compressive light field imaging. We were As shown in the architecture,

the network takes in a coded image which then proceeds to reconstruct the original

view of the coded image. It uses deep neural networks for the sake of center view

reconstruction. The generated view along with the coded image is then sent into a

depth network which then gives out the disparity map of the image. The disparity map

along with the generated view is then used to generate the required light field.

3.1 Coded Image

The coded image is generally generated by placing a code at the aperture lens of the

camera. The light rays entering the camera are then masked by the code placed at



the aperture which results in the generation of the coded images. For the sake of our

experiments, we took light field data set acquired from lytro illum cameras and then over

leaved the images with the code present with us. We have done several experiments as

to find the desired code.

3.2 Center View Generation

Image restoration from noised images have been a major interest of research for a long

time. With the advent of deep neural networks, this area of interest has seen some

drastic improvements. But as the extent of depth in a neural networks increased, it is

observed that there is a decrease in performance after crossing a certain depth. This is

because the gradient becomes too small after a certain depth and it is almost ignored

when it reaches the top layers. To solve this problem the concept of residual networks

is introduced. Taking the residual networks a bit ahead, with the introduction of skip

connections Mao et al.(2017)(3) proposed a deep neural network model called Residual

encoder decoder network called REDnet architecture.

The framework is fully convolutional and deconvolutional. Rectification layers are

added after each convolution and deconvolution. The convolutional layers act as feature

extractor, which preserve the primary components of objects in the image and mean-

while eliminating the corruptions. The deconvolutional layers are then combined to

recover the details of image contents. The output of the deconvolution layers is the

clean image that is required.Skip connections are also added from a convolutional layer

to its corresponding mirrored deconvolutional layer. The passed convolutional feature

maps are summed to the deconvolutional feature maps element-wise,and passed to the

next layer after rectification.

Figure 3.2: RedNet Architecture
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We have trained this network with sample coded images to check on the reconstruction

quality of the image and the results are pretty good. As we go further and learn the

desired code, these reconstruction results are further improved.

Figure 3.3: RedNet Results [left] Coded Image [Center] Ground truth image[Right] Re-
constructed image

3.3 Depth Network

The reconstructed network is then passed into a depth network for the estimation of

disparity maps. This network takes in the coded image and reconstructed view as input

and generates the disparity map. The network is taken and improvised from the work

on Focus-Defocus light field reconstruction done by Anil Kumar V.(1) It uses 2D con-

volution networks of series of encoder and decoder networks. The network is as shown

below. Encoder performs strided(> 1) convolutions encoding the disparity information.

Also, this provides a way for increasing the receptive fields. Decoder performs strided

deconvolutions bringing back the feature map to the input resolution. The feature maps

from decoder and skip connection are concatenated, followed by four convolutional

layers to output final disparity map which is used to generate the required light field.

Figure 3.4: Disparity Network
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CHAPTER 4

Code Design

My major contribution is to design the optimal code to be used at the aperture for

efficient reconstruction of light fields. We have done a series of experiments, first by

using a random code. And later we used a deep learning based method to train the code.

Figure 4.1: Code Design

We initialized the code to be a tensor variable and let it trained. But under such condi-

tions, the training was too slow and no significant changes were seen in the the code.

So, we have added a temperature parameter α which is multiplied with the code and

sigmoid is applied so as to constrain the values between 0 and 1. The value of α is in-

creased along the iterations. So, as the iterations are increased , the code is more likely

to attain a 0-1 pattern.

We have two losses , the loss arising from the reconstruction of center view and the loss

arising from depth network. This loss gradient, as can be seen from the figure is prop-

agated back to the code training weights which induces the code to change accordingly

over the training period. We used Adam Optimizer as the gradient descent optimizer



and a training rate of 0.00001. L1 loss is used for the calculation of loss in both re-

construction loss and depth loss. Here we present the experiments and the subsequent

observations as we finally obtain the optimal code.

4.1 With Ground Truth

The first set of experiments involved the usage of ground truth image for Disparity

network training. Ground truth images are used in place of center view so as to help

in the identification of the rate at which α is to be increased. Also, this gives us in

understanding the training pattern during the code design. For all the experiments,

results were shown with the help of these two cases. The PSNR reported is an average

value of 24 test cases obtained from test data set of Kalantari et al.(2)

Figure 4.2: Ground truth images

4.1.1 Random

A random code is generated and is used to interleave the light field and generate a coded

image like that in the case of an original camera when a code is placed at the aperture.

We observed very good results in the estimation of disparity maps.
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Figure 4.3: Disparity Map, Random Code, Groundtruth

4.1.2 Scheduling of α

Different schedules were followed to increase the value of α. Firstly α was increased

according to a quadratic equation, αt = 1 + (γt)2 where t is the iteration count and

the value of gamma is 2.5x10−5 This approach is inspired from the works of Ayan

Chakrabarti et al.(2017) .This approach hasn’t given desired performance, although the

code is trained, the disparity estimation SNR value and the training loss both were

pretty bad. So, we improved the training by resorting to a linear schedule for increasing

the value of α for which we have achieved considerable good results. Following this

schedule the value of α is increased by a factor of 0.2 for every 1000 iterations. The

resultants codes that were trained are as shown.

Figure 4.4: Learned codes [left] Quadratic scheduling [right] Linear scheduling
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Figure 4.5: Disparity Map, Learned Code, Groundtruth

4.1.3 Results from Learned code, Linear Scheduling

4.1.4 Final observations

we can observe from the disparity maps of learned code, better texture recognition is

being done by the leaned code, which even is resulting for some artifacts. We have

seen that random codes model performed better than the learned one in some cases too.

Also from both the codes obtained from quadratic scheduling and linear scheduling it

is observed that the codes tend to form a gradient from white to black across the diago-

nal. This pattern is important as it helps the depth network for better depth estimation.

Let’s see how this changes when reconstructed images are used instead of ground truth

images to learn the code.

4.2 With Reconstructed view

We used the same random code, but this time the ground truth image sent to the depth

network is changed to the image that we generated from the Rednet architecture The

obtained results are as follows. A significant deterioration in the quality of disparity

maps is seen. The deterioration is probably due to the poor quality in the regenerated

image when compared to the ground truth due to which information about the edges is

lost.
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Figure 4.6: Disparity Map, Random Code, Generated view

4.3 Code Learning Using Deep Learning

We tried to learn the code using deep learning from jointly training with both the RED-

net architecture and Depth network architecture. In this way both the network archi-

tectures gets trained to provide the best results possible. Initially the training produced

results with training loss almost similiar to the loss as in case of Random code. But

under careful observation it is discovered that the quality of images that were regener-

ated from Rednet architecture in case of the latter case were far better to those that were

generated using the model from the Random code Rednet model. This is because of the

change in code. The code generated is shown below( The one on the right).

Figure 4.7: Learned codes [left] With ground truth [right] With rednet generated view

As can be seen the code is more white in the model when compared to at the corners.

This particular type of code is highly preferred in case of image regeneration. So, regen-

erated images are of high quality. Although the regenerated images are of high quality,

the depth network doesn’t prefer this type of code. It prefers the diagonal gradient pat-

tern. It even tried to bring in the diagonal gradient in the latter code too, but the white

patch in the center is against its pattern. As a result, the results obtained were no better

12



than the results from random code. So, to improve the model accuracy, we stopped the

code and REDnet architecture from training and trained just the depth network with the

obtained code from last experiment. This showed an improvement of 1db SNR value

when compared to the random codes value. The results are as shown.

Figure 4.8: Disparity Map, Learned Code, Generated view

Figure 4.9: eps of final Learned light field

4.3.1 Final observations

Experiment Average PSNR
Random code, Ground truth 34.959
Learned code, Ground truth 35.463

Random code, Generated view 31.31
Learned code, Generated view 32.281

Table 4.1: Results from various experiments

Although our best result of 32.281 is less when compared to the 35.707 psnr of

heterodyne model, we have an advantage of easy hardware modifications. Also, we

believe that with a suitablee tweaking in the architecture more efficient code which is

not dominated by one of the networks can be achieved.
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CHAPTER 5

Conclusion

An optimal design has been proposed to attain better performance when compared to

using a random code. Although the method is not accurate as compressive light field

sensing, ours is easier to implement and our reconstruction quality of image is better

because of our images coed structure. It is observed that during training,the training

is dominated by the enhancement of REDnet. With further improvements to the depth

network , we believe our model can perform better. Also, we have been using the

disparity network taken from the model of focus de focus pair. A more customized

disparity network will lead to further improvements.
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