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ABSTRACT 
_____________________________________________________________________________________ 

The project was initially intended to compute the 3D structure present in an endoscopic video, 

as well as the camera trajectory. Of the approaches available for this, the SLAM (Simultaneous 

Localization and Mapping) algorithm based on the extended Kalman filter, was selected based 

on the good quality of its results. Then a similar approach was proposed to be used in the 

domain of Ultrasound Probe Pose estimation using only the Ultrasound images as input. The 

final algorithm was formulated with the introduction of the concept of a virtual camera whose 

pose is being tracked using said algorithm, and the probe’s pose could be calculated from that 

of the virtual camera.  

 

To evaluate the correctness of the algorithm, we first generated datasets in two ways – 

phantom data using CT scan images and real ultrasound video along with live pose tracking 

using HTC Vive trackers. Qualitatively, the algorithms performance was analyzed by generating 

plots of the computed feature points along with their windows of uncertainty, and by 

visualizing the obtained trajectory using a custom-made 3D Ultrasound simulator using Unity 

Engine. Quantitatively, error measures based on the angle between normalized translation and 

rotation of the estimated trajectory and the ground truth were used.  

 

While all the methods discussed were implemented, the datasets posed challenges in accurate 

tracking of the Ultrasound probe for various reasons. Future work could help overcome the 

limitations of this project while making use of the basic algorithm, insights and evaluation 

methods.  

  



INTRODUCTION 

_____________________________________________________________________________________ 

Initial work and Problem Statement 

 

This project initially dealt with endoscopic video-based 3D reconstruction. The problem 

statement at that time was to compute the 3D structure and camera trajectory given a video of 

an Endoscopic procedure. This was a challenging problem because of the nature of the images 

obtained – they are low in texture quality and are normally poorly lit with a considerable 

amount of noise present. The literature, however, revealed that many methods have been 

proposed to tackle this problem from various angles and to varying degrees of success.  For 

example, [1] had used a novel method of computing features in the endoscopic image by 

exploiting the presence of blood vessels. However, we initially went with a method proposed by 

[2] that used a SLAM algorithm coupled with the extended Kalman filter and novel RANSAC and 

relocalization algorithms, because it was shown to generate the most promising results.  

 

Motivation for the Ultrasound Problem Statement 

 

Having surveyed the relevant literature, we had observed that the problem of 3D 

reconstruction in the domain of endoscopy had been solved to a very practical extent. 

However, there was a need to implement a similar solution in the domain of ultrasound where 

the literature showed no existing methods to compute the pose of the ultrasound probe (let 

alone do a 3D reconstruction). The most relevant works found were [3]–[6], all of which used 

additional input sources apart from the captured ultrasound video, such as optical tracking 

systems [4] and sensor fusion using IMU sensors [3], [6]. 

  



This problem, if solved, would find use in training Ultrasound specialists anywhere because it 

would need no specialized tracking equipment and would thereby be much more cost effective 

and easy to use. Further, the problem is an interesting one in the computer vision domain, and 

a solution to this problem would shed useful insights on many other similar problems of 

interest in the field as it deals with general image processing problems such as low texture and 

high noise in images as well as images that are not generated with traditional cameras (which is 

the case not just with ultrasound, but also with other medical imaging modalities like CT/MRI 

scans).  

 

Final Problem Statement 

 

The question then became one of computing the trajectory of ultrasound probe - that is, the 

position and the orientation of the probe over time – given only the ultrasound images it 

generates as input.  

In the second stage, the obtained trajectory could be used to perform a volume mapping of the 

ultrasound images, so that a training simulator can be implemented that takes the pose of the 

ultrasound probe as an input and generates the synthetic ultrasound images corresponding to 

the pose.  

  



APPROACH 
_____________________________________________________________________________________ 

Backbone Algorithm: Monocular EKF-SLAM with 1-Point RANSAC 

 

This is a part of the earlier mentioned algorithm [2] that was used to compute a full 3D 

reconstruction along with camera trajectory estimation from endoscopic video. This reduced 

algorithm is described in [7], and is shown in Figure 1. 

 

Figure 1 - Snapshot of the 1-Point RANSAC EKF-SLAM algorithm, as outlined in the original paper. 

The essential components of the algorithm, as used in our implementation, are described 

below. 

 

 

 



• Feature Detection and Matching 

 

The algorithm can choose to use any point feature detection method of one’s choice – 

here we used a combination of 3 methods namely, the BRISK detector [8], the SIFT 

detector [9] and the minimum eigenvalue-based detector proposed by Shi and Tomasi 

[10]. These three were chosen out of a total of six detectors - the other three being the 

Harris corner detector [11], the SURF detector [12] and the FAST detector [13] - because 

they yielded the maximum number of features on a sample ultrasound image from our 

phantom dataset (described later). The original algorithm did use the FAST detector, but 

our tests with available implementations of these detectors showed that the selected 

three were superlative. 

The algorithm defines a random search window of fixed size in the image and selects the 

strongest detected feature point across all algorithms used within that window. This 

process of initializing one feature per window is repeated until a desired minimum 

number of features is initialized – this is done to ensure maximum coverage of features 

across the image. 

The algorithm encodes the world positions of these point features in its state vector and 

uses a normalized cross-correlation (NCC) method to match these features between 

images irrespective of the type of detector used.  

  



 

• State Vector Definition (Figure 2) 

The EKF algorithm, in essence, combines different sources of information to calculate 

the values of several variables that constitute its state vector. In this case, the state 

vector comprised of the 3D world position of the camera, the rotation needed to 

transform world space to camera space (expressed as a quaternion), the linear and 

angular velocity vectors of the camera, and the 3D world positions of each point feature 

that it can reliably detect and track across each input image. The positions of the 

features are initially encoded in inverse depth coordinates [14] for convenience and 

later converted to normal Cartesian coordinates to reduce feature vector size.  

 

Figure 2 - State vector definition (excluding features), as in [7]. 

  



 

• Model Definition (Figure 3, Figure 4) 

The dynamic model used by the EKF algorithm is the same as that initially proposed in 

[7] which is a constant velocity model with impulses of linear and angular acceleration 

expressed as zero-mean Gaussian noise.  

 

Figure 3 - Dynamic model for the state. 

 

 

Figure 4 - Measurement model. 

 



• Specialization for 1-Point RANSAC 

The general 1-Point RANSAC framework proposed in [7] had already been specialized to 

handle the case of visual SLAM, and hence it also hasn’t been modified for this use case. 

Thus the “prior information” that 1-Point RANSAC algorithm requires is obtained from a 

state update (without a covariance update) using the state vector and covariance matrix 

of the previous iteration which reduces the number of model initialization points 

required by RANSAC to just 1, thereby considerably reducing the number of iterations 

required for convergence.  

 

Adaptation to Ultrasound – The Virtual Camera 

 

The fundamental difference between the ultrasound images and the general or endoscopic 

camera images is that ultrasound does not use a camera – the probe is responsible for 

generating the images by sending ultrasound waves and encoding the time taken for receiving 

the reflected ultrasound waves from the body as pixel intensities in an image. Therefore, when 

applying our SLAM algorithm to ultrasound, the question naturally arises as to what we mean 

by the estimated camera trajectory. The novelty of our proposed approach is that of 

introducing a virtual camera in the same coordinate frame as the probe and ultrasound images 

which is assumed to be responsible for capturing the images. The details of how this virtual 

camera is modelled and how this affects the implementation of our algorithm are explained 

below.  

 

• Image Formation using the Virtual Camera 

The ultrasound probe and the image it generates are all contained in one 3D plane by 

the very nature of the ultrasound image generation. The virtual camera, however, is 

assumed to be similar to any normal perspective camera and therefore, it will be 



generating the same images as the ultrasound probe located at a point outside of this 

plane and the camera’s orientation is such that it will always be looking into the normal 

of the plane.  

The most popular method of ultrasound is curvilinear B-mode which implies that the 

images generated are not traditional rectangular images but curved images. The virtual 

camera, therefore, is assumed to be able to capture World points only within the curve 

defined by the ultrasound probe. The rest of the pixels in the input image which are 

normally blacked out are not considered at all in the feature detection process and are 

assumed to be ignored by the virtual camera.  

 

• Mapping the Virtual Camera to the Ultrasound Probe  

The ultrasound probe and the virtual camera can be observed to share a “parent-child” 

relationship – that is, we can observe that the translation of the probe is reflected 

directly in the camera and the rotation of the probe causes a corresponding rotation 

along with translation in the virtual camera as though it has been attached to the probe 

by rigid supports. Therefore, it is theoretically possible to map the pose of the probe to 

that of the camera by the inverse relationship. These relationships are modelled by 

standard transform matrices for translation, rotation and scale. The scale of the world 

coordinate frame is taken to be the same as that of the image frame - that is, all world 

units are also expressed in pixels.  

 

• Camera Calibration 

Since the virtual camera is modelled as a standard perspective camera, its intrinsic 

parameters need to be determined before it can be used in any SLAM algorithm. 

However, since this camera is a virtual construct, we have the liberty of fixing its 

parameters within some constraints and thus spared the trouble of using its own output 

images to calibrate it.  



The intrinsic parameters have been determined as follows: 

o Near and Far Clip Planes – These are defined to be infinitesimally close to each 

other as the image captured by the virtual camera represents points on only one 

world plane, which means any 3D volume spanned by the view frustum of the 

camera must be extremely small to not allow any world points outside of that 

plane to be captured by the camera. In the implementation, the distance 

between the planes is set to be the minimum possible but not zero as that 

causes problems in rendering the image.  

o Focal Length – Since this represents the distance of the camera from the image 

plane, and the location of the image plane in world coordinates is completely left 

to our choice, the value of the focal length is completely arbitrary. However, we 

do need to ensure that the value chosen for focal length is also the same as the 

position of the near and far clip planes.  

o Coordinates of the Principal Point – This is again left to our choice, but for our 

convenience, the principal point is defined to be at the center of the image and 

hence the appropriate pixel coordinates (which are half the respective 

dimensions in image coordinates)  

o Field of View - Once the focal length (𝑓) and coordinates of the principal point 

(𝐶𝑥, 𝐶𝑦) are fixed, the required field of view angle (𝛼) is determined by a formula 

(assuming the aspect ratio is set to be the same as that of the image): 

𝛼 = 2 ∗ atan (
𝐶𝑦

𝑓
) 

o Distortion Parameters – While the EKF SLAM algorithm in literature allows for 

computation and usage of radial distortion parameters as well, in our use case 

we don’t need to model distortion as the camera is once again our own virtual 

construct which we can assume to be distortion free. The ultrasound probe 

images as known in literature so far, do not exhibit any radial distortion artefacts 

which makes this an error free assumption.  

 



• Feature Vector Definition – The Inverse Depth constraint 

Of the two methods used by the EKF SLAM algorithm to encode features, the Cartesian 

method is completely unaffected by the change of the camera to a virtual camera. 

However, the inverse depth method still proves advantageous when detecting and 

encoding a feature for the first time, and that must undergo a change in this use case. 

This deals with the value of the inverse depth coded in the feature vector.  

The inverse depth coordinates of a feature point correspond to six numerical values – 

the three Cartesian coordinates of the camera when it was initially used to capture the 

feature, the two angles (azimuth and elevation) made by the ray from that camera 

position to the position of the feature, and the depth of the feature point along that ray 

coded as its reciprocal. In the normal EKF SLAM algorithm, the inverse depth is assumed 

unknown and hence given a fixed initial value and initial standard deviation. However, in 

our use case, the value of the inverse depth can be determined using a direct formula 

from our estimates of the camera position and the coordinates of the feature point in 

the image: 

 𝜌 = 1/√Δ𝑥2 + Δ𝑦2 + 𝑓2, 𝑤ℎ𝑒𝑟𝑒 (Δ𝑥, Δ𝑦) = (𝑢 − 𝑢0, 𝑣 − 𝑣0), (𝑢, 𝑣) =

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, (𝑢0, 𝑣0) = 𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠. 

This value of the inverse depth cannot, however, be considered as the real inverse 

depth of the point straightaway, because the camera pose and image feature location 

that have been used to estimate it are themselves variable. Hence, the formula can be 

used only to provide a better initial guess of the inverse depth and a fixed non-zero 

initial standard deviation (here set to 1) is still necessary.  

 

 

 

  



Adaptation to Ultrasound – Preprocessing 

 

Since the input image is generally obtained from a real ultrasound procedure, it will contain 

many unnecessary artefacts that would get in the way of the SLAM algorithm, such as 

computer-generated extraneous markings and parameter values along with an overall 

surrounding of the image that does not contribute to the actual visualization. Further since we 

use curvilinear B-mode, the region where the virtual camera is assumed to be capturing points 

must be estimated first, by modelling the obtained ultrasound image as part of a circle whose 

center is located at the probe. 

 

Therefore, in our implementation of this algorithm, provisions have been made to crop-out the 

exact region where the ultrasound image is present, cover all extraneous markings using the 

background color and then compute “curve parameters” which are the pixel coordinates of the 

center of the circle, the angle between the two extremes of the ultrasound image and the inner 

and outer radii of the circle, which the image spans. All these processes need to be done 

manually except the step of finding the curve parameters for which an automatic algorithm 

based on Sobel edge detection and Hough line detection has been implemented. 

Apart from defining the window where the virtual camera is active, the curve parameters also 

determine one variable that was unknown till now – the position of the probe relative to the 

virtual camera. While it is obvious that the probe must be on the image plane, the exact 

position of the probe on the image plane is determined once the circle containing the curve of 

the image is known – the probe, being the source of the waves, must be at the center of that 

circle.  



EXPERIMENT SETUP 

_____________________________________________________________________________________ 

Main algorithm - implementation details 

 

A free online implementation of the original EKF-SLAM algorithm with 1-Point RANSAC was 

available, as referenced in [7]. This implementation was completely written in MATLAB but 

used a separate implementation of the FAST corner detection algorithm as its only feature 

detector. 

Our implementation builds on this, so it is also coded in MATLAB, making use of the Image 

Processing and Computer Vision toolboxes. The Computer Vision toolbox was used to simplify 

the usage of the five different point feature detectors – Harris, SURF, BRISK, FAST, and 

minimum eigenvalue (Shi-Tomasi) – and in addition, the SIFT feature detector was thrown into 

the mix, thanks to an open MATLAB implementation from the VLFeat library. All six of these 

were tested by running them on a sample ultrasound image from our phantom dataset, from 

which it was found that the BRISK, SIFT, and minimum eigenvalue detectors were able to find 

the highest number of features. 

All testing was done on a 64-bit Dell Inspiron 5547 model laptop running the Microsoft 

Windows 10 operating system, with a RAM capacity of 8 GB and using an Intel Core i7-4510U 

CPU (4-core, 2.00GHz) along with an AMD Radeon R7 M265 GPU (2GB RAM, 400MHz).  

  



Datasets 

 

• Phantom dataset generated from CT scan data (example - Figure 5) 

 

For a major part of the project, we used a Visual Studio C++ implementation of the Field II 

simulation program (http://field-ii.dk/) to use CT scan images to generate datasets that 

consist of ultrasound images (just frames, no video) of one single person taken using one 

probe, at any position and orientation of our choice. The pose information for each frame is 

thus easily saved as the ground truth, to compare the results of our algorithm with. 

We used this to create different subsets of the data such that each subset posed a different 

type of restriction on the problem. For example, a few subsets were made such that the 

ground truth pose of the camera only had one degree of freedom throughout (pure 

translation or rotation along one of the coordinate axes), while others ensured two or three 

degrees of freedom, and still others simulated an actual video by randomly picking images 

taken at poses that were close to each other. 

 

 

Figure 5 - Sample ultrasound image from the phantom dataset. 

  

http://field-ii.dk/


• Real-world dataset, with ground truth trajectory estimated by an external tracking system 

 

Towards the end of the project, we were able to use the HTC Vive tracking system to 

augment a real ultrasound procedure (a sample frame is shown in Figure 6). We fitted a 

tracker from the Vive tracking unit to the ultrasound probe using supports (as in Figure 7) 

and set up the rest of the Vive rig as done in any regular Vive unit setup. We used Unity 

Engine to make a simple virtual environment in which the tracker would move virtually as it 

is being tracked in the real world, and in that environment, we set up a repeated dump of 

the estimated pose to a text file at a fixed frame interval (5 fps). Meanwhile, the actual 

ultrasound video would be recorded from the probe as with any normal ultrasound 

procedure and would be synchronized with the tracker’s dumps with the use of their 

corresponding timestamps. 

 

Figure 6 - Sample frame from the real-world dataset. 

 

Figure 7 - The Vive tracker attached to an ultrasound probe (dummy). 

  



As with the phantom dataset, we ensured that we had separate data subsets available for 

different degrees of freedom of the probe’s pose, by manually asking for the probe to be 

moved around in fixed ways. We had to keep a few other points in mind as well, however, 

which are as follows: 

o The probe will, in general, have five degrees of freedom – pure translation 

perpendicular to the patient’s body is not useful in real ultrasound. 

o While moving the probe, it is important that the patient stays still – if the world 

points seen by the probe start moving around, the setup needs to be initialized all 

over again. In other words, the scene is assumed, by the algorithm, to be rigid. 

However, since it is common for doctors to ask the patient to move about (e.g. lie on 

one side of the body) in the middle of an ultrasound session, pose estimation would 

need to be done independently after each such movement. The motion is not 

continuous though – typically doctors would ask for such movement only around 2-3 

times per session – so this is not much of a hindrance. 

o Similarly, it is typically asked that the patient holds his/her breath during the scan to 

get a good probe image, which does favor our algorithm as well – but it must be 

ensured that the pose estimation is done entirely only when the breath is held or 

not held, not over a period where the patient keeps holding and releasing breaths. 

o In our model, once an input frame is processed, the virtual camera is completely 

calibrated, and the intrinsic parameters so found stay constant throughout the 

session. This assumption also needs to hold, which means that typical operations 

done during real ultrasound sessions such as zooming in and out, adjusting other 

parameters like gain and curve angles and suchlike are not to be performed while 

carrying out pose estimation. 

o Further, interfering directly with the output images by adding screen overlays (like 

highlighting rectangles and labels) will also be detrimental to the algorithm, and thus 

needs to be avoided, despite being common operations doctors perform. 

 

 

 



Validation 

• Error in normalized vector angles (Quantitative) 

 

This is an error measure taken from [15], calculated as shown in Figure 8 and Figure 9: 

 

Figure 8 - Translation error definition. 

 

Figure 9 - Rotation error definition. 

Since the absolute pose values that we obtain varies depending on our choice of coordinate 

frame and scale, it only makes sense to output the translation and rotation of the camera 

between frames, normalized to unit norm (to remove scale discrepancy), and validate the 

correctness of that data against ground truth translation and rotation (normalized again). 

So, the above error measure is a direct and robust indicator of correctness for our use case. 

In our implementation, provisions were made to calculate this error between every two 

frames (𝑒𝑓𝑖 for 𝑖 running across consecutive frame pairs), and to calculate the average 

cumulative error across the pairs of frames ( 𝑒𝑐𝑖 = (
∑ 𝑒𝑓𝑖)𝑖

𝑗=1

𝑖
) ). These would be calculated 

independently for translation and rotation. All the error values computed across pairs of 

frames would also be plotted at the end; the trends so observed would be helpful in gaining 

insights about the stability of the implementation (i.e. how the EKF-SLAM correctness 

improves or worsens with more input). 

 



• Unity Engine-based ultrasound simulator (Qualitative) 

 

 

Figure 10 - Screenshot of Unity-based ultrasound visualizer. 

 

In cases where ground truth data may not be present, or to intuitively visualize the 

estimated trajectory and get an “eyeball” estimate of correctness in general, a program that 

takes the output trajectory as its input and creates a simulated video of the probe moving 

around in that trajectory over a dummy human body would be very helpful. We made a 

simulator (shown in Figure 10) that does just that, using Unity Engine, and it communicates 

via TCP/IP with the MATLAB EKF-SLAM implementation to get live updates of the estimated 

pose as the main algorithm processes each frame. We can choose to see this on the fly, or 

we can see the video later as it takes photos of the simulation and lets the MATLAB code 

convert it into a video at the end of the algorithm. 

 



• Plot of feature points with estimated uncertainties (Qualitative) 

 

 

Figure 11 - Feature point plot example (the image is an endoscopy phantom). 

 

While the camera (and probe) pose are our intended outputs, plotting the feature points 

stored in the state vector along with their individual regions (ellipses) of uncertainty would 

yield useful insights about how the algorithm is able to function – after all, those points are 

its landmarks in calculating the trajectory, so a reliable estimation of their locations is key to 

the correctness of the algorithm. Our implementation uses the original implementation’s 

method and plots the detected points projected into each new input frame, as shown in 

Figure 11. It saves these plots as images and makes a video from them too, thereby also 

making another useful visualization of the feature points and their uncertainties as they are 

being tracked across images. 

 

  



OBSERVATIONS AND ANALYSIS 

_____________________________________________________________________________________ 

Output of algorithm on datasets (both real and phantom) 

 

Initially, there was a version of the code which used the EKF-SLAM implementation of [7] as-is, 

but on a real ultrasound dataset that straightened the curvilinear image. It ended up with the 

following type of trajectory output: 

 

Figure 12 - Output of original algorithm of [7] on curve-straightened real ultrasound dataset. 

Clearly, there is noticeable error in the path – the dataset was taken for a 1-degree-of-freedom 

straight line motion of the probe. 

 

Hence, we made corrections to the algorithm and ended up with the one we have now. We 

then observed the following after running our algorithm on the first two frames of each 

dataset: 

• The three chosen feature detectors (BRISK, SIFT and Shi-Tomasi) were able to detect point 

features very well in the first frame. Even when the minimum number of features required 

in the image was raised to 100 from the initial value of 25, that number of features could 



still be found within a restricted window of the image (85% of the area defined by the curve 

parameters). The feature detection methods were used on such a restricted window to 

avoid boundary points (i.e. points on the border defining the curvilinear ultrasound image) 

being detected as features. 

• However, correlating two frames still proved to be a challenge. Depending on what was 

done to relax the conditions on the feature matching step, the following effects were 

observed: 

o Without any modifications to the algorithm compared to what had been explained 

above, the code crashed immediately after reading the second image and trying to 

start the 1-Point RANSAC model estimation process. 

o This was because the algorithm could not find any individually compatible matches 

(i.e. NCC-based matches of patches surrounding each feature point) across images – 

that is, not a single match was available to carry out the 1-Point RANSAC step. 

o Upon investigating the cause of this, we found that the correlation coefficient 

threshold had no effect on this – it was a problem that prohibited the feature from 

being matched in the first place, which meant that the correlation coefficient was 

never computed. 

o The problem was found to occur during the measurement prediction stage of the 

EKF update – the measurement covariance estimated by the algorithm was simply 

too large (i.e. the eigenvalues of the covariance matrix were well above the 

threshold of 100 defined by the original algorithm as a sanity check), thereby 

signaling that there was a problem in the numerical estimation of the measurement 

vector and covariance matrix. 

o This meant that there had to be a practical difficulty during the EKF update – 

possibly due to wrong initialization of velocity or covariance values, or the choice of 

pixel units in world space as well (which might have led to higher residual values – it 

is a known fact that normalization of coordinates is an essential error-reduction step 

in other computer vision algorithms based on linear algebra, for example). 



o The eigenvalue-based sanity check, however, turned out to be an essential step – 

since the image regions where matches were searched in depended on the values of 

the measurement covariance matrix, removing this check meant that the window 

where matches were searched in became too large, and therefore too many 

“matching patches” were returned. This in turn prevented the computation of the 

correlation coefficient, as memory was not enough to store and process the huge 

matrices arising from the computation. 

• This behavior (i.e. crashing during the 1-Point RANSAC step after reading the second frame) 

persisted irrespective of the type of dataset used (real or phantom). Hence, it can be 

inferred that the problem has more to do with the setup of the algorithm itself. Due to time 

constraints, this problem could not be investigated further. 

Analysis 

 

Although our experiments couldn’t produce any tangible results to validate, we have been able 

to gain several useful insights into the problem statement and the algorithm proposed over the 

course of the project. These are summarized below and could prove to be handy for improving 

further research in this domain. 

• To the human eye, figuring out the exact movement of the virtual camera (and hence 

the ultrasound probe) is a difficult task, and it is not immediately clear that one can 

detect motion across all degrees of freedom simply by seeing the ultrasound video. 

While translation along the image plane (and hence rotation along an axis perpendicular 

to it) are clearly visible, motions out of the image plane are not directly reflected in the 

ultrasound images. This is simply because the image plane changes between frames, 

and since only those world points that lie on it are captured, we cannot say that points 

matched between two frames by conventional matching methods correspond to the 

same world point in general. 

• That said, this would only be an issue if we use methods such as triangulation or 

Structure-from-Motion to estimate world point locations from feature matches. We can 



avoid this problem by noting that once the virtual camera’s intrinsic parameters are 

fixed, knowledge of the camera’s world pose and feature point coordinates (in the 

image) is enough to reconstruct every image point in 3D from a single image (which 

means matching is not necessary for reconstruction). This information has been 

captured by the inverse depth constraint introduced earlier, and any computer vision 

algorithm that operates on ultrasound images would find this observation very useful. 

• Since the images will be low-texture and high-noise and would also have a considerable 

amount of shadowing present, any feature detection method would have to be coupled 

with an algorithm that takes all this into account and performs robust estimation – such 

as RANSAC (even better, 1-Point RANSAC as used by us). 

• Since motions of an ultrasound probe are smooth and no sudden jerks are usually 

present, the constant velocity model (as used by us) will suffice to model the motion of 

the probe in general, which also makes EKF a prime candidate for application to this 

domain. However, the initial values of velocities and their covariances are likely to play a 

role – in our case, they might have been the cause of the entire problem. 

• The tracker was attached to the top of the probe handle during data collection for the 

real-world dataset. The point that is being modelled as the probe virtually, on the other 

hand, lies at the center of the curve circle – which doesn’t lie at the top of the real probe 

in general. The distance between the modelled probe point and the actual point being 

tracked introduces errors with respect to the “ground truth” because the modelled 

point’s pose is what the algorithm estimates while the tracked point’s pose is what has 

been recorded as the ground truth. This discrepancy hasn’t been resolved yet.  



CONCLUSION 

_____________________________________________________________________________________ 

We have implemented an algorithm, based on the existing EKF-SLAM with 1-Point RANSAC 

algorithm [7], to compute the trajectory of the ultrasound probe over the duration of an 

ultrasound video, using only the video as input – for which the initial inspiration came from 

related work on endoscopic video. In doing so, we have made several useful observations and 

contributions regarding the problem statement – the formulation of the virtual camera, the 

inverse depth constraint, the evaluation measures and all the insights gained over the course of 

this work – which can be instrumental in guiding future research in this domain. Due to time 

constraints, the problems surrounding the application of the algorithm to this problem remain 

unsolved, but work will continue, and solutions to the problems will be investigated. 

However, the algorithm as it stands now has a few shortcomings. The rigidity constraint 

enforced throughout can be prohibitive in mapping the internals of a human body (as done in 

ultrasound) because there are many kinds of moving entities inside it. The requirement that the 

patient’s body must remain still (and even maintain the same state of breath) is also a slight 

issue, as is the requirement that the ultrasound probe’s parameters (gain, zoom etc.) should 

also stay constant. The running time of the algorithm is also quite high, especially when a 

higher number of features are requested to be initialized, which makes it unsuitable for online 

applications – though our use case wasn’t intended to be online. 

In future, it would be prudent to explore new methods of feature detection and matching, 

perhaps unconventional ones tailored to the ultrasound domain, and analyze their impact on 

the algorithm. These new methods could possibly factor in the information about the organ 

being scanned and use specialized algorithms accordingly (e.g. use a specific feature type to 

detect parts of the liver in a liver ultrasound scan). The feature matching stage may need 

modifications to accommodate the different constraints imposed by the ultrasound problem 

statement. The existing algorithm and detectors also provide good scope for customization, 

with various parameters that can be tweaked to all for detection of more (or better) features; 



the impact of these parameters on the algorithm could be studied to gain more insight into it. 

Further, the input images could be preprocessed more, perhaps by image adjustment for 

contrast, so that the subsequent steps can yield more reliable results (better features, better 

matching etc.) – although one must take care not to influence what the camera sees too much, 

as that may cause deviations from the ground truth. Still other approaches could try and avoid 

the topic of features altogether – since, as we have seen, feature detection and matching 

remain a challenge - and operate on the images “as a whole” without omitting any information 

in them. This has been done for a different computer vision problem by [16], using a method 

called Large-Scale Direct SLAM (LSD-SLAM); investigation into methods of integration of those 

concepts with the virtual camera and other such ultrasound-specific details could prove to be 

very useful. 

However, it can be safely said that the virtual camera concept and the inverse depth constraint, 

together with the other insights gained during this work, would be very important for computer 

vision algorithms on ultrasound images going forward. Other types of unconventional image 

sources (where the image is not a typical camera render, as is the case with different types of 

medical imaging, for example) could be analyzed using a similar approach (i.e. by introducing a 

virtual camera looking into the image); those systems would introduce different, specific 

constraints but the general approach would stay the same.  
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