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ABSTRACT

KEYWORDS: Polar Codes; Successive Cancellation Decoding; List Decod-

ing; Belief Propagation; 5G NR

The aim of this project is to study and implement various decoding techniques for

polar codes. We first look at the phenomenon of channel polarisation and math behind

why the polar codes work. Then we look at different methods for encoding polar codes.

We then look at the different decoding algorithms for polar codes, starting with succes-

sive cancellation decoder. Due to the serial nature of successive cancellation decoder,

there is significant latency in decoding and we look at ways to improve the speed of de-

coding. And in order for the polar codes to compete with existing LDPC codes, we start

looking at methods to improve error-correction performance. We look at list decoding

of polar codes and then extend this to CRC concatenated list decoder that ultimately

gives the desired error-correction performance. We also look at using belief propaga-

tion decoder, used traditionally to decode LDPC codes, for decoding polar codes. And

we further proceed to present a novel concatenated Belief Propagation decoder that

provides an improvement over the current Belief Propagation decoder.
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CHAPTER 1

INTRODUCTION

The design of capacity achieving codes has been pursued by researchers for decades.

While Claude Shannon introduced the concept of channel capacity [1] more than 70

years ago, it was not until relatively recently that we came to close to achieving this.

While Reed-Solomon (RS) and Bose-Chaudhuri-Hocquenghem (BCH) have good error

correction performance and are in widespread use even today, it’s not until the discovery

of turbo codes [2] in 1993 that error-correcting codes approaching the channel capacity

were found. Also the Low Density Paity Check (LDPC) codes discovered by Robert

Gallager in 1960s [3] and independently rediscovered by David McKay in 1997.

In 2008 Erdal Arikan introduced polar codes [4], the first codes to asymptotically

achieve the symmetric channel capacity of memoryless channels. And the important

aspect here is, this is done explicit, non-random construction, using a low complexity

successive cancellation decoder. This is made possible by a phenomenon called channel

polarisation, in which certain bits can always be estimated reliably while others are

completely unreliable. The fraction of reliable bits approaches close to channel capacity

as the length of the code increases and thus achieves channel capacity asymptotically.

Despite the simple decoder algorithm and capacity achieving property, polar codes

fare worse than LDPC in two aspects. One is the throughput, which can be attributed to

the serial nature of successive cancellation decoding. Due to this, the decoder algorithm

has very low parallelism and is challenging to improve the speed. The second aspect is

that polar codes achieve capacity only asymptotically and fare worse than LDPC codes

at moderate lengths in terms of error correcting performance. Hence to tackle these

issues advances in decoding algorithms have been made, resulting in more complicated

but better error correction performance and lower latency. One can say that these ad-

vances played a pivotal role in the selection of polar codes for the control channel in

upcoming 5G NR deployment.



CHAPTER 2

BACKGROUND

In this chapter we introduce the concept of channel polarisation and construction of

polar codes. We then look at different encoding and decoding methods for polar codes.

This chapter proceeds with a description of successive cancellation Decoder, an early

low complexity decoder. Then we look at simplified successive cancellation decoder,

which provides a significant improvement in speed by utilising some special types of

nodes. Then we look at the simplified successive list decoder, which finally made pos-

sible the error correction performance of polar codes good enough in comparison with

LDPC codes. Finally we also describe the belief propagation decoder and its imple-

mentation for decoding polar codes.

2.1 Channel Polarisation

A channel can broadly be described as a medium for transmission of information. The

reliability of a channel, which is the probability with which the message transmitted

is received correctly, gives us a notion of whether a channel is good or bad. For a

good channel, the symmetric capacity approaches to 1. In this report, we are going to

consider exclusively B-DMCs, described below.

A generic B-DMC can denoted as W : X → Y where X ∈ {0, 1} is the input

alphabet and Y is the output alphabet which is arbitrary. We define the transition prob-

ability W(y|x) where x ∈ X , y ∈ Y . Also we will use symmetric channel capacity

I(W) as a measure for quality of channel. It is defined as

I(W) =
∑
y∈Y

∑
x∈X

1

2
W(y|x) log2

W(y|x)
1

2
W(y|0) + 1

2
W(y|1)

In his seminal paper, Erdal Arikan introduced the concept of channel polarisation, a

method in which a set of good channels and bad channels can be created from a given
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u1 W y1

y0
x0
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Figure 2.1: B-DMC with no transformation

u0 W

u1 W y1

y0
x0

x2

Figure 2.2: B-DMC with two fold Polar transformation

set of N independent and identical copies of a B-DMCW . This can be thought of as

aggregating and redistributing the the combined capacity. This operation is done in two

stages, channel combining and channel splitting.

In channel combining we begin with N copies of W and combine them in a recur-

sive manner to result in a vector channel WN : XN → YN , where N is a power of

two, N = 2n, n ≥ 0. And in channel splitting, we split the above vector channel into

a set of N binary-input coordinate channels denotes as W
(i)
N : X → YN × X i−1 ,

1 ≤ i ≤ N , and the transition probabilities, derivation of which is provided in [4], as:

W(i)
N (yiN , u

i−1
1 |ui) =

∑
uNi+1∈XN−i

1

2N−1
WN(y

N
1 |uN1 ) (2.1)

where (yN1 |uN1 ) denotes the output ofW(i)
N and ui its input.

Let’s look at the case of two fold polar transformation. When two bits (u0, u1) ∈

X 2 are transmitted using two independent B-DMC W , two values (y0, y1) ∈ Y2 are

received, as shown in Fig 2.1. The mutual information values are:

I(Y0, Y1;U0) = I(W) = I(Y0, Y1;U1)

However, if (u0, u1) are transformed into (x0, x1), as shown in Fig 2.2, the mutual

3
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Figure 2.3: B-DMC with eight fold Polar transformation

information becomes

I(Y0, Y1;U0) ≤ I(W) ≤ I(Y0, Y1;U1)

The proof of the above inequality is presented in [4].

We know that I(W) = 1 indicates error free transmission and I(W) = 0 indicates a

completely unreliable channel. Hence, we can see that the transformed channel resulted

in decreasing the probability of error for u1 whereas increasing the probability of error

for u0. Fig 2.3 shows the polar transformation for a length 8 polar code. And as the

number of channels increases i.e, as N → ∞, for any i the probability of correctly es-

timating ui approaches either 1 or 0.5 and the fraction of such i approaches the channel

capacity i.e, rate of the code R approaches the capacity of the channel C. Fig 2.4a

shows the effect of polarisation on a BEC with erasure probability ε = 0.5 for a length

1024 polar code. If we sort the channels based on symmetric channel capacity I(W),

we can see from Fig 2.4b that the fraction of reliable channels approach the capacity

C = 1− ε which is 0.5.

4



(a) Chanel Polarisation effect unsorted (b) Chanel Polarisation effect sorted

Figure 2.4: Effect of Channel Polarisation on I(W)

2.2 Construction of Polar Codes

The construction of a polar code of length N and rate K/N is essentially a selection

problem, where we need to select the best K channels out of N polarised channels.

This is same as forming a information set Aγ of size K. Ideally this should be done by

calculating the Bhattacharyya parameters {Z(W (i)
N ) : 1 ≤ i ≤ N} and sorting them.

But this is computationally inefficient and hence this is reformulated into a decision

problem: Given a threshold γ ∈ [0, 1] and an index i ∈ {1, . . . , N}, decide the channel

index i corresponds to a good channel or bad channel i.e, whether i ∈ Aγ . This can

be repeated for various settings of γ until we obtain an information set Aγ of size K.

One exception to this is a BE and BSC where the parameters {Z(W (i)
N )} can be exactly

calculated recursively was done in [4]. A practical method to determine frozen bit

locations for Gaussian Channel (AWGN) was provided in [5].

5



CHAPTER 3

ENCODING

3.1 Encoding of Polar Codes

There are two ways in which the encoding can be performed. One is non-systematic

encoding where we don’t preserve the message bits to appear in the codeword and the

other is systematic encoding where the codeword includes the message bits unaltered.

In non-systematic encoding, the procedure for encoding is very similar to the pro-

cess to channel polarisation discussed earlier. Consider the (N,K) where N is the

length of codeword andK is the length of information bits. Lets denote the information

bit set and frozen bit set as A and AC respectively, such that A,AC ⊆ {1, . . . , N} and

{A + AC} = {1, . . . , N}. The N − K least reliable bits corresponding to set AC are

set to 0 and the K most reliable bits are initialised with message vector of length K.

Now the encoding is carried out by recursively performing the polar transformation as

shown in

This operation can be described mathematically using a generator matrixGN of size

N ×N , which is constructed from the two-bit transformation matrix F represented by

F =

1 0

1 1


To construct a generator matrix GN from F we use the Kronecker power as:

GN = F⊗log
N
2 = F ⊗ F⊗logN2 −1



u0 = 0

u1 = 0

u2 = 0

u0 = m0

u0 = 0

u0 = m1

u0 = m2

u0 = m3

x0

x1

x2

x3

x4

x5

x6

x7

Figure 3.1: Encoding of (8,4) Polar code with frozen nodes set to "0"

where F⊗1 = F . For example, G8 is given below

G8 = F⊗3 =



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1


Now the encoding is simply the matrix multiplication of row vector u1×N , whereN−K

indices are initialised to 0 andK indices are initialised with information bits. And hence

the codeword x is given by:

x1×N = u1×NGN×N (3.1)

Since the above expression is a matrix multiplication, the time complexity comes

out to be O(N3). But by taking advantage of the butterfly like structure, shown in Fig

4.8 , similar to FFT, the complexity of encoding can be brought down to O(N log2N).
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Figure 3.2: Systematic encoding of (8,4) Polar code with information bits preserved

3.2 Systematic Encoding of Polar Codes

Alternatively, one can perform systematic encoding, introduced in [6], where the code-

word can be directly separated into K information bits and N parity bits. In systematic

encoding, we start by initialising the frozen bits in u to 0 i.e, uCA = 0 and xA to infor-

mation bits and then solving for the remaining bits. The equation for calculation parity

bits in x is given as follows:

xAC = xA(GAA)
−1GAAC (3.2)

where GAA is submatrix of G whose rows and columns corresponds to information

bit indices and GAAC ’s rows and columns corresponds to frozen bit indices. There

are advantages of systematic encoding over non-systematic encoding such as improved

BER performance and faster decoding since extraction of information bits is straight

forward.

3.3 Binary tree representation of Polar Codes

If we observe the construction and encoding process of a polar code, it is recursive and

a polar code of length N can be represented as concatenation of two polar codes of

length N/2. Hence a good choice of representation for a polar code is binary tree. The

depth breadth of tree would be N and the depth would be log2N+1, with N leaf nodes

8



u00−7

u10−3

u20−1

u30 u31

u22−3

u32 u33

u14−7

u24−5

u34 u35

u26−7

u36 u37

Figure 3.3: Binary tree structure of (8,4) polar code with frozen and information nodes

representing the information bit nodes and the frozen bit nodes. For representation

purposes, in the Fig 3.3, we represent the information bit nodes using white and frozen

bit nodes using black. And uli−j represents vector corresponding to bits i to j at level l.
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CHAPTER 4

DECODING

4.1 Successive Cancellation Decoder

One of the interesting properties of polar codes is their ability to achieve capacity with a

very low complexity decoding algorithm. Here we look at the Successive Cancellation

Decoding algorithm, provided in [4]. As the name suggests, SC decoding algorithm

proceeds by decoding the bits sequentially starting with u0. For a frozen bit node, it is

always decoded as 0. And while decoding the ui, the available bits u0 to ui−10 which

are represented by the vector ui−1 are used according to decode ui according to the

following rule:

ûi =


0, if i ∈ A and Pr[y, û0i−1|ui = 0] ≥ Pr[y, ˆui−10 |ui = 1]

1, if i ∈ A and Pr[y, û0i−1|ui = 0] ≤ Pr[y, ˆui−10 |ui = 1]

0, if i ∈ AC
(4.1)

The probability calculations are computationally easier and lesser prone ot round

of errors in log domain. Hence we consider, LLRs instead of probabilities to avoid

numerical overflows. LLR for tth bit is defined as:

L(i)(y, û0
i−1) = log

Pr[y, û0
i−1|ui = 0]

Pr[y, ˆui−10 |ui = 1]

Hence the decision rule changes as:

ûi =


0, if i ∈ A and L(i)(y, û0

i−1) ≥ 0

1, if i ∈ A and L(i)(y, û0
i−1) ≤ 0

0, if i ∈ AC
(4.2)

The binary tree structure of a polar code described earlier can be exploited to sim-

plify the successive cancellation decoding. The binary tree has n = log2N + 1 stages



n = 3

n = 2

n = 1

n = 0

Figure 4.1: Binary tree structure of (8,4) polar code with stages indicated

νp

parent node

νcurrent node .

νlleft child νr right child

αν βν

αl

βl

αr

βr

Figure 4.2: SC decoding update rules for each node

with numbering from s = 0, . . . , n. Each stage s contains 2s nodes with each node

corresponding to 2n−s bits.

Inorder traversal of the tree is done to perform the successive cancellation decoding.

At each node messages are passed as shown:

Each node passes LLR corresponding LLR values, namely α, to the child nodes and

sends the estimated hard bits at the sage, namely β, o the parent node. The left and right

messages, αli and αri are calculated as:

αli = ln

(
1 + eαi+αi+2n−s−1

eαi + eαi+2n−s−1

)
(4.3)

αri = αi+2n−s−1 + (1− 2βli)αi (4.4)

11



We define two functions to perform these operations, namely f and g, defined as:

f(α1, α2) = ln

(
1 + eα1+α2

eα1 + eα2

)
g(β, α1, α2) = (1− 2β)α1 + α2

(4.5)

But the f function is computationally expensive and hence we approximate it to a

hardware friendly version using min-sum approximation as follows:

fminsum(α1, α2) = sign(α1)sign(α2)min(|α1|, |α2|) (4.6)

where sign gives the sign of input and min gives the minimum of the two inputs.

The algorithm starts from the root node of the tree, which is level n+1, and traverses

till the leaf node which is level 0. For each node, the following set of operations occur.

1. If current node has a left child that was not visited, is calculate αl and move to
left child.

2. If current node has a right child that was not visited, is calculate αr and move to
right child.

3. If both the messages from child nodes are available, calculate β and move to
parent node.

Once the leaf node is reached, decisions are made based on the sign of correspond-

ing LLR using the binary quantiser function h as:

βν = h(αν) (4.7)

where h is defined as:

h(α) =

0, if α ≥ 0

1, else

Simulation results for SC Decoder

Fig 4.3 shows BER and BLER performance of SC Decoder for (1024,512) polar code.

The simulations were performed on BPSK modulated data and transmitted over AWGN

12



Figure 4.3: BER and BLER of SC Decoder for (1024,512) polar code

channel.

4.2 Simplified Successive Cancellation Decoder

Even though the successive cancellation decoder algorithm is computationally simple,

the speed of decoder is limited by the serial nature of the algorithm. To decode ui, we

need to wait till all the bits {u0, u1, . . . , ui−1} are decoded. Also, in the current SC

decoding, only one bit can be estimated at a time. Hence efforts were made to improve

the speed of the algorithm to enable estimating more than one bit at a time. One such

major breakthrough was simplified successive cancellation decoder, introduced in [7].

In this section, we look at SSC decoding and the different types of special nodes that

make the SSC decoder possible. The types of special nodes and the rules for decoding

the special nodes are provided below, the proof for which is provided in [7].

We will consider four types of special nodes that enable faster decoding by prevent-

ing the need to travel till leaf node to decode the corresponding bits.

13



Root node

Rep

Rate-0

Leaf node

SPC

Rate-1

Figure 4.4: Binary tree structure of (8,4) polar code with special nodes labelled

4.2.1 Rate-0 Nodes

Rate-0 node corresponds to root node of a subtree whose leaf nodes are all frozen bit

nodes. It is straight forward that for such types of nodes we don’t need to travel till leaf

node and the corresponding bits can be directly set to 0.

βν = 0 (4.8)

4.2.2 Rate-1 Nodes

Rate-1 node corresponds to root node of a subtree whose leaf nodes are all information

bit nodes. We can see that traversing till leaf node and estimating the information bits is

same as estimating the β at current node and taking a polar transform of the β. This is

because there is no additional information generated by traversing further because there

are no frozen bit nodes providing prior information.

βν = h(αν) (4.9)

4.2.3 SPC nodes

SPC node corresponds to root node of a subtree whose leaf nodes are all information

bit nodes except for the first node which is frozen bit node. Such nodes can be decoded

by estimating the β at current node and flipping the least reliable bit,corresponding to
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the LLR with the least absolute value. And then a polar transform is performed on β to

obtain the estimate at leaf nodes.

βν = h(αν)

βν(ipar) =
Nν∑

i=0;i 6=ipar

βν(i)
(4.10)

where ipar is the position of least reliable bit and the summation is performed over

GF (2) i.e, sum modulo 2.

4.2.4 Rep Nodes

SPC node corresponds to root node of a subtree whose leaf nodes are all frozen bit nodes

except for the first node which is information bit node. Such nodes can be decoded

by taking sum of the LLRs at current node and estimating the bit corresponding to

repetition node. And then a polar transform is performed on β to obtain the estimate at

leaf nodes.

βν = h

( Nν∑
i=0

αν(i)

)
(4.11)

Simulation results for SSC Decoder

Fig 4.5 shows BER and BLER performance of SSC Decoder for (1024,512) polar

code. The simulations were performed on BPSK modulated data and transmitted over

AWGN channel. We can compare this with Fig 4.3 to see that there is no degradation

in BER/BLER performance when compared to SC Decoder.

4.3 Successive Cancellation List Decoder

The SSC decoder algorithm deals with one issue of SC decoder algorithm, which is the

latency. But for polar codes to be able to replace the LDPC codes, we need to improve

the error-correction performance as well even for moderate lengths. That’s where the

SCL decoder algorithm comes into picture. Traditionally, list decoding has long been

used to improve the error correction performance of block codes [8]. List decoding was
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Figure 4.5: BER and BLER of SSC Decoder for (1024,512) polar code

first appllied to polar codes in [9] using likelihoods. Later, this was implemented us-

ing LLRs, in [10], reducing the computational complexity but still preserving the error

correction performance. The key idea is to make a probabilistic estimate for each pos-

sibility rather than making a hard decision i.e, for each bit to be estimated we consider

both 0 and 1 each with a certain metric specifying the probability. Also at any point we

limit the maximum number of possibilities to the list size L, pruning the list each time

to consider the best L possibilities so that at the end we end with a list of L candidates

instead of one codeword.

For decoding polar codes, the SCL algorithm considers both the possibilities 0 and

1 for the bit to be estimated instead of making a hard decision. The reliability for

each path is indicated by using a path metric variable that is updated for each estimate

according to the following rule:

PM i =

PM i−1, if ûi = h(αv)

PM i−1 + |αv|, otherwise
(4.12)

where h is the binary quantizer function. This is essentially penalizing the path by the

belief every time a decision opposing to that of the binary quantizer rule is made.
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Note that only the path metrics corresponding toL existing paths are updated while a

frozen node is encountered as no new paths are created, since the estimate for frozen bit

node is always 0. While estimating an information bit there are a total of 2L possibilities

as the list doubles and we prune the list by selecting the best L reliable paths i.e, the

paths corresponding least L path metrics.

Thus at the end we select the codeword with the least PM from the pool of L candi-

dates as the estimate. While this provided an improvement in error-correction capabil-

ity of SC decoder, this is still not sufficient to compete with the performance of LDPC

codes.

One interesting thing to note is, while the list of L possible candidates contains the

correct codeword with high probability it need not always be the candidate with the

least PM. Hence we need genie sort of help to identify the correct codeword from the

list. A close approximation to this can be achieved by using a CRC aided decoder. We

take a closer look at this decoder in the following section.

4.4 CRC aided Successive Cancellation List Decoder

A Cyclic Redundancy Check (CRC) can be thought of as an advanced parity check, that

can detected more complicated results than simply checks for odd or even number of

bits in the received vector. In CRC, a sequence of redundant bits called check redun-

dancy bits are appended to the data so that the resulting unit becomes exactly divisible

by a predetermined binary vector.

In CRC-SCL decoding, we use some of the information bit positions to send the

CRC-bits of the message vector rather than the message bits. And at the receiver, after

we get the list of L possible candidates, we check for the the candidate with least PM

that satisfies the CRC condition. If there is no candidate that satisfies the CRC condi-

tion then we directly select the candidate with the least PM [9]. We use the notation

(N,K, p) to denote (N,K) polar code with p CRC bits.

Thus the error-correction capability of a polar code can be matched up to that of

LDPC code of comparable length by using the needed list size and CRC length. In

fact, for moderate lengths CRC-SCL decoders are observed to perform better that that
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(a) Bit Error Rate (b) Block Error Rate

Figure 4.6: CRC-SCL Decoding for (1024,512,8) polar code for different list sizes

of LDPC codes of same rate and comparable length.

Fig. LDPC vs polar fig.2.14

But all of this comes at a cost of increased computational complexity and thus in-

creases latency. The latency is observed to be increasing linearly with the list size.

Using simplifications for the special nodes provides a considerable improvement. The

CRC-SCL algorithm has to be modified in order to take care for updating the PMs

correctly, describes in the next section.

Simulation results of CRC-SCL Decoder

Fig 4.6 shows BER and BLER performance of SCL Decoder for (1024,512,8) polar

code, where 8 is the number of CRC bits. The simulations were performed on BPSK

modulated data, the noise considered is AWGN. We can see the improvement in error

correction performance with increase in list size.

4.4.1 CRC aided Simplified Successive Cancellation List Decoder

In CRC-SSCL, we describe the rules to update PMs at the special nodes, described

in [11] and [12], that enable us to stop traversing further and decode at the current node.

We describe both the exact and HWF versions.
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Let the general description of a special node be αν for the incoming LLRs, and βν

for the decisions to be sent to parent node and Ns be the length of bits corresponding to

current node.

4.4.1.1 Decoding for Rate-0 Nodes

For Rate-0 nodes, since we always decode the bits as 0 we only need to take care of

updating the PMs. For each bit, the PM needs to be updated based on the sign of

corresponding LLR for each list. The update rules for PMl, where l is the list number

l, are as follows:

PMl =

PMl + ln(1 + e−αil ), exact

PMl + sign(αil)αil − αil , HWF
(4.13)

And an all zero vector, which is the βl, is sent back to to the parent node.

4.4.1.2 Decoding for Rate-1 Nodes

For Rate-1 nodes, we have to estimate the bits one by one updating the PM at each

estimate. For each bit the list size doubles to 2L and the paths corresponding to least L

PMs are retained while the remaining paths are discarded. The update rules for each bit

corresponding to path l is as follows:

PMl =

PMl + ln(1 + e−(1−2βil )αil ), exact

PMl + sign(αil)αil − (1− 2βil)αil , HWF
(4.14)

For each path, this is performed Ns times, once for each bit estimated. At the end

the βl corresponding to L paths is sent back to the parent node.

4.4.1.3 Decoding for SPC Nodes

For SPC nodes, the parity check condition should satisfy for the codeword always.

Assuming that the bit with least absolute value of LLR as the parity bit, for each path,

we first estimate the remaining bits. And in the end, the parity bit is set such that
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that parity check constraint is satisfied. The update rules for each bit, except the least

reliable bit, corresponding to path l is as follows:

PMl =

PMl + ln(1 + e−(1−2βil )αil ), exact

PMl + sign(αil)αil − (1− 2βil)αil , HWF
(4.15)

Note that after the parity correction is made, PM is updated again as:

PMl =

PMl, if ûi = h(αv)

PMl + |αv|, otherwise
(4.16)

where ûi is the parity bit and h is the binary quantizer function.

4.4.1.4 Decoding for Rep Nodes

For Rep nodes, we need to estimate only one information bit. Since all the incoming

LLRs represent the information about same bit, we consider the sum of LLRs in each

path while making a decision. The list size doubles, with one half assuming the Rep

node to be all 0s and the other half assuming the Rep node to be all 1s. The update rules

for each bit corresponding to path l is as follows:

PMl =

PMl +
∑Ns−1

i=0 ln(1 + e−(1−2βNs )αil ), exact

PMl +
1

2

∑Ns−1
i=0 sign(αil)αil − (1− 2βNs)αil , HWF

(4.17)

where βNs corresponds to estimate for the information bit of Rep node. At the end

the βl corresponding to L paths is sent back to the parent node, while discarding the

remaining L paths.

Comparison of CRC-SCL with LDPC codes

FRom Fig 4.7, we can see that even though the length of polar code used, N = 1024,

is less than that of LDPC code, the error correction performance is cloe to that of LDPC

code as the list size increases. The parameter L, which is the list size, can be compared
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(a) Bit Error Rate (b) Block Error Rate

Figure 4.7: BER/BLER comparison of (1944,72) for different iterations LDPC with
(1024,512,8) polar code for different list sizes

to the maximum number of iterations for an LDPC decoder.

4.5 Fast CRC-SSCL Decoder

Even though SSCL improves the decoding speed by decoding the special nodes with-

out traversing further, we still have to deal with serial nature of decoding algorithm

described above when decoding Rate-1 and SPC nodes. Also it is impossible consider

all the possible path splitting operations for a special node, since it will result in expo-

nential complexity. Hence to tackle both of these problems, Fast-SSCL algorithm was

proposed in [12], where the number of path splitting operations at special node are lim-

ited based on the list size with little to no degradation in error correction performance.

The rules for updating are provided below, and the proofs for these can be found in [12]

4.5.1 Fast Decoding for for Rate-1 nodes

The following theorem summarises the rules for guaranteed error correction perfor-

mance for Rate-1 nodes while limiting the path splitting operations.

Theorem 4.5.1 In Fast-SSCL decoding, the number of path splitting operations re-
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quired for decoding Rate-1 node while preserving the error correction performance is

min(L− 1, Nν)

where L is the list size and Nν is the size of Rate-1 node.

The rule for updating path metric remains the same. The HWF formulation is as

follows:

PMil =

PMil + |αil |, if (1− 2βil) 6= sgn(αil)

PMil , else
(4.18)

It is important to note that the least reliable bits are estimate first. This is because,

the bits with high LLR values are less likely to get improvement due to path splitting.

Hence, in case of L−1 ≤ Ns, after estimating the least L−1 reliable bits, the remaining

bits can simply be estimated through hard decision as follows:

βil =

0, if αil ≥ 0

1, else
(4.19)

4.5.2 Fast Decoding for SPC nodes

A SPC node can be decoded by ignoring the least reliable bit and decoding the remain-

ing bits as a Rate-1 node. The least reliable bit is then set to satisfy the parity constraint.

The following theorem gives the minimum number of path splitting operations.

Theorem 4.5.2 In Fast-SSCL decoding, the number of path splitting operations re-

quired for decoding SPC node while preserving the error correction performance is

min(L,Nν)

where L is the list size and Nν is the size of SPC node.

The rules for updating PM and getting hard estimate for remaining bits remains the

same as in the case of Rate-1 node. Now, we set the parity bit, i.e, the least reliable bit,

to satisfy the parity constraint and finally update the PM accordingly.
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R0,1 = 0

R1,1 = 0

R2,1 = 0

R3,1 =∞

R4,1 = 0

R5,1 =∞

R6,1 =∞

R7,1 =∞

L0,n+1 = Lch(x0)

L1,n+1 = Lch(x1)

L2,n+1 = Lch(x2)

L3,n+1 = Lch(x3)

L4,n+1 = Lch(x4)

L5,n+1 = Lch(x5)

L6,n+1 = Lch(x6)

L7,n+1 = Lch(x7)

Figure 4.8: Encoding factor graph of Arikan’s BP decoder for a (8,4) polar code with L
and R messages initialised

4.6 Belief Propagation Decoder

Belied propagation or message passing algorithm has traditionally been used for per-

forming inference on graphical models, such as Bayesian networks. In particular, BP

decoding in LDPC codes has been hugely successful. Over the years highly optimized

software and hardware decoders for BP decoding have been developed. Hence it will

be highly efficient to come up with a method to use BP decoding to decode polar codes

since this will enable us to avoid developing complex new hardware designs specifically

for polar codes. And they have since been used in decoding polar codes as well [13]

The main advantage with a BP decoder is the increased parallelism due to the flood-

ing schedule instead of the serial scheduling observed in SC decoding. There have

been many approaches at using belief propagation for polar codes. Arikan’s original

BP decoder was based on BP propagation for Reed-Muller (RM) codes, where the it-

erative calculations were made on the encoding factor graph. This was different from

the usual approach where iterations were performed on the tanner graph, which is the

parity check factor graph. First we look at the Arikan’s BP decoding, which is different

from BP decoder for LDPC codes. Then we look at BP decoding using the parity check

matrix that will enable us to directly use the BP decoder for LDPC codes. And we then

present a novel parity bit concatenation based BP decoder that gives an improvement

over the current BP decoder, using the same decoding methodology.
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(i, j)

(i+ 2j−1, j)

(i, j + 1)

(i+ 2j−1, j + 1)

Ri,j

Li,j

Ri,j+1

Li,j+1

Ri+2j−1,j

Li+2j−1,j

Ri+2j−1,j+1

Li+2j−1,j+1

Figure 4.9: Update rules at each node for Left and Right messages

4.6.1 Arikan’s BP Decoder

Arikan’s BP, provided in [14], is based on describing the encoding factor graph using

two types of nodes and designing the update rules accordingly. Starting with the re-

ceived channel LLRs, decoding is performed by iteratively exchanging left and right

messages along the edges of the graph.

The most basic processing unit of the encoding factor graph and the update rules

corresponding left and right messages are shown in Fig 4.9. The L-messages Li, j

correspond to beliefs propagating from right-to-left and R-messages Ri,j correspond

to beliefs propagating from left-to-right, at each node, along the encoding factor graph

shown in Fig. 4.8 respectively.

At each node in the encoding structure of polar code , the update rules for left and

right messages are implemented, shown in Fig 4.9, as:

Li,j = f(Li,j+1, (Li+2j−1,j+1 +Ri+2j−1,j))

Li+2j−1,j = f(Ri,j, Li,j+1) + Li+2j−1,j+1

Ri,j+1 = f(Ri,j, (Li+2j−1,j+1 +Ri+2j−1,j))

Ri+2j−1,j+1 = f(Ri,j, Li,j+1) +Ri+2j−1,j

(4.20)

where the function f can be chosen to be exact version or HWF approximation
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Figure 4.10: Dense factor graph representation for a (8,4) polar code with variable
nodes v and check nodes c

accordingly as follows:

f(a, b) =

2artanh(tanh(
a

2
)tanh(

b

2
))), exact

sign(a)sign(b)min(|a|, |b|), HWF
(4.21)

From fig. 4.8, the right most LLRs corresponds to received channel LLRs. Hence

we initialise them as:

Li,n+1 = Lch(xi) = ln
p(xi = 0|yi)
p(xi = 1|yi)

, i ∈ {1, 2, . . . , N} (4.22)

And the left most LLRs correspond to information and frozen bit nodes. Hence we

fix them to

Ri,1 =

0, if i ∈ A

∞, if i ∈ AC
(4.23)

For decoding, the L-messages Li,j for j ∈ {1, 2, . . . , n}and the R-messages Ri,j

for i ∈ {2, 3, . . . , n} are iteratively updated till the maximum number of iterations are

reached or an early stopping criteria, if any, is met. Note that the R-messages R1,j are

always fixed. And the end of each iteration, the soft messages corresponding to û and
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(a) Dense matrix (b) Sparse matrix

Figure 4.11: Visualisation of parity check matrix for (1024,512) polar code

x̂ can be obtained respectively as:

L(ui) = Li,1

L(xi) = Li,n+1 +Ri,n+1

(4.24)

And after each iteration, hard decisions can be made using the standard binary quan-

tizer function h, defined as:

h(α) =

0, if α ≥ 0

1, otherwise
(4.25)

Using the hard estimates, an early stopping criteria can be designed as to stop further

iterations if ûGN = x̂ where GN is the generator matrix.

4.6.2 Sparse Graph based BP Decoder

In this section we look at the possibility of using conventional LDPC BP decoder for

decoding of polar codes. The LDPC BP decoder requires a parity check matrix or an

equivalent tanner graph to start the decoding process. Hence we first need to construct

a parity check matrix for the polar code based on the generator matrix GN . This can

be performed by using the columns of GN with indices in AC , the frozen bit set. Fig

4.10 shows the factor graph representation of dense parity check matrix and it can be
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Figure 4.12: Comparison of BP decoder with SC decoder for (1024,512) polar code

seen that this results in a very dense matrix with maximum check node degree as N . It

is important to note that the effectiveness of BP decoder depends on the convergence

achievable for the beliefs propagated. This is possible only when short cycles are not

present in the tanner graph.

Hence we need to prune the parity check matrix by removing the unnecessary vari-

able and check nodes. The pruning procedure is discussed in detail in [15], which

removes or replaces redundant nodes in the dense factor graph. This results in a sig-

nificant reduction in size of parity check matrix, about 80% to 85%, while maintaining

sparsity of the matrix.

After the pruning is performed we are left with a parity check matrix of reduced

dimensions and density. Fig 4.11 shows the transition of dense parity check matrix to

a sparse parity check matrix that results in elimination of short cycles.

Comparison of BP performance of Dense vs Sparse

Fig 4.13, shows a comparison of error correction performance of BP decoding on

a dense graph vs sparse graph for polar code. The non-convergence of BP decoder is

clearly visible which is due to the large number of short cycles present. The simulations
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Figure 4.13: Comparison of BP performance of Dense vs Sparse

are performed over BPSK modulated data and over AWGN channel.

Comparison of BP with SCD

Fig 4.12, shows a comparison of error correction performance of BP decoding on a

sparse graph vs Successive Cancellation Decoding for polar code. It is seen that with

sufficiently sparse graph and sufficient number of iterations, BP decoder can outperform

the SC decoder. Here 200 iterations were performed. The simulations are performed

over BPSK modulated data and over AWGN channel.

4.6.3 Concatenated BP Decoder

In this section we present a modified BP decoder with parity bits appended to the en-

coded vector, to improve the BER performance. First we look at the construction of the

code and then we look at the decoding process.

The principle is to introduce a overhead with additional parity bits so that BER

performance is improved. Let the number of parity bits be p. Hence the final length of

codeword vector will be of length N +p. After encoding of the message vector is done,
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Figure 4.14: Performance of SC vs BP vs BP decoder with parity bits appended

the parity bits are found based on the parity check matrix Hp which is of dimensions

(p,N + p).

For decoding the received vector, two LDPC min-sum decoders work alternatively

providing an updated estimate of the transmitted codeword. The first decoder corre-

sponds to the polar code and the second decoder corresponds to the parity bits. Let

the channel LLR values corresponding to received vector be L0. Every iteration con-

sists of two parts in which the first half corresponds to Decoder1 and the second half

corresponds to Decoder2. The extrinsic information obtained from the decoder is com-

bined with the channel LLR values and passed to the other decoder and continued till

the maximum number of iterations are reached or an early stopping criteria is met. Fig

4.15 shows the iterative decoder for concatenated BP decoding. Starting with received

channel LLRs at Decoder1, the decoder operate alternatively combining the extrinsic

information with received LLRs till the stopping criteria is met or maximum number

of iterations are reached. Fig 4.14 shows that using the concatenated BP decoder, an

improvement of about 0.1dB is achieved.
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Figure 4.15: Concatenated BP decoder for polar code

4.7 Systematic Polar Codes

As mentioned earlier, using systematic encoding provides a better BER performance.

Even though the systematic encoding of polar codes is not as straightforward as non-

systematic encoding, which has a nice butterfly structure, it still has time complexity

O(N log2N), as shown in [16].

Intuitively systematic codes are expected to be be more robust to errors because

the information bits are preserved as they are and directly extracted from the received

vector. And the results consistent with this. The decoding process is very similar to

that of non-systematic polar codes. One interesting observation made while decoding

polar codes is, estimating the received vector x̂ assuming non-systematic encoding and

then encoding the estimate to get the transmitted vector û doesn’t introduce any degra-

dation in error correction performance, which is expected due to amplification of errors

happening when the operation û = x̂GN is performed.
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(a) BER comparison (b) BLER comparison

Figure 4.16: BER/BLER performance comparison of (1024,512,8) polar code with list
size 4

Simulation results of Systematic Polar Codes

Maintaining all other parameters the same, Fig 4.16a shows that there is an improve-

ment of about 0.18dB in BER performance using systematic polar codes.
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CHAPTER 5

IMPLEMENTATION

In this chapter we discuss the approach used in implementing the encoder and decoder

algorithms and the throughput results achieved, both x86 and ARM architectures.

Fixed-point Implementation

In the results we present, we consider 8-bit fixed point representation for all the floating

point numbers. The received LLRs are quantized suitably and the g function is carried

out with saturation addition. It was observed tha the effect of quantization on the BER

performance is negligible.

The advantage of using 8-bit quantization will be made more evident when we look

at ARM based implementation, where NEON intrinsics can be used to manipulate data

in parallel.

The encoder implementation is straight forward with implementation done on the

butterfly structure. As for the decoder, we use the binary tree structure to perform in-

order tree traversal to decode the received vector.

Memory Layout for α and β

We first look at the SC decoder and extend the same to SCL decoder. Decoder is

implemented on the binary tree structure of the polar code. Starting at the root node, at

each node we perform one of the three operations:

• Use current LLR to calculate LLR for left child and and propagate left.

• Use current LLR and beta from left child to calculate LLR for right child and and
propagate right.

• Combine beta from left child and right child to calculate beta for parent node and
propagate up.



From these three steps it is clear that major part of the algorithm involves data

fetching and data update, it is important to minimise these operations and also store the

data in a cache friendly manner. At each node, we store αν and βν and corresponding

to that node with 2n−l elements each at stage l, starting at root node l = 0, where n is

the depth of the tree.

For storing the LLR values α, since the decoder is sequential, we operate on one

node at a time. Hence at any given point of time, we need to store 2n−l elements

corresponding to level l. Also, while operating at level l, we still need to store the LLR

values corresponding to previous l− 1 levels since we need to propagate back to parent

node. Hence the total number of α values that need to be stored is
∑n

l=0 2
n−l = 2n+1−1.

For storing the decisions β, we need double this memory because we need to store

decisions from both the children nodes till parent node is reached. Hence the total

number of β need to be stored is
∑n

l=0 2 ∗ 2n−l = 2n+2 − 2.

For the list decoder of size L, the memory requirement becomes L times since at

any point of time there will be L decoders active. Also, for the specific implementation

discussed here, there will be additional overhead to keep track of all the surviving paths.

For the list decoder, every time a path splitting operation occurs, the list size doubles

and then pruned to retain only the best L paths. This operation results in a new set of

α and β for all the L decoding trees. Naively updating the whole tree results in a very

large overhead. Hence at each node we perform the following operations:

1. Find the LLRs corresponding left child fromL paths using f function and traverse
to left child.

2. Perform path splitting and find the indices of surviving paths and corresponding
β and traverse to parent node.

3. Calculate the LLRs corresponding right child using the indices, β and the original
LLRs and propagate to right child.

4. Perform path splitting and find the indices of surviving paths and corresponding
β and traverse to parent node.

5. Combine β from both children and find the indices of final surviving paths and
traverse to parent node.

This results in local updating of data and using indices to access the old data rather

than creating a new copy, thus minimising the data manipulations.
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Table 5.1: Decoder Throughput in Mbps for Successive Cancellation decoder on x86

Decoder Mbps
SCD 31
SSCD 86

Table 5.2: Decoder Throughput in Mbps for different list size for list decoder on x86

Decoder L=1 L= 2 L= 4 L = 8 L = 16
SCL 16 9.4 5.1 2.3 1.1
SSCL 27 15.3 8.1 4.6 2.4

5.1 Throughput Results for x86 processors

In this section we present the throughput results for encoder and decoder on x86 ar-

chitecture supported by Intel processors. All the algorithms were implemented in C

language and were run on single core of Intel i7-8700 CPU with base clock frequency

of 3.2 GHz. The code was compiled using gcc version 7.3.0 and compiler time opti-

misation flag -O3 was turned on. The simulations were performed on BPSK modulated

data and over AWGN channel.

The encoder throughput achieved was 310Mbps. Table 5.1 and 5.2 provide the

decoder throughput results for the successive cancellation and list decoder respectively.

5.2 Throughput Results for ARM processors

In this section we present the throughput results for encoder and decoder on RISC ar-

chitecture supported by ARM processors. All the algorithms were implemented in C

language and were run on single core of ARM A53 processor of Raspberry Pi 3 running

linux OS. The decoder ran on single core of ARM A53 processor of Raspberry Pi 3 run-

ning linux OS with base clock frequency of 1.2 GHz. The code was compiled using gcc

version 6.3.0 and compiler time optimisation flag -O3 and -march=armv8-a,

-mtune=cortex-a53,-mfpu=neon, -ftree-vectorizewere turned on. The

simulations were performed on BPSK modulated data and over AWGN channel.

ARM architecture supports SIMD/NEON operations using which data can be loaded

and handled in parallel, upto 16 8-bit integers. From Table 5.3 and 5.4 it can be seen
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Table 5.3: Decoder Throughput in Mbps for Successive Cancellation decoder on ARM

Decoder without NEON with NEON
SCD 4.1 4.7
SSCD 9.9 13.9

Table 5.4: Decoder Throughput in Mbps for different list size for list decoder on ARM

Decoder L=1 L= 2 L= 4 L = 8 L = 16
SCL 1.7 1.1 0.61 0.28 0.14
SCL with NEON 2.1 1.43 0.78 0.39 0.21
SSCL 3.55 2.1 1.1 0.53 0.24
SSCL with NEON 4.2 2.7 1.41 0.73 0.36

that an improvement of 25% to 30% can be achieved making use of the NEON intrin-

sics.

The encoder throughput for SC decoder achieved was 35 Mbps when implemented

without using NEON intrinsics but improved to about 69 Mbps when NEON intrinsics

were used providing an improvement of about 98%. This was possible due to the high

level of pluralisation possible in encoding of polar codes. And the encoder through-

put for list decoder falls down to 23 Mbps when NEON was not used and 39 Mbps

when NEON was used. This was due to the additional CRC encoding introduced in the

encoding process when list decoding is performed.

Table 5.3 and 5.4 provide the decoder throughput results for the successive cancel-

lation and list decoder respectively, showing the improvement.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this report we primarily addressed two issues of decoding polar codes, namely la-

tency due to sequential nature and poor BER performance due to error propagation. In

this chapter we provide a summary of discussions made in the thesis and possibility for

future directions of the work.

6.1 Summary

In Chapter 2, we provided the necessary background on the phenomenon of channel

polarisation, the construction of polar codes and the capacity achieving property of

polar codes.

In Chapter 3, we discussed two typed of encoding for polar codes, non-systematic

and systematic. We discussed the butterfly structure for encoding polar codes that re-

duced the complexity of non-systematic encoding from O(N3) to O(N log2N). We

also looked at the binary tree structure of polar codes, which is naturally suitable based

on the recursive construction of polar codes.

In Chapter 4, we looked at various decoding techniques for polar codes. We started

with the successive cancellation decoder that decodes one at a time in a successive man-

ner. Then we looked at simplified successive cancellation decoder that identifies special

types of nodes in polar codes that can help in decoding multiple bits without traversing

further down the tree. This provided a significant improvement in the decoding speed

but we still needed to address the issue of poor error correction performance. Hence we

looked at the list decoding of polar codes, which though having a increase in computa-

tional complexity provided a significant improvement in error correction performance

proving a trade-off choice between latency and error-correction performance. We fur-

ther looked at incorporating the node simplifications from SSCD into the SCL decoder,

providing a significant improvement in decoding speed. Then we looked at the fur-

ther reducing the latency by limiting the maximum number of path splitting operations



per special node, providing a trade-off choice between a minor to no degradation in

error correction performance against the latency. This was called the Fast-SSCL. We

finally looked at iterative decoding of polar codes using Belief Propagation decoder,

from LDPC codes. We looked at forming a parity check matrix for polar codes based

on the encoding factor graph and pruning the factor graph to remove short cycles to

improve error correction capability and reduce the computational complexity. Further

we introduced a novel decoding technique using concatenated BP decoder, that adds

additional parity bits to the encoded vector, to obtain a improvement in error correc-

tion performance. We also looked at systematic polar codes, that have a better error

correction performance compared to non-systematic polar codes.

Finally in chapter 5, we presented the approach followed in implementing the de-

coders and the throughput results.

6.2 Future Work

The Fast-SSCL algorithm provides a much larger scope for pluralisation than a SSCL

algorithm, since all the remaining operations at a special node, after the path splitting

operations, can be executed in parallel. Hence this can be taken to our advantage with

the help of NEON intrinsics to provide a significant improvement in speed. Also, Fast-

SSCL algorithm can be tuned to limit the maximum number of path splitting operations

to achieve trade off between speed and error correction performance to perform an

adaptive decoding based on SNR.

And the idea of using concatenated codes to improve the performance of polar codes

promising. Since BP decoder is always preferred to the list decoder in terms of imple-

mentation complexity, this seems to be a promising idea to pursue.
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