
Establishing Communication Link using Control

systems

A Project Report

submitted by

ANIRUDH R

in partial fulfilment of requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

May 2018

THESIS CERTIFICATE

This is to certify that the thesis titled Establishing Communication Link using Con-

trol systems, submitted by Anirudh R, to the Indian Institute of Technology, Madras,

for the award of the degree of Bachelor of Technology, is a bona fide record of the

research work done by him under our supervision. The contents of this thesis, in full or

in parts, have not been submitted to any other Institute or University for the award of

any degree or diploma.

Dr. Harishankar Ramachandran
Research Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 19 June 2018

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my project guide, Dr. Harishankar

Ramachandran, for giving me the opportunity to work under him, on this project. His

vast knowledge, outlook towards research, patience and willingness to help, was instru-

mental in helping me complete my project.

I would also like to thank my friends, my parents and the faculty at IIT Madras for

being a great source of motivation and encouragement.

Anirudh R
EE14B009
Student
Department of Electrical Engineering
IIT-Madras, 600 036

i

ABSTRACT

KEYWORDS: Snell’s law , Brent’s root finding algorithm , Control system

The aim of this project is to establish a communication link between a plane and a
submarine (located underwater). There are many parameters related to both plane and
submarine, that influence the link such as velocity , depth and equation of ocean wave.
In order to provide a practical, real world solution, the system has to be modelled as a
control system.

The contributions of this thesis include :

Task 1 : Given position of plane, ocean equation and beam direction, find the inci-
dent point , reflected and transmitted beams.

Task 2 : Given error in position of link from submarine, find appropriate change in
angle of transmission of laser beam

The methods used and the results and graphs derived are shown in the forthcoming
sections.

ii

NOTATION

A Amplitude of ocean wave
λ Wavelength
T Time period
K Wave Number
ω Angular frequency of wave
µ/n Refractive index
r relative refractive index
v Velocity
θ Various angles like incidence angle etc.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

NOTATION iii

1 THEORY PREREQUISITES 2

1.1 Snell’s law . 2

1.2 Triangle law of vector addition . 2

1.3 Brent’s method . 2

1.4 PI controller . 3

2 TASK 1 5

2.1 Methodology . 5

2.2 Results . 6

3 TASK 2 12

3.1 Methodology . 12

3.1.1 Implementation using Brentq function 12

3.2 Results . 14

3.3 Implementation using self defined Brent’s function 16

3.3.1 Need for a self defined function 16

4 CONCLUSION and FUTURE WORK 19

A Appendix 21

A.1 Code for finding laser launch angle (By finding incident point) . . . 21

A.2 Code for finding relation between laser transmission angle and error in
submarine position . 22

A.3 Code for finding variation of various parameters with number of itera-
tions in Brent’s function . 24

CHAPTER 1

THEORY PREREQUISITES

During the course of solving the problem, a number of prerequisites(in theory) were
required, which are listed here.

1.1 Snell’s law

Snell’s law is a formula used to describe the relationship between the angles of inci-
dence and refraction, when referring to light or other waves passing through a boundary
between two different isotropic media, such as water, glass, or air.

Snell’s law states that the ratio of the sines of the angles of incidence and refrac-
tion is equivalent to the ratio of phase velocities in the two media, or equivalent to the
reciprocal of the ratio of the indices of refraction:

sinθ2/sinθ1 = v2/v1 = n1/n2

1.2 Triangle law of vector addition

If 2 vectors acting simultaneously on a body are represented both in magnitude and
direction by 2 sides of a triangle taken in an order then the resultant(both magnitude
and direction) of these vectors is given by 3rd side of that triangle taken in opposite
order.

1.3 Brent’s method

Brent’s method is a root-finding algorithm combining the bisection method, the secant
method and inverse quadratic interpolation. It has the reliability of bisection but it
can be as quick as some of the less-reliable methods. The algorithm tries to use the
potentially fast-converging secant method or inverse quadratic interpolation if possible,
but it falls back to the more robust bisection method if necessary.

Algorithm behind Brent’s method is as follows :

Figure 1.1: The above image is an illustration of the sequence Brent’s algorithm uses
to find the root of a function over many iterations. Ref : Wikipedia (Link
added in Bibiliography)

1.4 PI controller

A PI controller is a control loop feedback mechanism widely used in industrial control
systems and a variety of other applications requiring continuously modulated control. A
PI controller continuously calculates an error value e(t) as the difference between a de-
sired setpoint (SP) and a measured process variable (PV) and applies a correction based
on proportional and integral terms (denoted P, I respectively) which give the controller
its name.

In this model,

• P is proportional to the current value of the error e(t). For example, if the error
is large and positive, the control output will be proportionately large and posi-
tive, taking into account the gain factor K. Using proportional control alone in
a process with compensation such as temperature control, will result in an error
between the setpoint and the actual process value, because it requires an error
to generate the proportional response. If there is no error, there is no corrective
response

• Term I accounts for past values of the error and integrates them over time to
produce the I term. For example, if there is a residual error after the application
of proportional control, the integral term seeks to eliminate the residual error by
adding a control effect due to the historic cumulative value of the error. When
the error is eliminated, the integral term will cease to grow. This will result in the

3

proportional effect diminishing as the error decreases, but this is compensated for
by the growing integral effect.

The balance of these effects is achieved by "loop tuning" (discussed in detail later)
to produce the optimal control function. The tuning constants are shown below as
"K" and must be derived for each control application, as they depend on the response
characteristics of the complete loop external to the controller.

Defining u(t) as the controller output, the final form of the PID algorithm is :

U(t) = Kpe(t) +Ki

∫ T

0

e(t)dt+Kd
de

dt

where Kp is the proportional gain, Ki is the integral gain and Kd is is the derivative
gain. Equivalently, the transfer function in the Laplace domain of the PID controller is

L(s) = Kp +
Ki

s
+Kds

where s is the complex frequency.

Figure 1.2: Block diagram of a PID controller

4

CHAPTER 2

TASK 1

2.1 Methodology

Problem statement for this task : Laser is launched from a plane. Given location of
plane P = (Px , Pz), unit vector in direction of laser l̂ and the wave shape Asin(ωt- Kx),
find launch direction of laser on plane so that it reaches the submarine.

Assumptions :

1. Assume plane and submarine are stationary (no motion relative to each other).

2. This is a 1-D problem. Y Coordinate is assumed to be 0.

Let incident point be Q = (Qx , Qz) be the point where laser beam intersects the
horizontal i.e. if the sea were a plane surface.

Also, let the z component of unit vector in direction of laser be lz.

Using Triangle law of vectors, we can arrive at the following result :

Q = P − Pz
lz
l̂

Figure 2.1: Diagram of problem statement where l is the direction of laser and m is
direction of refracted wave

At a given instant of time t , we can Brent’s method to find the incident point on the
ocean wave. As mentioned earlier, Brent’s method requires a bracketing interval to find
the root of a function which will be provided by the amplitude of the wave A. Since the
incident point resides on the wave, Q ∈ [-A,A]. Now we devise a function such that its
root gives us the incident point. The function at a given instant of time t will be :

g(z) = z − A sin(k(Px +
z − Pz)lx

lz
− ωt)

Applying this will get us the incident point.

Q = P +
z − Pz
lz

l̂

We now have the incident beam and point of incidence. In order to find the reflected
and transmitted beams, we need to find the equation of normal at point of incidence.

N =
−df
dx

= −A cos(kx− ωt)

n̂ =
N

|N |

The directions of the transmitted vector (t̂) and reflected vector (r̂) are found by :

t̂ = r12l̂ + (r12 cos(θi)−
√

1− r12(1− cos θi))

r̂ = 1 + 2 cos θin̂

θi = incident angle = cos(−n̂.l̂)

2.2 Results

Running brent’s algorithm for 10 iterations at each instant of time using brentq() func-
tion, we get the following outputs :

6

Figure 2.2: Plot of X - Coordinate of incident v/s time

Figure 2.3: Plot of Z - Coordinate of incident v/s time

7

Figure 2.4: Variation of transmission angle with time

Figure 2.5: Final output obtained for Normal vector n̂ ,Refracted vector t̂ ,Reflected
vector

r̂

8

Figure 2.6: Variation of error in Brent function until it converges versus number of iter-
ations

Figure 2.7: Variation of transmission angle until it converges versus number of itera-
tions

9

Figure 2.8: Variation of transmission angle with Brent Error

Figure 2.9: Pictorial representation of how the incident wave reaches ocean wave and
then is split into reflected wave and refracted wave

10

Color Key for the above pic :

• Red : Incident laser wave

• Blue : Ocean Wave

• Black : Normal at point of incidence

• Indigo : Refracted wave

• Green : Reflected wave

11

CHAPTER 3

TASK 2

3.1 Methodology

Problem statement for this task : Finding relation between laser transmission angle and
error in submarine position.

Assumptions :
• Assume this problem is solved in 1 D only. This means Y coordinate can be

assumed to be 0

• Assume that one way link has already been extablished. We have to main it now

• Plane is moving while ocean and submarine are at rest

• Submarine communicates error in position to plane

• Depth of submarine is known

3.1.1 Implementation using Brentq function

We know that the plane is travelling at a velocity Vx. Once the plane receives error from
plane, it will have to re calibrate the transmission angle and will resend the laser beam
based on new information.

Let the position of plane be P = (Px + Vxt , Py).

Figure 3.1: Pictorial representation of this problem

According to snell’s law,

sinθ1/sinθ1 = n2/n1 = r21

cos θ1dθ1 = r21 cos θ1dθ1

dθ1 = −dθp − dθn

From the geometry of the above diagram, we can also derive certain other conclu-
sions :

dθs = −dθ2 − dθn

dSx = Vxdt+
Sydθs
sin2 θs

Substituting some of our earlier results into the equation for dSx, we get the follow-
ing relation :

dSx = Vxdt+
Sydθn(sin(θp + θn)− r21cosθ2)

sin2 θsr21 cos θ2
+(
Sy(sin(θn + θp)− r21cosθ2Py sin2 θp)

sin2 θsr21 cos θ2
)dθp

In the above equation, Vxdt (Distance travelled by the plane in that infinitesimal
amount of time) shows the influence of time on the transmission angle. t includes
ttravel = 12.5µs (one way trip) and also tcomputation for brent function. We can use the
second part of the equation to negate the effect of the wave and bring back the error to
zero.

From this we can formulate our control equation :

dθp =
error

Sy(sin(θn+θp)−r21cosθ2Py sin2 θp)

sin2 θsr21 cos θ2

This is taken as ultimate gain Ku for our control system.

We need to find θn. However, this can be done using the methodology described in
task 1, since we know position of plane and direction of incident wave. Therefore, we
can find incident point and transmitted angle also.

Thus, new error can be found and then, that will be relayed to plane.

Modelling the control system

We know the overall equation of this control system in terms of its ultimate gain.

However, inorder to solve it we need to model it as a PI controller [Only then will
the system be stable and steady state error will be less than given threshold].

To model it as a PI controller, we need to know Kp and Ki.

We should use Ziegler-Nichols method to tune the system and hence find the
relation between the above parameters and ultimate gain.

13

Therefore, once we have found these parameters, we can succesfully find the solu-
tion.

3.2 Results

Variations of Submarine error is plotted against time for different plane velocities.

14

Figure 3.2: Variation of Error in submarine position Sx when velocity of plane Vx is
250

Figure 3.3: Variation of Error in submarine position Sx when velocity of plane Vx is
2500

15

Figure 3.4: Variation of Error in submarine position Sx when velocity of plane Vx is
7500

3.3 Implementation using self defined Brent’s function

3.3.1 Need for a self defined function

A common thread across solving the tasks listed in the earlier sections, was finding
incident point of the laser beam on the ocean wave. This was done, in those sections,
by using brentq(), located in the scipy package.

Brentq() function works by running the function over a fixed number of iterations
(indicated by the argument maxiter) and returns the solution, once the error of function
value goes below a fixed threshold (indicated by the argument xtol,rtol. As a result,
we do not get to find the error of the function in other non-convergent cases using the
brentq() function (as it gives a RunttimeError). Therefore, in order to find the error in
those cases, it was essential to implement a self defined Brent function.

At a fixed point in time, We vary the number of iterations that brent takes each time
(from 1 to 120), thus ensuring that there will be some cases where the function will be
non-convergent and will return significant error. For each value of iteration, an exact
brent is used to find and return a solution

Based on the error in incident point, other factors such as error in transmission angle
and error in submarine position are calculated. All these factors are plotted as a function
of iteration and illustrated in the graphs below.

16

Figure 3.5: Variation of error in Brent function until it converges versus number of iter-
ations

Figure 3.6: Variation in incident point with number of iterations

17

Figure 3.7: Variation of error in submarine position with iterations

From the graph, we see that there is a convergence in the Y axis values after a
certain number of iterations. This means stability in the system is achieved after a given
number of iterations (i.e) error goes below a threshold value.

Minimum number of iterations required for stabiity = 8

18

CHAPTER 4

CONCLUSION and FUTURE WORK

The following tasks have been successfully completed :

• Given location of plane and a direction of incident wave, we have found the re-
quired transmission angle, incident point and the directions of refracted wave that
reaches submarine. Appropriate graphs have been plotted showing the variation
of these parameters with time.

• Given a moving plane , stationary ocean and error in our submarine position, we
were able to find required transmission angle to establish. We also found out
accuracy of incident point location and laser direction.

• We also found out the minimum number of iterations for brent function so that
the system was stable and subsequently, variations of various parameters with
number of iterations. (Check previous sections for specifics)

Results Conclusion :

Incident point : (−6000, 0)

Number of iterations required for stability : 8

Regarding the future scope of this project, the following tasks can be performed :

• Given location of plane and location of submarine, find ideal lauch transmission
angle for laser beam when ocean wave equation is not known (it, however, varies
with time)

• Determine the minimum bandwidth so that link can be established and main-
tained.

• What are the stability boundaries wrt bits of resolution and frequency of correc-
tion info?

REFERENCES

[1] http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.742.1321rep=rep1type=pdf

[2] https://math.berkeley.edu/ mgu/Seminar/Fall2011/7sept2011zerofinder.pdf

[3] http://www.ece.mcmaster.ca/ davidson/EE3CL4/slides/PID.pdf

[4] https://en.wikipedia.org/wiki/BrentAlgorithm

20

APPENDIX A

Appendix

A.1 Code for finding laser launch angle (By finding in-
cident point)

i m p o r t numpy as np , s c i p y as sp
i m p o r t s c i p y . o p t i m i z e as o p t i
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
from m a t p l o t l i b . axes i m p o r t Axes
from m p l _ t o o l k i t s . mplot3d i m p o r t Axes3D
from p y l a b i m p o r t ∗
i m p o r t math
i m p o r t d a t e t i m e

A = 0 . 1
lamda = 2 . 0
T = 2 . 0
n1 = 1.000271800
n2 = 1 . 3 3
k = 2∗np . p i / lamda
w = 2∗np . p i / T
r = n1 / n2
N = 100

P = np . a r r a y ([0 . , 1 0 0 0 0 .]) # l o c a t i o n o f p l a n e
S = np . a r r a y ([6 7 5 0 . , −2000.])# l o c a t i o n o f submar ine
d = np . a r r a y ([3 . , − 5 .]) # i n c i d e n t v e c t o r
d i = d / np . l i n a l g . norm (d)# i n c i d e n t u n i t v e c t o r
#Q = P − d∗P [2] / d [2] # i n c i d e n t p o i n t on x−y p l a n e
xArray = np . z e r o s (N)
zArray = np . z e r o s (N)
l i n k A r r a y = np . z e r o s (N)
i n c r = 0

d e f myfunc (z , t) :
r e t u r n z−A∗np . s i n (k ∗ (P [0] + (z−P [1]) ∗ d i [0] / d i [1]) − w∗ t)

f o r t i n np . l i n s p a c e (0 , T , 1 0 0) :
z = o p t i . b r e n t q (myfunc , −A, A, a r g s =(t ,) , m a x i t e r = 10)
x = P [0] + (z−P [1]) ∗ d i [0] / d i [1]
z = round (z , 4)
xArray [i n c r] = x
zArray [i n c r] = z

R = P + d i ∗ (z−P [1]) / d i [1] # p o i n t o f i n c i d e n c e on w a t e r
n = np . a r r a y ([−A∗k∗np . cos (k∗R[0] − w∗ t) , 1 .])
n = n / np . l i n a l g . norm (n) # normal a t i n c i d e n c e
cos = −np . d o t (n , d i)
d r = d i + 2∗ cos ∗n
d t = r ∗ d i + (r ∗ cos − np . s q r t (1−(1− cos ∗∗2)∗ r ∗∗2))∗ n
Sx = x + (S [1] − z)∗ d t [0] / d t [1]
r e f r = −np . d o t (n , d t)
r e f r a c t e d A n g l e = a r c c o s (r e f r)

l i nkA = a r c c o s (n [0]) ∗ 180 / math . p i
i n c i d e n t A n g l e = a r c c o s (cos)∗ 180 / math . p i

l i n k A r r a y [i n c r] = i n c i d e n t A n g l e # (1 8 0 . 0 − i n c i d e n t A n g l e − l i nkA)
p r i n t (i n c i d e n t A n g l e)
p r i n t (2∗ t 1 + 2∗ t 2)# r u n n i n g t ime
p r i n t (x , z)# p r i n t i n g i n c i d e n t p o i n t
p r i n t (1 8 0 . 0 − i n c i d e n t A n g l e − l i nkA)# p r i n t i n c i d e n t a n g l e
p r i n t (n , d t , d r)
i n c r = i n c r +1

p l t . t i t l e (" P l o t o f t r a n s m i s s i o n a n g l e v / s t ime ")
p l t . x l a b e l (" t ime (s) ")
p l t . y l a b e l (" Angle o f i n c i d e n c e (d e g r e e s) ")
p l t . p l o t (np . l i n s p a c e (0 , T , 100) , l i n k A r r a y)
p l t . show ()

A.2 Code for finding relation between laser transmis-
sion angle and error in submarine position

i m p o r t numpy as np
i m p o r t s c i p y as sp
i m p o r t s c i p y . o p t i m i z e as o p t i
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
from m a t p l o t l i b . l i n e s i m p o r t Line2D
i m p o r t m a t p l o t l i b . a n i m a t i o n as a n i m a t i o n
i m p o r t math

A = 0 . 1
lamda = 2 . 0
T = 2 . 0
n1 = 1.000271800
n2 = 1 . 3 3
k = 2∗np . p i / lamda
w = 2∗np . p i / T
r21 = n2 / n1
r12 = n1 / n2

22

t = 0 .
Vx = 2 5 0 .

P = np . a r r a y ([0 . , 1 0 0 0 0 .])
Sy = −100.

d = np . a r r a y ([3 . , 4 .]) # i n c i d e n t v e c t o r
d i = d / np . l i n a l g . norm (d)# i n i t i a l i n c i d e n t u n i t v e c t o r

#Moving t h e s i n e wave
Ki = 1 .
Kd = 1 .
errorSxSum = 0
d e l t a X o = 4000 .0
So = 0 .
N = 200 #Number o f i t e r a t i o n s
t o t a l T i m e = 10
t i m e P e r I t e r a t i o n = 1e−3
#N = i n t (t o t a l T i m e / t i m e P e r I t e r a t i o n)
e r r o r S x A r r a y = np . z e r o s (N)
R a r r a y = np . z e r o s (N)
i n c r = 0
i n t e g r a l = 0
d e r i v a t i v e = 0
p r i o r E r r o r S x = 0
t o t a l T i m e = 0 . 0 2
t i m e P e r I t e r a t i o n = t o t a l T i m e /N
t h e t a P a r r a y = np . z e r o s (N)
t h e t a N a r r a y = np . z e r o s (N)
d i A r r a y = np . empty ((0 , 2))
d t A r r a y = np . empty ((0 , 2))
nArray = np . empty ((0 , 2))

d e f myfunc3 (z , t) :
P = np . a r r a y ([Vx∗ t , 1 0 0 0 0 .])
p r i n t (P)
R = P + d i ∗ (z−P [1]) / d i [1]
r e t u r n z−A∗np . s i n (k∗R [0])

f o r t i n np . l i n s p a c e (t i m e P e r I t e r a t i o n , t o t a l T i m e , num = N) :

P = np . a r r a y ([Vx ∗ t , 1 0 0 0 0 .])
p r i n t (P)
z = o p t i . b r e n t q (myfunc3 , −A, A, a r g s =(t ,))
p r i n t (z)
R = P + d i ∗ (z−P [1]) / d i [1] # p o i n t o f i n c i d e n c e on w a t e r
R a r r a y [i n c r] = R[0]
n = np . a r r a y ([−A∗k∗np . cos (k∗R [0]) , 1 .])
n = n / np . l i n a l g . norm (n) # normal a t i n c i d e n c e

23

cos = −np . d o t (n , d i)
d r = d i + 2∗ cos ∗n
d t = r12 ∗ d i + (r12 ∗ cos − np . s q r t (1−(1− cos ∗∗2)∗ r12 ∗∗2))∗ n
d i A r r a y = np . append (d iAr ray , [d i] , a x i s =0)
d t A r r a y = np . append (d tAr ray , [d t] , a x i s =0)
nArray = np . append (nArray , [n] , a x i s =0)
t h e t a P = math . a t a n 2 (− d i [1] , d i [0])
t h e t a P a r r a y [i n c r] = np . r ad2deg (t h e t a P)

t h e t a S = math . a t a n 2 (− d t [1] , d t [0])
t h e t a N = math . a t a n 2 (−n [0] , n [1])
t h e t a R = (math . p i /2)− t he taN−t h e t a S
p r i n t (t h e t a R)
p r i n t (i n c r)
S l e v e l = R + d t ∗ (Sy−R [1]) / d t [1]

i f (i n c r == 0) :
So = S l e v e l [0]

e l s e :
e r r o r S x = S l e v e l [0] − So + d e l t a X o
e r r o r S x A r r a y [i n c r] = e r r o r S x
p r i n t (So)

Kp = (0 . 5) / (Sy∗math . s i n (t h e t a P + t h e t a N) /
(r21 ∗math . cos (t h e t a R) ∗ (math . s i n (t h e t a S))∗∗2)−P [1] /
(math . s i n (t h e t a P)) ∗ ∗ 2)
Ki = 1 . 2∗Kp / (4 ∗ t i m e P e r I t e r a t i o n)
i n t e g r a l = i n t e g r a l + e r r o r S x ∗ t i m e P e r I t e r a t i o n
d e r i v a t i v e = (e r r o r S x − p r i o r E r r o r S x) / t
d t h e t a P = Kp∗ e r r o r S x + Ki∗ i n t e g r a l + math . a t a n 2 (Sy , (Vx∗ t))
p r i o r E r r o r S x = e r r o r S x
t h e t a P = t h e t a P−d t h e t a P
d i [0] = math . cos (t h e t a P)
d i [1] = −math . s i n (t h e t a P)
p r i n t (e r r o r S x , R [0])

i n c r = i n c r + 1

p l t . t i t l e (" V e l o c i t y o f p l a n e = 7000 m/ s ")
p l t . x l a b e l (’ t ime (s) ’)
p l t . y l a b e l (’ E r r o r i n submar ine p o s i t i o n (m)) ’)
p l t . p l o t (np . l i n s p a c e (t i m e P e r I t e r a t i o n , t o t a l T i m e , num =N) , e r r o r S x A r r a y)
p l t . show ()

A.3 Code for finding variation of various parameters
with number of iterations in Brent’s function

i m p o r t numpy as np
i m p o r t s c i p y as sp
i m p o r t s c i p y . o p t i m i z e as o p t i

24

i m p o r t m a t p l o t l i b . p y p l o t a s p l t
from m a t p l o t l i b . l i n e s i m p o r t Line2D
i m p o r t m a t p l o t l i b . a n i m a t i o n as a n i m a t i o n
i m p o r t math
i m p o r t d a t e t i m e
i m p o r t t i m e i t
from p y l a b i m p o r t ∗

A = 0 . 1
lamda = 2 . 0
T = 2 . 0
n1 = 1.000271800
n2 = 1 . 3 3
k = 2∗np . p i / lamda
w = 2∗np . p i / T
r21 = n2 / n1
r12 = n1 / n2
t = 0 .
Vx = 250

P = np . a r r a y ([9 0 0 0 . , 1 0 0 0 0 .])
Sy = −100.
d = np . a r r a y ([3 . , 4 .]) # i n c i d e n t v e c t o r
d i = d / np . l i n a l g . norm (d)# i n i t i a l i n c i d e n t u n i t v e c t o r

s a a d e = math . p i / 2
So = 0 .
d e l t a X o = 4000 .0
N = 120
zArray = np . z e r o s (N)
b r e n t A r r a y = np . z e r o s (N)
subArray = np . z e r o s (N)
i n c r A r r a y = np . z e r o s (N)
d e f swap (t1 , t 2) :

r e t u r n t2 , t 1

d e f func (z) :
R = P + d i ∗ (z−P [1]) / d i [1]
r e t u r n z−A∗np . s i n (k∗R[0] − s a a d e)

d e f b r e n t (func , lower , upper , t o l , m a x i t e r) :

a = lower
b = uppe r
f a = func (lower)
fb = func (uppe r)
f s = 0

i f (abs (f a) < abs (b)) :
swap (a , b)
swap (fa , fb)

c = lower

25

f c = func (lower)
mf lag = True
s = 0 #Our Root t h a t w i l l be r e t u r n e d
d = 0 # Only used i f mf lag i s u n s e t (mf lag == f a l s e)

f o r i i n r a n g e (1 , m a x i t e r) :

i f abs (uppe r − l ower) < t o l :
p r i n t (" A f t e r " , i , " i t e r a t i o n s t h e r o o t i s : " , s)
r e t u r n s

i f f a != f c and fb != f c :
s = (a ∗ fb ∗ f c / ((f a − fb) ∗ (f a − f c)))
+ (b∗ f a ∗ f c / ((fb − f a) ∗ (fb − f c)))
+ (c ∗ f a ∗ fb / ((f c − f a) ∗ (f c − fb)))

e l s e :
s e c a n t method
s = b − fb ∗ (b − a) / (fb − f a) ;

i f (((s <(3∗ a+b) ∗ 0 . 2 5) o r (s >b)
o r (mf lag and (abs (s−b) >=(abs (b−c) ∗ 0 . 5)))
o r ((n o t mf lag) and (abs (s−b) >= (abs (c−d) ∗ 0 . 5)))
o r (mf lag and (abs (b−c) < t o l))
o r ((n o t mf lag) and (abs (c−d) < t o l)))) :

b i s e c t i o n method
s = (a+b) ∗ 0 . 5 ;
mf lag = True ;

e l s e :
mf lag = F a l s e ;

f s = func (s) # c a l c u l a t e f s
d = c # f i r s t t ime d i s b e i n g used
c = b # s e t c e q u a l t o uppe r bound
f c = fb # s e t f (c) = f (b)

i f (f a ∗ f s < 0) : # f a and f s have o p p o s i t e s i g n s

b = s
fb = f s # s e t f (b) = f (s)

e l s e :

a = s
f a = f s # s e t f (a) = f (s)

i f (abs (f a) < abs (fb)) :

swap (a , b) #swap a and b

26

swap (fa , fb) #make s u r e f (a) and f (b) a r e c o r r e c t a f t e r swap

#End of f o r

r e t u r n (s)

i n c r = 0
f o r i i n r a n g e (1 ,N+ 1) :

P = np . a r r a y ([9 0 0 0 . , 1 0 0 0 0 .])
p r i n t (i)
b e g i n = d a t e t i m e . d a t e t i m e . now ()
z = b r e n t (func , −A , A, t o l = 10e−8, m a x i t e r = i)
end = d a t e t i m e . d a t e t i m e . now ()
p r i n t (i , z , f unc (z))
R = P + d i ∗ (z−P [1]) / d i [1] # p o i n t o f i n c i d e n c e on w a t e r

n = np . a r r a y ([−A∗k∗np . cos (k∗R [0]) , 1 .])
n = n / np . l i n a l g . norm (n) # normal a t i n c i d e n c e
cos = −np . d o t (n , d i)
d r = d i + 2∗ cos ∗n
d t = r12 ∗ d i + (r12 ∗ cos − np . s q r t (1−(1− cos ∗∗2)∗ r12 ∗∗2))∗ n
l inkA = np . a r c c o s (n [0]) ∗ 180 / math . p i
i n c i d e n t A n g l e = a r c c o s (cos)∗ 180 / math . p i

S l e v e l = R + d t ∗ (Sy−R [1]) / d t [1]
e r r o r S x = S l e v e l [0] − So + d e l t a X o
p r i n t (i , f unc (z) , e r r o r S x / 1 0 0 0)

zArray [i n c r] = z
b r e n t A r r a y [i n c r] = func (z)
subArray [i n c r] = e r r o r S x /1000
i n c r A r r a y [i n c r] = i n c i d e n t A n g l e
i n c r = i n c r + 1

p l t . t i t l e (" V a r i a t i o n between t r a n s m i s s i o n a n g l e and b r e n t e r r o r ")
p l t . x l a b e l (’ B r e n t E r r o r (m) ’)
p l t . y l a b e l (’ T r a n s m i s s i o n a n g l e i n d e g r e e s ’)
p l t . p l o t (b r e n t A r r a y , i n c r A r r a y)
p l t . show ()
}

27

	ACKNOWLEDGEMENTS
	ABSTRACT
	NOTATION
	THEORY PREREQUISITES
	Snell's law
	Triangle law of vector addition
	Brent's method
	PI controller

	TASK 1
	Methodology
	Results

	TASK 2
	Methodology
	Implementation using Brentq function

	Results
	Implementation using self defined Brent's function
	Need for a self defined function

	CONCLUSION and FUTURE WORK
	Appendix
	Code for finding laser launch angle (By finding incident point)
	Code for finding relation between laser transmission angle and error in submarine position
	Code for finding variation of various parameters with number of iterations in Brent's function

