Performance of Repetition Codes in Latency Analysis in

Distributed Storage

A Project Report

submitted by

ANIRUDDH VENKATAKRISHNAN

in partial fulfilment of requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

June 2018

THESIS CERTIFICATE

This is to certify that the thesis titled Performance of Repetition Codes in Latency
Analysis in Distributed Storage, submitted by Aniruddh Venkatakrishnan, to the
Indian Institute of Technology, Madras, for the award of the degree of Bachelor of
Technology, is a bona fide record of the research work done by him under our supervi-
sion. The contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Prof. Pradeep Sarvepalli
Research Guide

Assistant Professor

Dept. of Electrical Engineering
[I'T-Madras, 600 036

Place: Chennai

Date: 18th June 2018

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. Pradeep
Sarvepalli for the continuous support of my B.Tech study and research, for his patience,
motivation, enthusiasm, and immense knowledge.

Besides my advisor, I would like to thank Prof. Parimal Parag for his encouragement,
insightful suggestions, and hard questions.

I also thank my fellow student in IISc, Ankit Dhiman, for the stimulating discussions

and immense help.

ABSTRACT

KEYWORDS: Latency ; MDS codes ; partitioned repetition codes ; Sojourn Time

Modern communication systems store data across multiple nodes to improve the relia-
bility and performance of the storage system. While the most widely used method of
redundancy is the Maximum Distance Separable(MDS) codes, this paper compares the
latency performance of the partitioned repetition codes in an attempt to discover if the

difference is marginal or significant.

Marginal difference in the mean sojourn time can be compensated by the difference
in decoding time to recover the original data. The paper also discusses the advantage
of partitioning and the variation of mean sojourn time with varying parameters, while

keeping the comparison fair through normalizing the mean download time.

The paper also presents an efficient method to arrange the data within a server system

to increase the performance of the storage system.

il

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT

NOTATION

1 INTRODUCTION

2 Background and Related Work

2.1 Queuing Theory e
2.1.1 SystemModel
212 PushModel
213 PullModel
2.2 Scheduling Policies
221 Greedy Scheme
2.2.2 Sharing Scheme
2.23 Round Robin Scheme
224 Optimal Scheme
2.3 Encoding Schemes
2.3.1 UsageinReliability
2.3.2 Other Performance Metrics of Coding
2.4 Latency Performance of MDS
2.5 MDS and Repetitioncodes

3 Simulation Model
3.1 QueueModel
3.2 Scheduling Scheme
33 ServerWorking
34 ServiceTime

3.5 Arrival Rate and Stability of Queue L.

il

ii

AN &N »n L L AR R R W W W W W

O o0 o0 N9

3.6 SimulationRuns.,

MDS and simple Repetition results verification

41 Theory e
42 Results.
4.3 Observations and Inference
Partitioning

5.1 Definition
5.2 Advantages
5.3 Limitations
54 SimulationResults
5.5 Observation and Inference

Efficient Data Permutation

6.1 Theory.
6.2 Illustration
6.3 Probability Calculations
6.4 Prime Cyclicshifts
6.4.1 Objective
642 Principle
6.4.3 Illustration
Results
7.1 PartitionGain
7.2 DataPermutation
Future Work
8.1 Optimal Permutation
8.2 Real World Analysis
8.3 Total Time Comparison

8.4 Optimal Partitioning

10
10
11
12

13
13
14
14
15
17

18
18
18
19
20
20
20
21

22
22
22

23
23
23
23
23

™
MDS

ST ZR%T >

NOTATION and ABBREVIATION

Indian Institute of Technology, Madras
Maximum Distance Separable code
Forward Error Correcting code

Mean inter-arrival rate of requests

Mean service rate of each server

Number of Servers

Number of pieces the file is split into

Number of pieces stored in the server after coding
Number of Layers in which the file is split
Number of replication of original file

CHAPTER 1

INTRODUCTION

Data servers hold terabytes of information and face innumerable downloads every hour.
The standard methods to safeguard against servers’ fault or a temporary drop in its ac-
cess speed are to include redundancies. These are often in the form of Forward Error
Correcting codes (FECs), the most prominent of which are the MDS codes.

A file which is to be stored in a storage system, is split into k pieces. These pieces are
then encoded into n pieces, inherently adding redundancies. These n pieces are then
stored across S servers.

The MDS codes have an advantage in the fact that any & pieces of information stored in
the servers can be used to obtain the entire file. This ensures that even if any k-7 pieces
are downloaded, any of the remaining n-k+/ will still be independent of the downloaded
data and hence will still have some useful information. However, the MDS codes im-
poses certain limitations in terms of the size of each of the pieces and the decoding time
to retrieve the original file from its encoded version. The decoding complexity scales in
the order of O(n?)

Repetition codes, on the other hand, involves just repeating the data and storing them
across the servers. This method is not as efficient as the MDS codes as when few pieces
of data are downloaded, some of the remaining pieces are entirely redundant in that
they have no extra information than that which is already downloaded. This fact ren-
ders certain servers to be entirely devoid of further use. However, the repetition code
has no limitations in terms of size of the pieces and the decoding complexity is simply
a matter of concatenation of the split pieces, which is of order O(n).

Such methods of encoding are usually used to improve the robustness of the storage
system and as an insurance against the failure of a few servers. However, the use of
redundancies in multiple servers can also be used to decrease the time to download data
which is very often used. This paper explores the methods of improving the latency
performance of repetition codes and to bridge the download time difference between

the repetition codes and the MDS codes.

The method proposed is to modify the structure of the servers by means of partition-
ing. Through partitioning, each server can store more data pieces, although of a smaller
size. This, however, increases the re-usability of servers and will increase the parallel
download capacity of the server system.

The paper also proposes an efficient method to arrange the data pieces within the server
system to increase the server’s usefulness beyond the partitioning gain. This is through
a cyclic shift of data across the servers for a prime number of servers.

The paper shows numerical results for the partitioning gain and also theoretical calcu-

lations for calculating the mean download time for a given permutation of the data.

CHAPTER 2

Background and Related Work

2.1 Queuing Theory

2.1.1 System Model

The simulations to be run for testing the latency of the storage system is through the
use of queuing systems. The queuing system, in this paper, consists of a collection of
servers and some queues. The objects in the queues are requests to download the files
stored in the servers.

The inter-arrival time between 2 requests is an exponentially distributed random vari-
able with mean rate \. Each server will provide a piece of the data after an exponentially
distributed random time with mean rate ;. As soon as enough information, as needed
to recover the entire file, is downloaded, the requests will leave the queue. The mean
sojourn time is defined as the time between the arrival and departure of a request from
the queuing system.

There are 2 models, the pull model and the push model. The basic idea in both the
models is that requests arrive for the file to be downloaded and they are added to the

queue.

2.1.2 Push Model

The push model assumes that there is a single queue and all the servers service the
request in this queue simultaneously. The push model makes the mathematical analysis

more tractable, although not actually implemented.

2.1.3 Pull Model

The pull model assumes that each of the servers have their own queues, and they serve

only the requests in their respective queues. The pull model is widely used in applica-

tions and is the model used in this paper in the queuing systems.

2.2 Scheduling Policies

Scheduling policy is the order in which each server serves the requests which are present
in the queue. The schemes used for scheduling is fundamental in the performance
of the queuing system. Each scheme has its advantages in different queuing models
and for different parameters to be optimized. Some of the methods are: round robin
scheme, greedy scheme, sharing scheme. All these schemes assume that there is a
central controller which knows the data that has been downloaded by the requests and

directs the servers to behave accordingly.

2.2.1 Greedy Scheme

In this scheme, each server serves the request at the head of the queue. As soon as one
server finishes serving all its data to the request, it proceeds to serve the next request.
As soon as the request receives K pieces, the remaining servers terminate their current
operations and begin to serve the next request. This scheme ensures that each request is

given the maximum priority when it is at the head of the queue.

2.2.2 Sharing Scheme

In this scheme, at max only K servers handle one request and not necessarily simulta-
neously. As soon as one server finishes serving all its data to the request, it proceeds
to serve the next request which does not have k servers serving it yet. In this scheme,

each request is given the minimum resource needed to obtain the entire data.

2.2.3 Round Robin Scheme

In this scheme, the servers process the requests one after the other collectively. When
a server becomes idle, it serves the next request in the queue which is not yet being

served by any of the other servers. This method serves all the requests equally and in a

parallel manner.

2.2.4 Optimal Scheme

All the above schemes are work conserving schemes, in that all servers are in use as long
as the queue is not empty. For a constant download time, the sharing scheme works
best as there is no redundant downloads. In case the download time is exponentially
distributed, as is most likely, the greedy scheme is delay optimal, i.e, has the least

sojourn time. (2)

2.3 Encoding Schemes

2.3.1 Usage in Reliability

Usage of FECs have been used to provide reliability of service. For data which are spar-
ingly accessed, these methods act as failsafe in the case of failure of a few servers. For a
given measure of reliability, the MDS scheme has the least storage size. Conversely, for
a given number of servers, the MDS scheme provides the maximum reliability, because
of their intrinsic property of having the maximum distance.

While MDS is a storage-optimal encoding scheme, other encoding schemes, like raptor
codes (9) and LDPC codes (7) have also been developed which are near optimal but

have lower encoding-decoding complexity.

2.3.2 Other Performance Metrics of Coding

While lot of work has been done on the reliability of encoding schemes, another factor
to be considered is the cost of repairing a faulty server (1). Studies from social network-
ing servers show hundreds of Terabytes of cross-traffic is created to repair a server node
failure. Here, the MDS scheme proves inefficient in repairing a faulty server and other
codes like Locally Recoverable and ReGenerating codes are used (8). (2) also examines

the effect of download bandwidth needed and the optimal scheduling scheme for it.

2.4 Latency Performance of MDS

For data which is very often used, or hot data, these encoding schemes act as tools to
improve latency, which is just as critical as reliability. A trade-off study in (3) shows the
variation of download time with storage space. Improvements in Latency performance
using simple codes and queue models is done in (4). A theoretical study on the latency
performance of the MDS codes is done in (5), which give a lower bound and upper

bound on the throughput.

2.5 MDS and Repetition codes

The coding scheme used to distribute the data pieces across the servers is vital in de-
termining the latency performance of the storage system. To compare the performance
of different coding systems, the model used for queuing and scheduling must be the
same. In (6), the push model is used with the greedy scheme. The analysis given in
their paper proves that the MDS codes outperform the repetition code in all cases, and
also provides theoretical bounds on the performance of the MDS codes. While plotting
the performance of the schemes for different coding rates, which is the ratio K/ N, it is
observed that the difference in performance between the two codes is marginal in cases
of very low code-rates (values near zero) and very high code-rates (values near unity),

where the redundancies are sparser.

This paper is motivated to improve the performance of the repetition code and attempts

to bridge the latency performance gap between MDS coding and repetition coding.

CHAPTER 3

Simulation Model

In this chapter, the exact details of the simulation model and the parameters used are
described and explained. While varying the parameters such as number of servers (5),
number of pieces the file is split into (K), file size, etc, the mean sojourn time for the
download will also vary. To ensure that the comparison between results of simulations

with different parameters is fair, the service time of the servers will have to be modified.

3.1 Queue Model

The paper assumes a pull model, where each server is attached to a separate queue.
When a new request arrives, it joins the end of each queue. As soon as it gets all the
relevant data from a server, it exits the queue of that server. As soon as the entire file
is obtained, in simply fragmented or in encoded format, it exits from all the queues and

leaves the queuing system.

3.2 Scheduling Scheme

As discussed before, and proved in (2), the greedy scheme is delay optimal in cases
where the service time of the servers are exponentially distributed. However, the proof
and simulation verification is done considering an MDS encoding, where each of the
pieces have information. In such a case, all the parallel downloads are useful except in
the case where k pieces are obtained and the other downloads are dropped. However,
in the case of repetition, it is possible that two servers are simultaneously downloading
the same piece. Even though the probability of such a case is low for a large number of
pieces, it is still a redundant use of server usage. However, there is an increased speed of
the download as two servers are downloading the same piece parallelly. Hence, in this

study, greedy scheme is used and all servers parallelly serve the head of their queues.

3.3 Server Working

Any server whose queue is empty goes to an idle state. When a new request joins its
queue, it starts its service. If a server has multiple pieces of data (possible in the case
the file is split into many pieces), the download happens from the first piece to the last
piece in order. In the case of repetition code, some of the pieces might be useless as they
have already been downloaded from other servers. In such cases, the redundant pieces
are skipped instantaneously and the next useful piece is downloaded. If a download
is interrupted, as can happen if the piece being downloaded is obtained from another
server or if the request has received the entire data and is exiting the queuing system,
the current service is terminated and the next service is started. The next service might

be to the same request or to the next request depending on the cause of interruption.

3.4 Service Time

For all the simulations, the file size is assumed to be very large and constant to ensure
that any piece size criterion and divisibility criterion are met. Different runs of the
simulations have varying S, K, N. To ensure fairness of comparison, the service rate of
each server is varied according to u = K/S. This can be explained by considering
T, the mean time to download a piece. As there are S servers working in parallel, the
overall time of the system decreases by a factor of S. To compensate for this Parallel
Gain, the mean time of download for each server is increased by S. As the file is split
into K pieces, the download time for each piece must decrease by a factor of K. Hence
the time to download a piece on any server is 7 = S/K. Since the rate of service is the
reciprocal of the mean time, we get = K/S. Considering this rate of each server and
the parallel gain of multiple servers (§), we get the mean time to download a file (K
pieces) by a request is
K

Tmean:T — =1
*S

3.5 Arrival Rate and Stability of Queue

For any queuing system, the stability is decided by the length of the queue. If the length
keeps increasing indefinitely, the queue is termed unstable. There are two ways to keep
a queue stable. The first is to limit the length of the queue to a MAX limit. This method
is physically used in real-time situation as the buffers in the servers have a maximum
capacity beyond which requests cannot be handled. The requests which arrive after the
buffer is full are dropped (not considered). The second method is to ensure that the
service rate is higher than the arrival rate. This would ensure that the queue length is
stable at a certain value and only very occasionally increase to a high value. In such

cases, the value of the length of the queue, on average, is

While the average length formula is applicable only when the arrival rate and service
rate are exponential, the stability criterion is always valid. Since the mean service time
for a request is unity (as explained in the previous section), for the queue to be stable
the arrival rate must be less than unity. Though it is not usually possible to control the
arrival rate, this study considers A to be less than unity (typically 0.3). There is no limit

on the length of queue.

3.6 Simulation Runs

During the simulation, the storage system is modeled as S arrays, which represent the
queues of each server, and requests arriving at one end and leaving from the other end
when they are serviced. Since the inter-arrival time and the service time are exponen-
tial, the random values of the time are generated from the MATLAB random number
generator. Every run consists of 5000 requests to average out the initial transient effects
of the queue. Each run is repeated 10 times with different sequences of random num-
bers. The waiting time is measured and averaged over all requests in all 10 runs and the

mean sojourn time is obtained.

CHAPTER 4

MDS and simple Repetition results verification

4.1 Theory

In this chapter, we verify and simulate the results in (6). The server system considered
is such that S = N, i.e each server has only 1 piece after encoding. The paper also

considers a push model with greedy scheme.

(a) MDS encoding (b) Repetition encoding

Figure 4.1: Push Model with 4 servers and K=2, N =4
figure reference (6)

In the figure 4.1, we consider a case of 4 servers, i.e S = 4. The file stored is split into
2 pieces, i.e k = 2 : A and B. In repetition case 4.1b, the pieces stored are A, A, B, B. In
MDS case 4.1a, the pieces stored are A, B, A+B, A+2B. The piece size is assumed large
enough to allow for MDS coding. Each server, in both cases, has data of the same size,
i.e half of the original file size and hence the mean service rate of each server in both

the cases is the same, ;1 = 1/2.

4.2 Results

- Mean waiting time for varying arrival rates

MD5S
Repetition

20r b

Mean Waiting Time {W}

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Request arrival rate (A)

Figure 4.2: Variation of mean sojourn time of MDS and repetition encoding with A

Mean waiting time for varying arrival rates

4 T T T T T

MDS _—
Repetition o
35+ — .

25 ¢ 1

Mean Waiting Time (W}

15¢ — 1

1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Dimension (k)

Figure 4.3: Variation of mean sojourn time of MDS and repetition encoding with N
keeping coding rate = 0.5

11

A simulation was run based on the example case in 4.1. The arrival rate A\ was varied
from 0.1 till 0.95. The resulting values of mean waiting time, which is the mean sojourn
time and which will be used interchangeably, are plotted in 4.2.

In a second simulation, A was maintained at a constant value of 0.3, while the value of
K was increased from 1 to 10. The value of IV, and thereby .S, was also correspondingly
changed to ensure that the code-rate is 0.5. The resulting values of mean waiting time
are plotted in 4.3.

The results obtained in the simulations closely match those in (6).

4.3 Observations and Inference

The MDS queue outperforms the repetition queue. This is because, in repetition queue,
as more pieces are downloaded the information in other servers become useless. As
the servers can no longer provide any useful information to the request, they no longer
serve the request. This decreases the number of servers serving a request in a parallel
manner, thus leading to a drop in the parallel gain. The MDS queue on the other hand
has no useless servers as each server holds distinct pieces of information. Hence the

parallel gain of the system holds always.

We aim to reduce this time difference in the following chapters. This is by increasing
the non-recurring data in each server through the use of partitions in the servers. The

proposed method maintains the parallel gain in the repetition encoding scheme.

12

CHAPTER 5

Partitioning

5.1 Definition

Partitioning is defined as the splitting of the storage capacity of each server into smaller
pieces. Instead of storing one large chunk of data in a server, several smaller pieces can
be stored. Each server is assumed to have the same capacity and are split into equal
chunks. Each chunk of data is accessed in order but not necessarily continuously. Some

pieces of data can be skipped and the next useful piece can be accessed.

Server | Layer 1 Server | Layer 1 Layer 2
1 A 1 Al A2
2 A 2 A2 A3
3 B 3 A3 A4
4 B 4 A4 Al
Table 5.1: Server pieces without Table 5.2: Server pieces with two
partitions partitions

Here, we give an example of the data stored in a storage system with and without parti-
tioning. In 5.1, the file is split into 2 pieces (A and B) each of size half the total file size.
Each piece is repeated twice and stored across 4 servers. Hence, the storage capacity of
each server is half the total file size. In 5.2,the file is split into 4 pieces (A1, A2, A3, and
A4) each of size one-fourth the total file size. Each piece is repeated twice and stored
across 4 servers in the permutation shown. Hence, the storage capacity of each server

is half the total file size in this case.

5.2 Advantages

As we saw in the comparison of MDS queue and repetition queue 4.2, the speed of
the repetition system decreases due to the occurrence of useless servers. This occurs
as when one server offers its data, the data in other servers become redundant. To
overcome this effect, multiple data can be stored in a server. In this way, even if one
chunk of data in a server is redundant, the other chunks can still provide useful data.
This method, thus, ensures that all the servers remain useful for most of the download
time. Even after significant data has been downloaded, most of the servers still remain

useful.

Let us consider the non-partitioning case in 5.1. If a request downloads piece A, servers
1 and 2, become useless for the request. Hence the parallel gain of the storage system

reduces to only 2 servers. Similar argument holds for the download of B.

In the partitioning case in 5.2, a download of 2 distinct pieces is equivalent to the down-
load of A in the non-partitioning case. Let us consider pieces Al and A2 are down-
loaded. This makes only server / useless. The other servers have atleast one useful
piece of data and still hold a part in the parallel gain. If we consider pieces Al and A3

are downloaded, all the servers are still useful.

Hence, we see that even though the number of servers, the data stored and the capacity
of server are equal in both cases, the presence of partitions increase the number of useful
servers after a few pieces are downloaded. This improves the latency performance of

the queuing system.

5.3 Limitations

While partitioning increases the number of useful servers for the repetition queue, a
server (or a file) cannot be partitioned indefinitely. Each piece of the file must have
a header to identify the position of the piece in the original file. Increasing number
of partitions increases the percentage overhead of headers. Increased partitions also

increase the load on the central controller as mentioned in 2.

14

5.4 Simulation Results

In the simulation to demonstrate the gain due to partitioning, .S is the number of servers,
K = px S is the number of split pieces, N is the number of pieces after encoding. Since
the encoding scheme is repetition, N = m *x K where m € N. The value of A is as-
sumed to be 0.3. The service rate 4 = K /S, as explained in 3, varies according to the
parameters.

An example is given in 5.3, where we have considered (S, K, N) = (5, 15,45). Hence,
we obtain p = 3 and m = 3. Here we see that each server stores 9 pieces of data, where
each piece is 1/15th of the original file. Hence, the storage size of each server is 9/15
which is three-fifth of the file size. The data pieces are labeled from 0 to 14. and are
arranged such that the first p layers contain the entire file data. The next p layers contain
a group cyclic shift of the data in the first p layers. Similarly, the the 3rd set of p layers

have a group cyclic shift of the data in the 2nd set of p layers.

Server | Lay. 1 Lay.2 Lay. 3| Lay.4 Lay.5 Lay. 6| Lay.7 Lay. 8 Lay. 9
1 0 5 10 4 9 14 3 8 13
2 1 6 11 0 5 10 4 9 14
3 2 7 12 1 6 11 0 5 10
4 3 8 13 2 7 12 1 6 11
5 4 9 14 3 8 13 2 7 12

Table 5.3: Group shifting

The simulations to validate the partition gain was run for 2 cases. In the first case,
4 servers are taken with a code rate of 0.5. The number of partitions(p) was linearly
increased. The variation of mean waiting time with the change in p was plotted 5.1. A
similar simulation was run with 5 servers and a code-rate of 0.6, the results of which
was also plotted 5.2. The graphs show a decrease in the mean waiting time.

In another run, the repetition scheme and MDS scheme were run together to check the
effects of partitioning. Here, 4 servers are taken with a code rate of 0.5. The results are
plotted in 5.3. We see that both schemes show improvement, but the repetition scheme

has a steeper decrease in waiting time.

15

o Repetition code with 4 servers and code-rate = 1/2

1.8 | | i
|
|I
o 17T | :
£ |
h |
216} | :
= I
T \
15+ | .
5 \
o .
=)\
1.4t _
\\\
13¢ c~— il
1-2 i i i i i i i
0 5 10 15 20 25 30 35 40

partitions(p}

Figure 5.1: Variation of mean sojourn time of repetition encoding with partitioning for
S=4, N/K =2

Partition Gain

1.5 T

1.45}F |

1351 [

sl \

1.25¢F

Mean Sojourn Time

1_2 1 1 1 1

Number of Partitions (p)

Figure 5.2: Variation of mean sojourn time of repetition encoding with partitioning for
S=5N/K =3

16

19 MDS and repetition with partitioning
Repetition
\ MDS
1_8 ' I|I T
IIII
1l Lir II|| 1
E
=] '||
E 1.6 ' I|I T
= 1
R=] \
D L1
i i A 1
c 1.5 _\
o \
= e
1.4 i
1.3t \ S e _— 4
—
-\""—‘—-—_______ -
1.2 : ! : : B —
0 2 & 6 B 10 12

partition{p}

Figure 5.3: Comparison of mean sojourn time of repetition and MDS encoding with
partitioning for S = 4, N/ K = 2

5.5 Observation and Inference

The simulation results show that partitioning the servers improves the latency perfor-

mance of the storage system. The mean sojourn time reduced by nearly 20% due to
partitioning. If we consider the (S, N/K) = (4, 2) case, the mean sojourn time of the

repetition scheme reduced from 1.85 to 1.3 sec. If we consider the MDS scheme, the

mean time reduced from 1.34 sec to 1.21 sec after partitioning. So we see that the
difference in the download time reduces as we increase partitioning.

However, there is no significant improvement after a certain value of p. This value can

be used to find the optimal p as increasing the partition has a penalty, as discussed in its
limitations.

We have seen the improvement due to partitioning. However, the permutation of data
used doesn’t completely utilize the 2D nature of the storage system. It is possible to

spread the data to a greater distance, within the same system. We now explain the

merits of efficient data arrangement and propose a scheme for the same.

17

CHAPTER 6

Efficient Data Permutation

6.1 Theory

The aim of partitioning is to increase the number of useful servers. We can directly
see that if each of the servers contain the entire file, there will be no useless servers.
However, the study assumes that each server can store only a fraction of the total file

and hence, the optimization must be done with this restriction.

In MDS scheme, all the pieces are distinct but in repetition scheme the pieces are re-
peated. Hence, beyond partitioning, the location of the pieces within the partitioned

system is also vital for reducing latency.

6.2 Illustration

Server | Layer 1 Layer 2 Server | Layer 1 Layer 2
1 Al A3 1 Al A2
2 A2 A4 2 A2 A3
3 A3 Al 3 A3 A4
4 A4 A2 4 A4 Al
Table 6.1: Second column is cycli- Table 6.2: Second column is cycli-
cally shifted twice cally shifted once

In this illustration, we see that both the cases have identical parameters, including the
partitions. However, they differ in the arrangement of the pieces. In the first case 6.1,
the second column is a double cyclic shift of the first column. In the second case 6.2,

the second column is a single cyclic shift of the first column.

In both the cases, we see that the download of a single piece doesn’t decrease the num-

ber of useful servers. Let us consider that A1l is downloaded from the first server in

both the cases. However, when the second piece is downloaded, the useful server count
depends on the piece which is downloaded. If we take A2 to be downloaded next, the
number of useful servers in 6.1 is still 4, but the number of useful servers in 6.2 is only
3. On the other hand, if we take A3 to be downloaded next, the number of useful servers

in 6.2 is still 4, but the number of useful servers in 6.1 is only 2.

6.3 Probability Calculations

It can be seen in the previous illustration that the position of the pieces can decide
the number of useful servers. We see that (A1, A2) gives 6.1 the advantage, while
(A1, A3) gives 6.2 the advantage. However, the probability of the sequence of download
which leads to one data storage permutation being better than the other must also be

considered.

If we consider the number of useful servers after ¢ pieces are downloaded, for a partic-

ular download sequence, to be n(i) we get

=

1

n(i)

~
I

6.1)

<.
Il
o

=

b
n(7)

v
I

6.2)

I\
o

7

where 7' is the average time of download and P is the probability of occurrence of that

symbol sequence. Hence the mean sojourn time is given by

T = Z T. % P, (6.3)

where C is the set of all possible download sequences, 7., P. are the average time of

download and probability for download sequence c.

In order to minimize the average download time, the values of (i) must be increased.
The logic of permuting the data must be optimal and must be applicable to a wide

varieties of parameters (.S, K, V).

19

6.4 Prime Cyclic shifts

6.4.1 Objective

The prime cyclic shifts is a proposed method to ensure that the data pieces are spread
apart sufficiently to ensure that there is very little redundancy in a server and across
servers in the same layer. This improves the performance of the queuing system in that
most of the servers remain useful for most of the time needed to download the file. It is
also a scalable method to include many values for number of servers (5), and code rate

(m = N/K).

6.4.2 Principle

This method assumes that the .S is a prime number, and the file is split into K pieces
where K is an integral multiple of S, i.e K = p* .S where p € N. First, the original file
is filed in the servers, first moving across the servers and then proceeding to the next
layer of the servers. Then the redundant data, which are the duplicates of the original

file are filled in the later layers.

The redundant data are also stored across the servers, first, and then across the layers
of the servers. However, these layers are a cyclic shift of the original data arrangement.
Within a repetition set (m), which is the set of server layers containing the entire data
in a permuted logic, the first layer is cyclically shifted by m — 1 positions. The second
layer is cyclically shifted by 2 % (m — 1) positions and so on till the k" layer is shifted

by k * (m — 1) positions.

This logic works on the basis that the shift will never be a multiple of S as S is a prime
number. Since the shifts are not a multiple of S, the same piece of data will not occur
in the same server. This logic also ensures that 2 data pieces in the same server will be

spread to different servers in different repetition sets.

Since the logic has a symmetric nature, most download sequences have the same 7.(%).
This ensures that the mean time is reduced for any order of downloads and not only for

a target few possibilities.

20

6.4.3 Illustration

Server | Lay. 1 Lay.2 Lay.3 | Lay.4 Lay.5 Lay. 6| Lay.7 Lay. 8 Lay. 9
1 0 5 10 4 8 12 3 6 14
2 1 6 11 0 9 13 4 7 10
3 2 7 12 1 5 14 0 8 11
4 3 8 13 2 6 10 1 9 12
5 4 9 14 3 7 11 2 5 13

Table 6.3: Column shifting

In the illustration, we consider (S, K, N) = (5, 15,45). So we get m = 3 and p = 3.
The file is split into 15 parts labeled from O to 14. We see that the first repetition set,

which is the data in layers 1, 2 and 3, contains the entire file in the same order.

In the second repetition set (Layers 4 to 6), the fourth layer is a cyclic shift of the first
layer by one position. The fifth layer is a cyclic shift of the second layer by 2 positions.

Similarly with the sixth layer which is shifted by 3 positions.

In the third repetition set (Layers 7 to 9), the seventh layer is a cyclic shift of the first
layer by 2 positions. The eighth layer is a cyclic shift of the second layer by 4 positions.

Similarly with the sixth layer which is shifted by six positions.

Consider an example to check the performance of this permutation logic. If we assume
that all the pieces in the first repetition set of the first 4 servers are downloaded by a
request, we see that only pieces 4,9,and 14 are needed to complete the file download.
From the illustration table we see that all the servers have atleast one of the piece needed
making all the servers useful. The design of the servers ensures that the useless pieces
are skipped and only the useful pieces are offered by the server. In this case, server 1
offers the piece 4 from the fourth layer, server 2 offers the piece 9, server 3 offers the

piece 14, server 4 offers the piece 9, server 5 offers the piece 4.

21

CHAPTER 7

Results

7.1 Partition Gain

The comparison between encoding schemes in (6) has shown that the MDS encoding
performs better than the repetition coding. However, the usage of partitions in the
structure of the servers has reduced, and nearly bridged, the time difference between
the two encoding schemes as can be seen from 5.3. Increasing the partitions improves
the performance of the queuing system significantly without incurring a large overhead

in terms of header size.

7.2 Data Permutation

The prime cyclic shift method of data arrangement in the servers is shown to be efficient
in spreading the data pieces to maximize the cardinality of the set of useful servers. The
symmetric nature of the arrangement ensures that most data download sequences will
have the same mean download time thereby reducing the mean time to download a file

by a request as can be seen from equation 6.1.

CHAPTER 8

Future Work

8.1 Optimal Permutation

While the prime cyclic shift method works efficiently, it need not be optimal. The
number of servers are also limited to prime numbers. Alternate permutation logics can

be found to work with any number of servers.

8.2 Real World Analysis

While the analysis and the simulations are done to examine the performance of the
schemes, the results do not show the actual values which are seen in the real world.
This is because the values used for the arrival and service time are normalized. By
using actual values of the distribution of the random time, an actual comparison can be

carried out.

8.3 Total Time Comparison

The simulations illustrates the download time difference between the encoding schemes.
To compare the total time, the decoding time must be added to the real world download

time.

8.4 Optimal Partitioning

As discussed earlier, it is not advantageous to keep partitioning beyond a certain point.
The parallel gain increases only marginally while the data overhead keeps increasing.
Finding the optimal level of partitioning is needed for best performance in terms of

latency and data overhead.

REFERENCES

[1] Alexandros G. Dimakis, Y. W. C. S., Kannan Ramchandran (). A survey on
network codes for distributed storage.

[2] Chen, S. and Y. Sun (2014). When queuing meets coding : Optimal-latency data
retrieving scheme in storage clouds.

[3] Gauri Joshi, E. S., Yanpei Liu (). On the delay-storage trade-off in content down-
load from coded distributed storage systems.

[4] Longbo Huang, H. Z. K. R., Sameer Pawar (). Codes can reduce queueing delay
in data centers.

[5] Nihar B. Shah, K. R., Kangwook Lee (). The mds queue: Analyzing the latency
performance of erasure codes.

[6] Parag, P. and A. Bura (). Latency analysis for distributed storage.
[7] Richardson, T. and R. Urbanke (2008). Modern coding theory.

[8] S. B. Balaji, M. V. V. R. B. S., M. Nikhil Krishnan and P. V. Kumar (). Erasure
coding for distributed storage: An overview.

[9] Shokrollahi, A. (2006). Raptor codes.

24

	ACKNOWLEDGEMENTS
	ABSTRACT
	NOTATION
	INTRODUCTION
	Background and Related Work
	Queuing Theory
	System Model
	Push Model
	Pull Model

	Scheduling Policies
	Greedy Scheme
	Sharing Scheme
	Round Robin Scheme
	Optimal Scheme

	Encoding Schemes
	Usage in Reliability
	Other Performance Metrics of Coding

	Latency Performance of MDS
	MDS and Repetition codes

	Simulation Model
	Queue Model
	Scheduling Scheme
	Server Working
	Service Time
	Arrival Rate and Stability of Queue
	Simulation Runs

	MDS and simple Repetition results verification
	Theory
	Results
	Observations and Inference

	Partitioning
	Definition
	Advantages
	Limitations
	Simulation Results
	Observation and Inference

	Efficient Data Permutation
	Theory
	Illustration
	Probability Calculations
	Prime Cyclic shifts
	Objective
	Principle
	Illustration

	Results
	Partition Gain
	Data Permutation

	Future Work
	Optimal Permutation
	Real World Analysis
	Total Time Comparison
	Optimal Partitioning

