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ABSTRACT

KEYWORDS: IERMON ; Densification of ERM; MetroNet; IEEE 802.15.4;

Routing Protocols, Sensor data, central aggregator; Preset thresh-

old.

The existing IERMON (Indian Environmental Radiation Monitoring Network) system

has many ERMs (Environmental Radiation Monitors), deployed countrywide. Each

ERM is having radiation sensors and ability to communicate the measured dose level to

IERMON central station. ERM is operated by battery with solar power recharge backup

and has GSM based data communication. GSM communication consumes large amount

of power. This restricts the size beyond which the battery and solar panel size can be

reduced further to minimize the ERM size and cost.

For densification of ERM in vulnerable locations or in metropolitan cities (under

IERMON MetroNet program), it will be very useful if miniaturized-low power and

low cost modules can be employed using wireless communication. The MetroNet with

wireless communication can then be linked to one of the ERM in the IERMON hav-

ing GSM communication to act as RHS (Regional-Hub-Station). This will reduce the

installation, maintenance and operational cost.

The proposed system for MetroNet employs IEEE 802.15.4 standard as the base

communication protocol. Three different routing protocols and their pros and cons

have been studied in this work. Among the three tested algorithms, one of the rout-

ing algorithm is developed in-house. Before deploying and testing the protocols, range

and delay aspects of the components with the space of deployment were assessed. The

implemented protocols have been enabled to transmit the sensor data to a central aggre-

gator in the MetroNet called as coordinator, only if a preset threshold is crossed. Apart

from transmitting sensor data at regular intervals on crossing threshold, the routing al-

gorithm which has been developed as part of this work also detects the path taken by

the data to reach the data collector and ensures that the node with low battery levels will

not be overused.
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CHAPTER 1

INTRODUCTION

Radiation is not harmful if under limit. The natural radiation has always been a part of

human life and is of either terrestrial origin or cosmic origin. The terrestrial radiation

is due to the presence of naturally occurring radioactive substances in earth’s crust.

Cosmic radiation comes through the earth’s atmosphere, from the sun and galaxies.

IERMON was started with an agenda of monitoring environmental radiation through-

out the country, for an early detection and activation of nuclear emergency measures. It

also aims at eliminating the false propaganda of alarmingly increasing radiation levels

due to the establishment of nuclear reactors. IERMON system has many ERMs, de-

ployed countrywide. Each ERM is having radiation sensors and ability to communicate

the measured dose level to IERMON central station.

Generally, Wireless Sensor Networks(WSNs) are used to monitor environmental

conditions. A WSN is a system that consists of thousands of very small stations called

sensor nodes. The nodes are meant to sense, compute and communicate, relying on a

battery to stay active. And for these battery powered nodes to operate unattended for

long time, they should consume low power which implies short range.

The existing IERMON has GSM based data communication and hence consumes

large amount of power. Even though it uses a solar panel for recharging its battery, large

power consumption restricts the reduction of size of the solar panel employed[1].

Hence, there is a rising need for a miniaturized, low power short range communica-

tion protocol based WSN setup as a part of MetroNet, which will act as an extension of

the IERMON, reporting the sensor data to the RHS.

Sensor data in IERMON is the radiation dose level which is in text format, hence a

low data rate communication protocol will be sufficient. Zeroing all the requirements,

a communication protocol with less cost, low power consumption, short range, small

size and low data rate has to be chosen for building MetroNet.



Figure 1.1: Comparison of Communication Protocols[2]

A Comparison of the existing communication standards is shown in figure 1.1,

where IEEE 802.15.4 and Zigbee fulfills all the requirements of the MetroNet system.

1.1 IEEE 802.15.4 Standard

IEEE 802.15.4 is a standard which specifies the physical layer and media access con-

trol for low-rate wireless personal area networks (LR-WPANs). In contrast to other

approaches which offer more bandwidth and require more power, emphasis is on very

low cost communication of nearby devices with little to no underlying infrastructure

and low power consumption[2],[3],[4].

Its basic framework allows a 10-meter communication range with a transfer rate

of 250 kbps. The main identifying feature of IEEE 802.15.4 among WPANs is the

extremely low manufacturing and operational costs and technological simplicity.

1.1.1 PHY Layer

The PHY layer is the closest layer to hardware and directly controls and communicates

with the radio transceiver. It not only defines the minimum hardware level requirements

but also specifies the PHY protocol functions and interactions with the MAC layer.

The PHY layer is responsible for activating and deactivating the radio transceiver, and
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transmitting and receiving data. It selects the channel frequency, the exact frequency

at which the transceiver will operate. The frequency channels are defined through a

combination of channel numbers and channel pages as shown in the Table 1.1.

Table 1.1: Channel Assignment in IEEE 802.15.4 standard

Channel Page Channel Number Description

0
0 868 MHz band, Europe, BPSK

1-10 915 MHz band, America, BPSK
11-26 2.4 GHz band, Worldwide, O-QPSK

1
0 868 MHz band, ASK

1-10 915 MHz band, ASK
11-26 Reserved

2
0 868 MHz band, O-QPSK

1-10 915 MHz band, O-QPSK
11-26 Reserved

3-31 Reserved Reserved

2.4 GHz PHY Channel assignment can be seen in Figure 1.2. Each channel is 2

MHz wide and their center frequencies are spaced 5 MHz apart. Hence, the center

frequencies are calculated from the following equation:

CenterFrequency(MHz) = 2405 + 5× (ChannelNumber − 11) (1.1)

Figure 1.2: 2.4 GHz Channels[5]

The PHY layer also performs Energy Detection(ED). ED is the task of estimating

the signal energy within the frequency band of interest. This estimate is used to un-

derstand whether or not a channel is clear and can be used for transmission. Carrier

Sense(CS) is a verification of availability of the frequency channel. In contrast to ED,

in CS the signal is demodulated to know whether the occupying signal is compliant

to the IEEE 802.15.4 PHY. PHY also performs Clear Channel Assessment (CCA) on

3



request from MAC layer, to ensure that the channel is not in use by any other device. In

CCA, the results of ED or CS can be used to decide whether a frequency channel should

be considered available or busy. The PHY layer generates a link quality indicator (LQI)

as well, which is an indication of the quality of the data packets received by the receiver.

The received signal strength (RSS) can be used as a measure of the signal quality.

1.1.2 MAC Layer

The MAC provides the interface between the PHY and the next higher layer above the

MAC. The MAC layer generates beacons, if the device is a coordinator. And synchro-

nizes the device to the beacons in a beacon enabled network. It employs the CSMA-CA

for channel access and manages GTS channel access as well. MAC layer provides PAN

association and disassociation services. A much detailed explanation of IEEE 802.15.4

and MAC layer functions is in the book [3].

1.1.3 Top Layers

There are several protocols which use 802.15.4 as its MAC layer. Some of them are

illustrated here:

• Zigbee: Zigbee standard defines a communication layer at level 3 and uppers in the

OSI model. Its main purpose is to create a network topology to let devices com-

municate among them.

ZigBee offers following services:

- Encryption services : application and network keys implement extra AES en-

cryption.

- Association and authentication : only valid nodes can join the network.

- Routing protocol : AODV, a reactive ad hoc protocol is implemented to perform

the data routing and forwarding process to any node in the network.

• Digimesh: is the Digi’s own mesh protocol where all the nodes can sleep and route

their brother’s packets using a variant of AODV[6].

DigiMesh contains the following features:
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- Self-healing : Any node may enter or leave the network at any time without

causing the network as a whole to fail.

- Peer to peer architecture : Rather than maintaining a network map, routes will

be discovered and created only when needed.

- Selective acknowledgments : Only the destination node will reply to route re-

quests.

- Sleep Modes : Low power sleep modes with synchronized wake are supported

with variable sleep and wake times.

1.2 AODV Routing Protocol

AODV is a pure on-demand routing protocol which bases route discovery on a route

request and route reply query cycle and its metric is based on the number of hops from

the source to the destination. AODV routing is explained in detail in [7].

In general terms, when a source node aims to send data to a destination node, the

source broadcasts a route-request packet in order to discover a route to the destination.

The intermediate nodes will forward this received route-request by broadcasting, and

eventually, any node which has a route to the destination or the destination itself will

reply with a route-reply message to the source through unicast.

Figure 1.3: AODV routing protocol[8]

After the source receives the route-reply, it sends data to the destination. Routes

are maintained and if any error occurs during the routes’ lifetime, a route-error mes-

sage is propagated in order to avoid the use of the broken link and out-of-date routes.
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Summarizing the messages used during route discovery and maintenance processes:

route request (RREQ) to discover network routes, route reply (RREP) to answer route

requests, and route error (RRER) to notify link failures[9].

In the figure 1.3, node A has to send data to node J. It broadcasts the RREQ, the

intermediate nodes which receive the RREQ will rebroadcast the RREQ if they do not

have the route to destination. The same is repeated till the destination node J receives

the RREQ and sends back RREP to the source node A through the path taken by RREQ.

After having received the RREP, the node A sends data to node J through the discovered

path.

1.3 Objective of the Project

The existing IERMON uses GSM for reporting the environmental gamma radiation

level through SMS. Use of GSM adds up installation cost and maintenance cost as well,

for paying SMS bills. Also, GSM being power hungry consumes about 2A current

while transmitting data which increases the power consumption forcing huge solar panel

placement which further increases the size. This project aims at increasing the density

of IERMON network for better monitoring, using an alternate communication scheme

with reduced cost, power consumption and size compared to the one existing. Also

sensor data is to be communicated, at regular intervals only if a preset threshold is

crossed.

1.4 Organization of Thesis

Chapter 1 gives a brief introduction about the project objectives and the related back-

ground required to proceed. It discusses regarding IEEE standard 802.15.4 layers and

AODV routing protocol. In Chapter 2, hardware choices and the built-in routing proto-

col implementations are explained.

Chapter 3, describes the implementation of the developed routing protocol. The

details of the tests conducted and results obtained are presented in Chapter 4. In Chapter

5, conclusion and the future scope of the project are discussed.
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CHAPTER 2

EXISTING PROTOCOLS AND THEIR

IMPLEMENTATION

2.1 Design Decisions

General network topologies supported in WSN are shown in figure 2.1.

- Star Topology : nodes cannot communicate directly with other nodes; all communi-

cation must be routed through the central node called the master. Each node is a

slave of the central node.

- Tree Topology : nodes communicate to the central node through a fixed route. Any

failure in this route, breaks the communication link between the node and central

node.

- Mesh Topology: allows data to "hop" from node to node, making the network self-

healing. Each node is able to communicate with the other node, as data is routed

from node to node until it reaches the desired location.

Star 

Tree Mesh 

End Point 

Coordinator 

Router 

Figure 2.1: Network Topologies

Star and Tree topologies provide only one path for transmission of data to the central

node, which is the data aggregator. If that particular link fails due to some reason, the



communication between the nodes die and hence is not reliable. In contrast to this,

mesh networking is a powerful way to route data. Range is extended by allowing data

to hop from node to node and reliability is increased by self healing. The ability to

create alternate paths when one node fails or a connection is lost, makes mesh topology

more reliable and robust.

The WSN using LR-WPAN devices needs such a robust routing protocol as these

devices have limited communication range. To extend the range, mesh network is the

most suitable. Hence while choosing IEEE 802.15.4 based modules for monitoring

applications, opting the mesh network will be apt.

Among all the products available in market which support mesh routing, XBee mod-

ules were found to be more convenient to use because of its ease of practical implemen-

tation, small size, low cost and low power consumption.

ZigBee is one of the popular mesh networking protocol, which is specifically de-

signed for low-data rate, low-power applications and uses AODV routing protocol. Digi

International offers several products based on IEEE 802.15.4, XBee ZB S2 modules are

one of them which provides out-of-box zigbee implementation with minimum configu-

ration and application layer programming.

Figure 2.2: XBee ZB S2 module Figure 2.3: XBee S1 module

Digimesh is Digi’s proprietary alternate mesh protocol. Digimesh also uses AODV

for routing. XBee S1 modules with basic IEEE 802.15.4 layers along with Digimesh

firmware and application layer programming have been used for Digimesh implemen-

tation.

Before describing implementation of Zigbee and Digimesh using the XBee mod-

ules, general operation of XBee RF modules should be known.

The following are the main components of the XBee Module:
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- MC9S08GT60 microcontroller

- MC13193 RF chip

- RF switch that switches the antenna between Transmit and Receive

Though, Xbee modules have in-built microcontroller, programming it is not allowed

as it might alter the basic functioning of the zigbee stack reciding in it. Hence, in order

to have additional features, use of an external microcontroller is necessary. For this pur-

pose Arduino Uno board with ATmega328 is used. XBee Shield is used as an interface

between arduino board and XBee as shown in figure 2.4.

XBee 

XBee Shield 

Arduino Uno 

Figure 2.4: XBee and Arduino Uno interface using an XBee Shield

Like any other WSN, each sensor node has RF module (XBee here), external mi-

crocontroller unit along with peripherals (Arduino Uno here), XBee Shield for their

interface, Sensor unit (temperature senor or potentiometer) and a rechargeable battery

for power supply. The basic block diagram of the sensor node in prototype MetroNet is

as shown in figure 2.5.

Another reason for choosing an external microcontroller is the UART usage of XBee

modules. Data sent to XBee through UART will get transmitted, and the data received

by XBee can be read by the external microcontroller easily through the UART.

Also, the XBee modules support both transparent and API (Application Program-

ming Interface) serial interfaces.

- Transparent operation : When a module operates in transparent mode, it acts as a

9



Power 
Unit Comm. 

module memory 

mC A
D
C 

Radio 
Sensor 

OR 

Emulated 
sensor 

Temperature 
sensor 

Figure 2.5: Basic Block Diagram of a Wireless Sensor Node

serial line replacement. All the UART data received through the DIN pin of XBee

is queued up for RF transmission. When a module receives RF data, it sends the

data out through its DOUT pin.

- API operation : API operation is an alternative to transparent operation. The frame-

based API extends the level to which a host application can interact with the net-

working capabilities of the module. When you operate the device in API mode,

all data entering and leaving the UART is in the form of frames, that define op-

erations or events within the module. API frame format is as shown in figure

2.6

0x7E MSB  LSB API-Specific Structure Checksum 

API Identifier Identifier Specific data 

Start  
Delimiter 
(Byte1) 

Length 
(Bytes 2-3) 

Frame Data 
(Bytes 4-n) 

Checksum Byte 
(Byte n) 

Figure 2.6: API frame format

All the XBee modules must be set exactly to the same following configurations : 8

bits of data, no parity bit, 1 stop bit, at 9600 baud (8N1 @ 9600 baud).
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2.2 Zigbee

Zigbee is implemented using XBee ZB S2 modules. Some of the XBee ZB S2 speci-

fications are mentioned in Table 2.1.The basic configurations of these modules are set

using X-CTU software.

Table 2.1: XBee ZB S2 Specifications

Parameter Value

Range
indoor: 40m

outdoor: 120m
Operating Current (Transmit) 45mA
Operating Current (Receive) 45mA

Supported Topology Star, Tree, and Mesh

The ZigBee Protocol defines three types of nodes: Coordinators, Routers and End

Device, with a requirement of at least one Coordinator per network. While all nodes

can send and receive data, there are differences in the specific roles they play.

- Coordinators: There is exactly one coordinator in each network. It initiates the Zigbee

network and can route data as well.

- Routers: acts as intermediate nodes, relaying data from other devices.

- End Device: can be low-power / battery-powered. They have sufficient functionality

to talk to their parents (either the coordinator or a router) and cannot relay data

from other devices.

However, in MetroNet, to ensure scalability of network end-devices are not used. In-

stead, a zigbee network only with coordinator and routers is formed for future network

extension, if required.

All ZigBee devices have two different addresses, a 64-bit and a 16-bit address.

- 64-bit address : is a unique device address assigned during manufacturing. The 64-bit

address is also called the extended address.

- 16-bit address : device receives a non-unique 16-bit address when it joins the network.

The 16-bit address of 0x0000 is reserved for the coordinator

11



Figure 2.7: XBee pin configuration[10]

2.2.1 Implementation

First and foremost the XBee ZB S2 modules are configured using the X-CTU software.

All the devices in the network should have same PAN-ID and should be operating in

same channel.

Coordinator uses API mode of operation whereas Routers use AT mode. Coordina-

tor is operated in API as the receive packet frames would constitute both the data and

the originators device address, making it easier to know which router/ sensor node has

transmitted that particular sensor value. Routers need not operate in API as it has to just

send the sensor value if it has crossed the preset threshold, hence AT mode was found

sufficient.

X-CTU configuration

The X-CTU configuration for coordinator XBee ZB S2 are as follows:

- PAN ID(ID): 0x88

- Scan Channels(SC): 0x0C

- Destination Address High(DH): 0

- Destination Address Low(DL): 0xFFFF

- Node Identifier(NI): C0

12



- Broadcast Hops(BH): 0

- Power Level(PL): 0x04

The coordinator should be able to communicate to all routers and hence its destination

address is kept as the broadcast-address (0xFFFF). Node ID is a user defined name

given to the device, for coordinator ’C0’ is the NI. Broadcast Hops is set to 0, to allow

maximum hops and the output power level is set to highest i.e, 4 for maximum range of

communication.

The X-CTU configuration for router XBee ZB S2 are as follows:

- PAN ID(ID): 0x88

- Scan Channels(SC): 0x0C

- Destination Address High(DH): 0

- Destination Address Low(DL): 0

- Node Identifier(NI): R#

- Broadcast Hops(BH): 0

- Power Level(PL): 0x04

The routers should send all its sensor values to the coordinator and hence their destina-

tion address is set to 0 which is the default network-address of the coordinator in the

network. Node ID is set to ’R#’ i.e, R followed by a number for the routers.

2.3 Digimesh

Digimesh is Digi’s propitiatory mesh protocol. XBee S1 modules have been used to

implement Digimesh.Few XBee S1 specifications are mentioned in Table 2.2.

DigiMesh has only one node type. As a homogeneous network, all nodes are capa-

ble of routing data and are interchangeable. All of them can operate as battery-powered

devices.

13



Table 2.2: XBee S1 Specifications

Parameter Value

Range
indoor: 30m

outdoor: 100m
Operating Current (Transmit) 45mA
Operating Current (Receive) 55mA

Supported Topology Star, Tree, and Mesh(with Digimesh)

XBee S1 modules have only a device address or the 64-bit address. In API-frames

of XBee S1, the network address field is filled with 0xFFFE which implies reserved.

2.3.1 Sleep Modes in Digimesh

Digimesh firmware provides additional sleep modes for an enhanced power saving ca-

pability. The sleep modes supported by Digimesh are as follows:

- Asynchronous pin sleep mode : When pin 9 is asserted (high), the module will enter a

low-power state. The module wakes from pin sleep when the pin 9 is de-asserted

(low).

- Asynchronous cyclic sleep mode : XBee module sleeps cyclically, i.e, Cyclic sleep

allows the module to sleep for a specified time and wake for a short time to poll.

- Asynchronous cyclic sleep with pin wake up mode : This is the same as regular cyclic

sleep mode but with the option of also waking the module using physical pin 9.

- Synchronous sleep support mode : A node with synchronous sleep support mode

will synchronize itself with a sleeping network, but will not sleep itself. A sleep

support node transmits data only when the other nodes in the sleeping network

are awake.

- Synchronous cyclic sleep mode: A node with synchronous cyclic sleep mode, sleeps

for a programmed time, wakes in unison with other nodes, exchanges data and

sync messages, and then returns back to sleep.
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2.3.2 Implementation

The XBee S1 modules are configured using X-CTU software and the arduino uno

boards are programmed. The coordinator is API enabled. The Synchronous cyclic

sleep mode is used in all devices in network for low-power operation. All the devices

are maintained in a common PAN-ID of ’888’ and channel ’C’ is used, also all the

modules are loaded with Digimesh firmware using X-CTU software.

X-CTU configuration

The X-CTU configuration for coordinator XBee S1 are as follows:

- PAN ID(ID): 0x888

- Scan Channels(SC): 0x0C

- Destination Address High(DH): 0

- Destination Address Low(DL): 0xFFFF

- Node Identifier(NI): C0

- API enable(AP): 1

- Sleep Mode(SM): 8(Synchronized Cyclic Sleep)

- Sleep Options(SO): 1(Sleep-Coordinator)

- Sleep Time(SP):0x1194

- Wake Time(ST): 0x3A98

- Broadcast Hops(BH): 0

- Power Level(PL): 0x04

The broadcast address is kept as the destination address, for data aggregator. All the

modules are sleep enabled with synchronized cyclic sleep mode and the data aggregator

module is made the sleep coordinator implying that it decides the time for which the

entire network sleeps and wakes.

15



Sleep Time(SP) is set to 0x1194 which is hex value for 4500, according to the

configurations the network will sleep for:

sleep time = SP (in decimal)× 10ms (2.1)

Hence here the network will sleep for 45 seconds.

Wake Time(ST) is set to 0x3A98 which is hex value for 15000, according to the

configurations the network will stay awake for:

wake time = ST (in decimal)ms (2.2)

Hence here the network will be awake for 15 seconds. The sleep coordinator forces the

rest of the network to sleep according to the set time by broadcasting sync messages.

The following are the X-CTU configurations required for a digimesh router:

- PAN ID(ID): 0x888

- Scan Channels(SC): 0x0C

- Destination Address High(DH): 0

- Destination Address Low(DL): 0

- Node Identifier(NI): R#

- API enable(AP): 0

- Sleep Mode(SM): 8(Synchronized Cyclic Sleep)

- Sleep Time(SP):0x1F4

- Wake Time(ST): 0xD6D8

- Broadcast Hops(BH): 0

- Power Level(PL): 0x04

The routers should send all its sensor values to the sleep coordinator i.e, the data ag-

gregator and hence their destination address is set to ’13A20040A89439’ which is the
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64-bit address of the sleep coordinator. Node ID is set to ’R#’ i.e, R followed by number

given to router.

SP and ST in routers are the sleep and wake times of the modules before they sleep

in sync with the sleep coordinator. Hence, its better to have the router modules awake

for more time so that they get in sync easily.

Here, Sleep Time(SP) is set to 0x1F4 which is hex value for 500, according to the

configurations the network will sleep for 5 sec.

Wake Time(ST) is set to 0xD6D8 which is hex value for 55000, according to the con-

figurations the network will sleep for will be awake for 55 sec.

However, after they get in sync with the sleep coordinator, their sleep- wake cycle

will be as configured in the data aggregator.

2.4 Algorithm

Arduino Uno for the coordinator and routers is programmed separately, a each one

serves different purposes in the network.

Router

Router has a sensing module connected to it. Sensor data is given to an analog pin,for

reading which micro-controller’s 10-bit ADC is used. Program should retrieve back the

original sensed data, compare it with a threshold and send it to the UART, only if the

threshold is crossed. Hence, the data is transmitted only if a preset threshold is crossed.

Also, micro-controller should be kept in sleep mode in such a way that ADC and UART

still work while disabling others, for reduced power consumption.

Coordinator

Coordinator is the data collector i.e, all the routers forward the sensed data to the co-

ordinator. Coordinator is programmed to be in API mode to ensure use of API frames

and easy decoding of data and the address of the XBee generating it. Micro-controller

program, reads API frame from UART, separates 64 bit MAC Address of the XBee and
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the sensed data. After decoding both, it prints the same.

7E  00 10 90  01  00 13 A2 00 40 B5 94 47 9B A6 01 32 2E 34 39 DB 

Receive Packet 

Frame type 

Device Address RF Data Network Address 

Figure 2.8: Receive Packet Frame

The Receive packet frame used in coordinator programming for extracting the orig-

inating device address and the corresponding sensor value is as shown in figure 2.8.

The frame type of ’90’ indicates that the frame is a Receive Packet, ’00 13 A2 00

40 B5 94 47’ is the 64 bit address of the originating XBee and ’32 2E 34 39’ implies

that a voltage of 2.49 volts is the sensor data.

A field test for ZigBee was performed at IIT Madras Stadium with about 14 nodes

wherein the WSN was found to work according to the need.

2.5 Conclusion

Sensor data was transmitted at regular intervals only when it crosses a preset threshold.

This was accomplished using both ZigBee and DigiMesh. ZigBee implementation has

lesser power consumption when compared to the existing GSM. DigiMesh incorporates

sleep mode operation and further reduces the power consumption.
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CHAPTER 3

ROUTING ALGORITHM DEVELOPMENT

The implementation of prototype MetroNet with the existing protocols like zigbee and

digimesh serves the purpose of communicating the sensed data to the central data col-

lector. The application requires sensor data to be communicated only if the threshold is

crossed, hence when a node dies, the nodes which were relying on the presently non-

active node, to parse its data to the coordinator will choose another route. Therefore,

in a case of a node failure, it would be left unnoticed in the implemented protocols and

the sensor value in the area where that particular non-active node was deployed remains

unmonitored.

To avoid such a situation two approaches can be adopted.

- In one of which, every node whether it crosses the preset threshold or not should

communicate its sensed value to the coordinator. However, the nodes that cross

the threshold send their sensed data more frequently. Say for example, the node

with threshold crossed transmits its data every 1 hour and the other nodes transmit

for every 5 hours.

- Other way is knowing and assessing the path taken by the sensed data to notice

the node failures and link failures in a much efficient way. However, in the imple-

mented protocols knowing the path is not possible and hence, a routing algorithm

to serve this purpose has been developed. This routing algorithm also includes

supplied battery voltage level as one of the routing parameters.

API provides means of configuring the nodes and routing data at the application

layer. A host application can send data frames with the destination address and payload

information decided in run-time, instead of using command mode to modify addresses.

Using the same, a routing algorithm in the host application layer has been developed.

In this routing algorithm, each node has information of only the neighboring nodes.

Neighboring nodes here imply the nodes which are in the immediate range of com-

munication. This algorithm determines the best next-hop node among the neighboring



nodes, and each node forwards the data to the coordinator through their best next-hop

node.

C0 

R4 

R1 

R2 

R3 

R5 

R6 

R9 

R7 

R8 

Figure 3.1: Sample Network

Consider a network as shown in Figure 3.1. The nodes are scattered, the coordinator

is denoted as C0 and the rest of the 9 routers nodes are denoted as R1, R2 etc. The nodes

which are joined with the edges are neighboring nodes and can communicate directly

without any need of a router node. However, the nodes with no connecting edge in

between, needs the help of one of its neighboring nodes to talk to the non-neighboring

nodes.

3.1 Node Discovery

First step of the algorithm is Node Discovery. In this, each node discovers its neigh-

boring nodes, and stores them in neighbor list (NL) and their addresses in node table.

Before performing its node discovery, coordinator instructs all the routers of the net-

work to start node discovery process. The Node Discovery process of the coordinator is

as shown in the Figure 3.2. In the Sample Network, the nodes R1, R2, R3, and R4 are

the neighbors of the coordinator. Hence, after Node Discovery, coordinator will have

R1, R2, R3,and R4 in its Neighbor List.

In a similar way all the nodes along with the coordinator performs node discovery

simultaneously3.3, and by the end of the Node Discovery Process all the nodes acquire

their corresponding Neighbor Lists as in Table 3.1.
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Figure 3.2: Node Discovery by Coordinator (NL for coordinator(C0): R1 R2 R3 R4)

C0 

R4 

R1 

R2 

R3 

R5 

R6 

R9 

R7 

R8 

Figure 3.3: Node Discovery Process(Each color indicate the neighbor node discovery
performed by each node)

Table 3.1: Neighbor Lists

C0 R1 R2 R3 R4
R1 C0 R2 R4 R5 R6
R2 R1 C0 R3 R6 R7
R3 R2 C0 R8 R7
R4 R1 C0
R5 R1 R6
R6 R1 R2 R5 R9
R7 R2 R3 R8 R9
R8 R3 R7
R9 R6 R7
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3.2 Determining the Next Hop Nodes

After the Node Discovery process, every node determines the next-hop nodes. The next

hop nodes of a node will be the neighboring nodes itself, but before transmitting data to

coordinator through a neighboring node its necessary that the neighboring node chosen

to parse the data should take minimum number of hops to reach the coordinator. For

this, all the neighboring nodes are sorted accordingly into a next hop node list. To sort,

following procedure is used.

3.2.1 Transmission of Neighbor List by Coordinator and its com-

parison

The coordinator broadcasts its neighbor list to all its neighbor nodes. These neighboring

nodes have a neighbor list of their own. Each node compares its own neighbor list with

the coordinator’s neighbor list.

3.2.2 Node Classification

The neighboring nodes are classified into Parent, Sibling, and Child nodes. Using this

classification, the nodes are sorted in Next Hop node list. The node from which the

neighbor list has been received will be the parent node. Each node’s neighbor is com-

pared to the parent’s neighbor list and if a match is found then the node is a Sibling

node. If a match is not found then the node is a Child node.

For example, Node R2 has a NL of R1,R3,R6,R7 and it receives Coordinator’s NL:

R1,R2,R3,R4. Therefore, C0 will be R1’s Parent node. R1 and R3 being present in

coordinator’s NL also, makes them the Sibling nodes. And the rest of the nodes i.e, R6

and R7 will be its Child nodes.

Therefore, for R2

Parent node : C0

Sibling node: R1 R3

Child node : R6 R7
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Figure 3.4: Node Classification of node R2 (red link indicate data transmission to parent
node, blue indicate sibling, and green indicate child node)

The same procedure of node classification is followed by all the coordinator’s neigh-

bor nodes. After the node classification, Next hop nodes have to found. If the data is

traversing through parent node, it reaches the coordinator with minimum hops.

As it can be seen in Figure 3.4, some of the paths through which data can be sent

from R2 to C0 are:

R2-C0 1 hop parent node
R2-R1-C0 2 hops sibling node
R2-R3-C0 2 hops sibling node
R2-R6-R1-C0 3 hops child node
R2-R7-R3-C0 3 hops child node

Its clear from the Figure 3.4 that data takes minimum hops if traversing through

parent. Also, Sibling nodes will be preferably taking less hops when compared to the

Child Nodes. Hence, parent nodes are placed first in next hop node list, then the sibling

nodes followed by the child nodes.

This node classification process in R1, R2, R3, and R4 gives the result as shown in

Table 3.2.
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Table 3.2: Node Classification in coordinator’s neighbors

R1

Parent Node C0
Sibling Node R2 R4
Child Node R6 R5

Next Hop Node C0 R2 R4 R6 R5

R3

Parent Node C0
Sibling Node R2
Child Node R7 R8

Next Hop Node C0 R2 R7 R8

R2

Parent Node C0
Sibling Node R1 R3
Child Node R6 R7

Next Hop Node C0 R1 R3 R6 R7

R4

Parent Node C0
Sibling Node R1
Child Node

Next Hop Node C0 R1

3.2.3 Transmission of Neighbor List to child nodes

After Node classification, coordinator’s neighbor nodes sends their own neighbor lists

to their Child nodes. For example, R1 will send its neighbor list to its child nodes R5

and R6. Then the child nodes also perform the same node classification process by

comparing its node list with its parents node list. By the end, when all nodes have

received their parent’s neighbor list and have performed the node classification, the

result would be as shown in Table 3.3

Table 3.3: Node Classification

R6

Parent Node R1 R2
Sibling Node R5
Child Node R9

Next Hop Node R1 R2 R5 R9

R7

Parent Node R2 R3
Sibling Node R8
Child Node R9

Next Hop Node R2 R3 R8 R9

R5

Parent Node R1
Sibling Node R6
Child Node

Next Hop Node R1 R6

R8

Parent Node R3
Sibling Node R7
Child Node

Next Hop Node R3 R7

R9

Parent Node R6 R7
Sibling Node
Child Node

Next Hop Node R6 R7
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3.2.4 Data Transmission and Acknowledgment Forwarding

Data is to be transmitted by the nodes only if they cross the preset threshold or they

receive data from some other node. If a node crosses the threshold, then it transmits its

data to its next hop nodes after assessing the next hop nodes’ battery voltage level and

waits for an acknowledgment from the coordinator. If it does no receive the acknowl-

edgment or if the parents battery voltage was not sufficient enough then it transmits

the data to the next node in Next Hop node list. If the node receives data from some

node, it checks whether its own threshold is crossed or not. It appends its data to the

received data, in case where the threshold has been crossed. Else, it appends the data in

such a way that the coordinator knows that the data has parsed through this particular

node. Also the acknowledgment received from the coordinator will be forwarded by the

intermediate nodes to the node which has requested for data transfer.

3.3 Prototype Implementation

All the XBee modules are configured to be in API mode to enable dynamic change in

their destination address. XBee ZB S2 modules have been used for this implementation.

X-CTU configuration

The X-CTU configuration for coordinator XBee ZB S2 are as follows:

- PAN ID(ID): 0x88

- Scan Channels(SC): 0x0C

- Destination Address High(DH): 0

- Destination Address Low(DL): 0xFFFF

- Node Identifier(NI): C0

- Node Discovery Options(NO): 3

- Broadcast Hops(BH): 0
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- Power Level(PL): 0x04

- AD1/DIO1 Configuration(D1): 2

Most of the configurations for both coordinator and router are similar to that in reg-

ular zigbee implementation. Some additional configurations include, Node Discovery

Option which is set to 3 implying that the node returns its own node discovery as well.

The AD1/DIO1 is set to 2 which identifies XBee pin 19 to be a Analog input pin. It is

this pin through which battery voltage assessment is done.

The X-CTU configuration for router XBee ZB S2 are as follows:

- PAN ID(ID): 0x88

- Scan Channels(SC): 0x0C

- Destination Address High(DH): 0

- Destination Address Low(DL): 0

- Node Identifier(NI): R#

- Node Discovery Options(NO): 3

- Broadcast Hops(BH): 0

- Power Level(PL): 0x04

- AD1/DIO1 Configuration(D1): 2

For ease of understanding, consider the network shown in figure 3.5 for implementation.

C0 

R1 

R2 

R6 

Figure 3.5: Example Network for Implementation

Coordinator broadcasts the begin frame as in figure 3.6, instructing all the routers in

the network to start performing the node discovery process. ’10’ in the frame indicate
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that the frame is a transmit request frame, ’00 00 00 00 00 00 FF FF’ and ’FF FC’ are

the broadcast 64-bit and 16-bit addresses.

Broadcast Hop(BH) is ’00’ as show in figure to ensure that all the routers receive

the begin frame. ’42’ which is the hexadecimal value for ’B’ indicating that it is the

begin frame.

7E  00 0F 10 01   00 00 00 00 00 00 FF FF FF FC  00 00 42 B3 

Transmit request 

Frame type 

Broadcast address RF Data 

BH value 

Figure 3.6: Begin frame broadcast by the coordinator

All the nodes perform Node Discovery simultaneously. For the nodes to know in-

formation about their neighboring nodes only, BH parameter is set to 1 using a local AT

Command. The API frame for the BH-AT Command is as shown in Figure 3.7. ’08’

frame type identifies it to be AT command frame.

7E   00 05  08  01  42 48   01  6B 

AT Command 

Frame type 

BH 1 

Figure 3.7: BH AT command

’42 48’ in the frame indicate the AT command BH. ’01’ sets the BH to 1.

To discover all the existing neighboring nodes, ATND command is locally sent to

each XBee module. This command discovers and reports all RF modules found within

the range. The command format is as shown in Figure 3.8. ’4E 44’ in the frame indicate

the AT command ND.

7E   00 05  08 01 4E 44   64 

AT Command 

Frame 

ND 

Figure 3.8: ND AT command
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Sending the above frame locally results in a Node Discovery Response Frame from

each of the neighboring nodes and from itself, the first response being its own. The

Node Discovery response frame is a AT Response frame with frame type 0x88. It

consists of the device’s address, network address, node identifier string (NI) and device

type.

 7E 00 19  88  01 4E 44 00 49 C8 00 13 A2 00 40 B5 95 1F 52 32 FFFE0000C105101E00 

AT Response Frame Device Address Node ID Network Address 

Figure 3.9: Node Discovery Response

In Figure 3.9, frame type of ’88’ indicates that it is a AT response frame, ’4E 44’

which is hexadecimal value of ’N D’ indicates that it is a Node Discovery response

frame. As indicated, the Node Discovery response frame consists of Device address

which is the 64-bit address which is ’00 13 A2 00 40 B5 95 1F’ in the Figure 3.9,

Network address is ’49 C8’ and NI being ’52 32’ having the ASCII value of ’R 2’.

Similar frames are received from all the neighbor devices. Hence there will be as many

such frames received by the node as many neighbors it has. The NI, network address,

and device address are extracted from the frame and stored in nodeTable [ ][ ] array as

shown in Figure 3.10. The first 2 characters indicate NI, next 2 bytes are the network

address and the rest of the bytes is the device address.

Node  Table: 
R1 DC 30  0 13 A2 0 40 B5 94 6B 
C0 0 0 0 13 A2 0 40 B5 95 9 
R2 49 C8 0 13 A2 0 40  B5 95 1F 
R6 C2 BE 0 13 A2 0 40 C8 B6 5B 
 
Neighbor List:0 2 6 

Node ID 

Device 
Address 

Network 
Address 

Figure 3.10: Node Table and Neighbor List

R1 being the node where the node discovery has been done, and C0, R2 and R6

being the neighboring nodes. As it can be seen in Figure 3.10, the 2nd character of the

NI’s of all these neighbors are stored in Neighbor List (NL).

After Node Discovery by all the nodes, the coordinator broadcasts its neighbor list

to all its neighboring nodes using the frame shown in Figure 3.11. The frame is transmit
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request frame having 64-bit broadcast address ’00 00 00 00 00 00 FF FF’ and ’FF FC’

as 16-bit address. The RF data in the packet ’53 00 1 2’ indicates the sender of the

frame i.e, source (S) being ’00’ which is 2nd character of the NI of node C0, and R1

R2 is the neighbor list of C0. The neighbor list transmitting frame’s RF data holds ’S’

followed by NI of sender and its neighbor list.

7E  00 12 10  01  00 00 00 00 00 00 FF FF FF FC  01 00 53 00 01 02  9E 

Transmit request 

Frame type 

Broadcast address RF Data 

Figure 3.11: Neighbor List frame Transmitted by Coordinator

The above transmitted frame is received by the coordinator’s neighboring nodes

in the frame format as shown in Figure 3.12 and the node classification process as

explained in 3.2.2 is performed. The ’90’ frame type indicates that it is a Receive

Packet. ’00 13 A2 00 40 B5 95 09’ and ’00 00’ indicates the 64-bit device address and

the 16-bit network address of the coordinator. In a similar way all the transmit request

7E   00 11  90  00 13 A2 00 40 B5 95 09  00 00  01   53 00 01 02    CA 

Receive Packet 

Frame type 
Sender’s device 

address 

Sender’s 

network address 

RF Data 

Figure 3.12: Received Packet with NL information

frames from sender are received by the destination as Receive Packet with both having

same RF payload or data.

The RF data transmitted by the coordinator is received as it is and is stored in info

[ ][ ]. Comparing its own neighbor list with info [ ][ ], the parent, sibling and child nodes

are determined and stored in parentNode [ ], Sib [ ], and childNode [ ] respectively.

After node classification, in NextHop [ ], the nodes are arranged such that first node in

the array takes least number of hops to reach the coordinator. This can be seen in Figure

3.13. Each node transmits its NL to all its child nodes using a unicast rather than a
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Parent Nodes:0 
Child Nodes:6 
Siblings: 0 2 
Nest Hop Nodes:0 2 6 

Figure 3.13: Node Classification

broadcast. The frames transmitted in this process are as shown in Figure 3.14 where

’00 13 A2 00 40 C8 B6 5B’ is the child’s device address, ’C2 BE’ is the 16 bit network

address of R6, the child node. RF data consists of ’53 01’ which indicates that R1 is the

source, and ’00 02 06’ is its neighbor list.

7E  00 13 10  01  00 13 A2 00 40 C8 B6 5B   C2 BE  01 00  53 01 00 02 06 43 

Transmit request 

Frame type 

Child’s device address RF Data Child’s network 

address 

Figure 3.14: Transmitting NL information to Child Nodes

The child node performs the node classification process and transmits its own neigh-

bor list to its child nodes. Similarly, all nodes complete the node classification process

and are aware of their next hop nodes. However, here R6 has no child nodes and hence

does not tramnsmit its NL to any node.

There has to be a data transmission to the coordinator only if any one of the sensor-

nodes in the network crosses the preset threshold. Suppose a node has crossed its thresh-

old, it will send ’D NI sensor data’ as RF data to its next hop node after having assessed

the next hop nodes’ battery voltage, and wait for an acknowledgment frame to be for-

warded to it, from the coordinator. The same can be seen in the Figure 3.15. In the

frame, ’00 13 A2 00 40 B5 94 6B’ is the next hop nodes’ device address, ’DC 30’ is

the 16 bit network address. RF data consists of ’44 06 02 2E 05 01’. ’44’ ASCII value

of ’D’ indicates that it is a data frame, ’06’ is the source of data implying node R6 has

crossed the threshold and ’02 2E 05 01’ is the pot voltage i.e, 2.51 volts here.

If the node sending data is coordinator’s neighbor then it receives an acknowledg-

ment from coordinator. Else, the intermediate node that receives the data forwards it

to the coordinator either directly or through another router after appending the data

received.
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7E  00 14 10  01  00 13 A2 00 40 B5 94 6B   DC 30   01 00  44 06 02 2E 05 01 B8 

Transmit request 

Frame type 

Next Hop device 

address 

RF Data Next Hop network 

address 

Figure 3.15: Frame for transmitting data to the next hop node

7E  00 0F 17  01 00 13 A2 00 40 B5 94 6B DC 30  02 49 53 94 

Remote AT command 

Frame type 

Next Hop node’s 

device address 

IS AT 

command 

Next Hop 

node’s network 

address 

Figure 3.16: Remote AT command frame sent to next hop node to assess its battery
voltage level

For next hop node’s battery voltage assessment, the battery voltage of the router

passed through a voltage divider, is given as an analog input to the ’AD1/DIO1’ pin

19 of XBee. And when some node needs to assess the battery voltage of its next hop

node to ensure whether that particular next hop will be able to relay its data, it sends a

remote ATIS command frame as in figure 3.16. ATIS command is the force sample AT

command which forces a read of all the enabled analog and digital pins.

In the frame ’17’ imply that its a remote AT command, ’49 53’ is hex value for ’I

S’. And this frame is addressed to the next hop node whose battery voltage is being

assessed. The transmission of this frame leads to a reply from the corresponding next

hop node as shown in the figure3.18.

Battery voltage can be assessed using Vb value which is force read using remote

ATIS command, as follows:

Vbattery = Vb × (1 +R1/R2) (3.1)

’97’ identifier saying the frame is a remote AT response of IS denoted by ’49 53’.

The RF payload holds the sender’s battery voltage level. RF data in this frame being

’01 00 02 03 F1’ where ’01’ gives the number of samples, ’00 00’ are digital and ’02’ is
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R1 

Vb 

R2 

Vbattery 

Figure 3.17: Circuit Connection to assess the battery voltage[10]

analog channel mask indicating that AD1 is enabled and,’03 F1’ is ADC channel Data

in hex which is the Vb.

7E  00 15 97  01 00 13 A2 00 40 B5 94 6B DC 30 49 53 00 01 00 00 02 03 F1 1F 

Remote AT command 

response Frame type 

Sender’s device 

address 

IS AT 

command 

Sender’s 

network 

address 

RF data 

Figure 3.18: Remote AT command response frame containing battery voltage level

The actual battery voltage is fed to XBee AD1 pin 19 after having passed through

a voltage divider circuit as shown in figure 3.17. This is done as XBee analog pin can

take a maximum of 1.2 volts as input.

Vb = ((ADC channel data in decimal)× 1200)/1024 (3.2)

where, 1200 is the Vref and 1024 is 210 as XBee has a 10-bit ADC

Hence, here ADC channel data being ’03 F1’ having a decimal value of ’1009’.

On calculating, Vb is 1182.42 mV i.e, approximately 1.2 volts. Battery voltage can be

found from Vb. If Vb of the chosen next hop is found to be insufficient the data is then

transmitted to the next node in the next hop list after assessing its battery voltage in a

similar way.

The intermediate node checks whether its own threshold has crossed, if crossed,

then it appends the received data and transmits it to its next hop node as shown in figure
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7E  00 1A 10  01 00 13 A2 00 40 B5 95 09 00000100 4406022E05014401022E0607 A3 

Transmit request 

Frame type 

Next Hop device 

address 

RF Data Next Hop network 

address 

Figure 3.19: Router appending the Received data with its own data

3.19. In the frame, RF data consists of the received data followed by ’D NI sensor data’

which here is ’44 01 02 2E 06 07’ i.e, data ’D’ generated by node R1 is 2.67 volts.

If the intermediate node has not crossed the preset threshold then it simply appends

the received data with ’P NI’ and forwards it to its next hop after battery voltage assess-

ment.

7E  00 1A 10  01 00 13 A2 00 40 B5 95 09 00 00 01 00  44 06 02 2E 05 01 50 01  D4 

Transmit request 

Frame type 

Next Hop device 

address 

RF Data Next Hop network 

address 

Figure 3.20: Router appending the Received data with its path

The appended frame is as shown in figure 3.20, where in RF data ’50 01’ indicates

’P’ in path to coordinator node R1 is present. As the coordinator receives these data

frames, it extracts the information of which sensor data is from which node and which

path did this data take to reach it.

7E  00 10 10  01  00 13 A2 00 40 B5 94 6B DC 30  01 00  4B 06  E7 

Transmit request 

Frame type 

Destination device 

address  

RF Data Destination network 

address 

Figure 3.21: Transmitting the acknowledgment frame

And an acknowledgment is sent back to all the nodes from which these frames were

received. The Acknowledgment frame is as shown in figure 3.21. In the frame, the

payload or the RF data consists of ’K’ with hex value ’4B’, followed by the list of NI

of the nodes in the path taken by the data. Here, data takes a path of 6-1-0, hence C0

send acknowledgment frame to R1 which further passes the frame to node R6, assuring

R6 that its data has been received by the coordinator.
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Summarizing, in the example network all the nodes perform node discovery and

gets aware of their neighbor nodes. Then they perform node classification after having

received a neighbor list from its parent nodes and then transmitting its neighbor list to

child nodes. After node classification, if threshold crossed, sensor data is sent through

a particular path to coordinator. Through the same path acknowledgment is received

back.

3.3.1 Summary of frames used

• Begin Frame : 7E 00 0F 10 01 64-bit broadcast address 16-bit broadcast address 01

00 ’B’ B3

• Broadcast Hop Frame : 7E 00 05 08 01 ’B’ ’H’ 01 6B

• Node Discovery Frame : 7E 00 04 08 01 ’N’ ’D’ 64

• Node Discovery Response Frame : 7E 00 19 88 01 ’N’ ’D’ 00 16-bit address 64-bit address

NI FF FE 00 00 C1 05 10 1E checksum

• Neighbor List Frame : 7E length 10 01 64-bit destination address 16-bit destination address

01 00 ’S’ ’NI’ ’Neighbor List’ checksum

• Remote ATIS Command Frame : 7E 00 0F 17 01 64-bit destination address

16-bit destination address 02 ’I’ ’S’ checksum

• Remote ATIS Response Frame : 7E 00 15 97 01 64-bit Sender’s address 16-bit Sender’s address

’I’ ’S’ 00 ’No. of samples’ ’Digital Channel Masks’ ’Analog Channel Mask’

’Analog Channel Data’ checksum

34



• Data Frame : 7E length 10 01 64-bit destination address 16-bit destination address

01 00 ’D’ ’NI’ ’Sensor value’ ’P’ ’NI’ ’D’ ’NI’ ’Sensor value’ checksum

• Acknowledgment Frame : 7E length 10 01 64-bit destination address 16-bit destination address

01 00 ’K’ ’List of NIs in the path’ checksum

3.4 Flowcharts

Figures 3.22 and 3.23 illustrate the sequential steps followed by the coordinator and

router in the routing algorithm developed.
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Start

Transmit Node Discovery (ATND) frame to know the 
Neighboring nodes

RxPkt = ND 
Response frame

Store the Discovered node’s 
NI, Network Address, and 

Device Address

Store NI in NL

Broadcast NL 

RxPkt = Data 
Frame
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a < 50
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Repeat Time

No

Transmit Begin Frame for all the nodes to start the 
algorithm

Start Time = Current Time
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Transmit Acknowledgment frame 
with path for further 

acknowledgment if needed

Figure 3.22: Coordinator Flowchart
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(RxPkt = Data Frame) || (Sensor 
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No
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Figure 3.23: Router Flowchart
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CHAPTER 4

TESTS AND RESULTS

4.1 Range Tests

The XBee range test gives an rough idea whether the communication link is strong

or weak. Link Quality depends on multiple factors and is difficult to asses. Before

deploying a network, performing a range test is extremely helpful as range test gives an

insight of an existing weak link due to environmental scattering, distance limitations or

interferences which can be rectified by installing additional router in between to fill in

the gap.

Range Test measures Received Signal Strength Indicator (RSSI) uses following pro-

cedure to find it:

1. Transmit a Packet to the remote XBee

2. Receive the transmit status

3. Receive the sent packet back from the remote XBee

4. Get RSSI value using local ATDB command

Before testing the routing protocols, the following basic tests were performed to

asses the link quality in the area of deployment.

RSSI variation with obstacles and distance are presented as follows:

4.1.1 RSSI Vs Distance

Two XBee modules were kept at fixed distance apart and RSSI test was performed

using X-CTU software. Lesser the RSSI value in magnitude better is the link between

the XBees. The RSSI levels at different distances have been illustrated in the graph4.1.

RSSI was found to be reducing gradually with distance.
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Figure 4.1: RSSI Variation with Distance (line of sight)

From the test, it was inferred that RSSI value between -23 dBm to -88 dBm is good

enough and if RSSI level is beyond -88 dBm, the packets are dropped. Though the

range for XBee S1 modules is specified to be 100 m and 120 m for XBee S2 ZB in line

of sight condition, it is suggested to place the modules not farther than 90 m for ensured

communication.

4.1.2 RSSI Vs Obstacles

Two XBee separated by obstacles were tested as shown in figure 4.2

Obstacles between the XBees 

Figure 4.2: Test Setup for RSSI Vs Obstacles

RSSI value reached -92 dBm and packets were lost with around 6 walls in between,
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Figure 4.3: RSSI Variation with number of Obstacles

hence for indoor deployment, placing needs to be considered.

4.2 Roud Trip Time Tests

Round Trip Time(RTT) is the time taken for a packet to travel from a XBee to another

and back to teh one transmitted the packet. This time can be calculated from Range

Test frame list.

RTT = Tr − Tt (4.1)

where, Tr is the time-stamp at which XBee receives back the transmitted packet

Tt is the time-stamp at which XBee transmits the packet

4.2.1 RTT Vs Payload Size

The packet size being transmitted by XBee, is one of the factors on which RTT depends.

Using the range test, RTT is calculated for both XBee S1 and XBee ZB S2 and is plotted

as shown in figure 4.5. The test setup is as shown in figure 4.4. The XBee modules were

kept 4m apart.

It was observed that the RTT increases with the payload size and beyond payload

size of 72 XBee raises ’payload too large’ error. Hence, while programming the payload
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Figure 4.4: Test Setup for RTT Vs Payload variation

size should be limited accordingly.
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Figure 4.5: Round Trip Time variation with payload size

RTT was found to vary with payload size only, no significant variation with distance

or hop or obstacle was observed.

4.3 Zigbee

A prototype testing with XBee S2 ZB modules was done. The modules were scattered

in multiple ways assuring every node has a path to the coordinator either directly or

through other nodes. Nodes were found to route each others data.

From the figure 4.6, it is clear that sensor data of only the nodes which cross the

preset threshold is received, rest of the nodes do not transmit the data and hence not

recorded in coordinators’ serial monitor.

A field test at IIT Madras Stadium was also performed with 14 nodes and was found

to work according to the need of MetroNet.
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Sensor Data from XBee S2  
00 13 A2 00 40 B5 94 6B not 
received after 16:35:27 as 
sensor value kept less than 
threshold (2 volts) 
 

Sensor data  not received 

Sensor data of 2.97 volts received 
from XBee S2 with 64-bit address of  -- 
00 13 A2 00 40 B5 95 1F at different 
time stamps separated by 1 minute 

Figure 4.6: Sensor Data being Received by nodes with threshold crossed every 1 minute
and Sensor data not received when sensor value less than threshold

Power Consumption

Current consumed was measured using a power meter and the total current consumed

by the node while transmitting data was found to be 79.55 mA.

4.4 Digimesh

A prototype testing with XBee S1 digimesh modules was done. The modules were

scattered in multiple ways assuring every node has a path to the coordinator either

directly or through other nodes. The tests were centered to asses the following:

- Network in sleep sync or not.

- Whether sensor data is being transmitted as programmed.

- Nodes routing each others data when needed i.e, when node is not in direct commu-

nication range.

- Nodes transmitting the sensor data only if they cross their preset threshold.
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All the tests conducted showed positive results for all the above assessed criteria. The

entire network sleeps for 45 sec and was awake for the next 15 sec, as configured. Sen-

sor data is to be transmitted every 1 min if the threshold is crossed and was accordingly

programmed. Nodes were found to route each others data. The figure 4.7 shows the

Sensor Data from XBee S1  
00 13 A2 00 40 DC 0B B6 not 
received after 13:53:44 as 
sensor value kept less than 
threshold (2 volts) 

Sensor data  not received 

Sensor data of 2.49 volts 
received from XBee S1 with 64-
bit address of  
00 13 A2 00 40 BD 37 D5 at 
different time stamps separated 
by 1 minute 

Figure 4.7: Sensor Data being Received by all nodes every 1 minute only on crossing
threshold

sensor data and the corresponding XBee S1 address received by the sleep coordinator

along with their time stamps. Each XBee sends sensor value which is above threshold

every 1 minute.

Power Consumption

The XBee S1 DigiMesh nodes were found to consume a current of 35.93 mA when in

synchronous sleep and 90.15 mA when awake. Hence, increasing the battery life of the

node.

4.5 Developed Routing Algorithm

Routing protocol was developed to learn the route taken by sensor data while reaching

the coordinator or the data aggregator node. The path taken can be seen in coordinator
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arduino’s serial monitor screen-shot figure 4.8.

Data frame received from R1 
with data of  R3, and R6 

‘D’ of 
3.65 from R6 
2.91 from R3 
received with  
path 6-3-1-0  

Acknowledgment Frame 
transmitted to R1 with further 
acknowledgment  frame 
transmission information 

‘P 1’ –-R1 relayed the data, 
its sensor value<threshold  

Figure 4.8: Path taken by the data detected at coordinator

Though the algorithm support path detection, it also sends sensor data only if thresh-

old is crossed with a time interval of 1 minute. This can be viewed in figure 4.9.

Sensor Data from 
R1 was not received between 
22:43:26 and 22:45:26 as 
sensor value was kept less 
than threshold(2 volts) in this 
period. 
 

Sensor Data from 
R2 was received  continuously 
every 1 min as sensor value 
was kept greater than 
threshold(2 volts). 

Figure 4.9: Data Received by coordinator

Current consumed by the nodes in this algorithm was found to be same as that in

zigbee implementation, 79.55 mA. In addition to this, the voltage divider circuit used

for assessing the battery voltage also consumes a considerable amount of current.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Sensor data was transmitted at regular intervals only when it crosses a preset thresh-

old. This was accomplished in all of the three implementations: ZigBee, DigiMesh

and the routing algorithm developed. While testing the algorithms, node placement cri-

teria was assessed on the basis of certain preliminary range and delay tests. ZigBee

implementation reduces the power consumption of the WSN node when compared to

the existing GSM. DigiMesh incorporates sleep mode operation and further reduces the

power consumption.

Apart from sensing and reporting data at regular intervals when threshold is crossed,

the routing algorithm developed, detects the route taken by sensor data while reaching

the data aggregator. Also, the existing routing algorithms fails to detect node/ link

failures which the developed routing can, through path detection. But, the routing al-

gorithm developed consumes same power as Zigbee. However, it ensures that a node

having a drained battery does not participate in routing the other nodes’ data.

If power consumption aspect is considered, implementation with Digimesh sleep

operation would be the best. And if node/ link failure detection is of prime importance

for taking necessary measures to correct it, then use of the developed algorithm would

give better results.

5.2 Future Scope

An integrated working of Digimesh sleep mode and the developed routing algorithm

can be developed in future as it would give the best results in terms of both power

consumption and node/ link failure detection.



Real Time Clock (RTC) interface with micro-controller can also be tried to provide

time based accuracy. Replacing the voltage divider circuit for battery assessment with a

low power consuming circuit will reduce the power consumption further. The existing

radiation sensor module’s integration with the developed short range communication

node can be done.
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APPENDIX A

ZIGBEE AND DIGIMESH

Listing A.1: Coordinator API

i n t a d r ; / / a d d r e s s o f g e n e r a t i n g XBee

void s e t u p ( ) {

S e r i a l . b e g i n ( 9 6 0 0 ) ;

}

void l oop ( ) {

i f ( S e r i a l . a v a i l a b l e ( ) >=19){

i f ( S e r i a l . r e a d ( ) ==0x7E ) {

f o r ( i n t i =1 ; i <4 ; i ++){

b y t e d i s c a r d B y t e = S e r i a l . r e a d ( ) ;

}

S e r i a l . p r i n t l n ( " Address o f t h e g e n e r a t i n g XBee" ) ;

f o r ( i n t i =4 ; i <12; i ++){ / / r e a d i n g t h e a d d r e s s

a d r = S e r i a l . r e a d ( ) ;

S e r i a l . p r i n t ( adr ,HEX ) ;

S e r i a l . p r i n t ( " , " ) ;

}

S e r i a l . p r i n t l n ( ) ;

f o r ( i n t i =12; i <15; i ++){ / / d i s c a r d t h e u n n e c c e s a r y b y t e s

b y t e d i s c a r d B y t e = S e r i a l . r e a d ( ) ;

}

S e r i a l . p r i n t ( ( char ) S e r i a l . r e a d ( ) ) ; / / s e n s o r da ta b e i n g n o t e d

S e r i a l . p r i n t ( ( char ) S e r i a l . r e a d ( ) ) ;

S e r i a l . p r i n t ( ( char ) S e r i a l . r e a d ( ) ) ;

S e r i a l . p r i n t l n ( ( char ) S e r i a l . r e a d ( ) ) ;

}

}

}

Listing A.2: Router AT

# i n c l u d e < a v r / power . h>

# i n c l u d e < a v r / s l e e p . h>

i n t s e n s r =0; / / t a k i n g s e n s o r v a l u e i n ana log i n p u t AD0

void s e t u p ( )

{

S e r i a l . b e g i n ( 9 6 0 0 ) ;

DDRD &= B00000011 ; / / s e t Ardu ino p i n s 2 t o 7 as i n p u t s , l e a v e s 0 & 1 ( RX & TX ) as i s

DDRB = B00000000 ; / / s e t p i n s 8 t o 13 as i n p u t s

PORTD | = B11111100 ; / / e n a b l e p u l l u p s on p i n s 2 t o 7



PORTB | = B11111111 ; / / e n a b l e p u l l u p s on p i n s 8 t o 1

s e t _ s l e e p _ m o d e (SLEEP_MODE_IDLE ) ; / / s l e e p mode i s s e t he re

s l e e p _ e n a b l e ( ) ; / / e n a b l e s t h e s l e e p b i t i n t h e mcucr r e g i s t e r

p o w e r _ s p i _ d i s a b l e ( ) ;

p o w e r _ t i m e r 1 _ d i s a b l e ( ) ;

p o w e r _ t i m e r 2 _ d i s a b l e ( ) ;

p o w e r _ t w i _ d i s a b l e ( ) ;

s leep_mode ( ) ; / / h e re t h e d e v i c e i s a c t u a l l y p u t t o s l e e p

}

void l oop ( )

{

i n t r e a d i n g = ana logRead ( s e n s r ) ; / / s a m p l i ng t h e s e n s o r v a l u e

f l o a t v o l t a g e = r e a d i n g ∗5 ;

v o l t a g e / = 1 0 2 4 . 0 ; / / c o n v e r t i n g ADC v a l u e t o a c t u a l v a l u e

i f ( v o l t a g e >=2)

{

S e r i a l . p r i n t ( v o l t a g e ) ; / / s e n d i n g v o l a t g e v a l u e

d e l a y ( 6 0 0 0 0 ) ; / / e v e r y 1 min

}

s e t _ s l e e p _ m o d e (SLEEP_MODE_IDLE ) ; / / s l e e p mode i s s e t he re

s l e e p _ e n a b l e ( ) ; / / e n a b l e s t h e s l e e p b i t i n t h e mcucr r e g i s t e r

p o w e r _ s p i _ d i s a b l e ( ) ;

p o w e r _ t i m e r 1 _ d i s a b l e ( ) ;

p o w e r _ t i m e r 2 _ d i s a b l e ( ) ;

p o w e r _ t w i _ d i s a b l e ( ) ;

s leep_mode ( ) ; / / h e re t h e d e v i c e i s a c t u a l l y p u t t o s l e e p ! !

}
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APPENDIX B

ROUTING ALGORITHM DEVELOPED

Listing B.1: Coordinator API

b y t e nodeTab le [ 8 ] [ 1 2 ] ; / / 8 i m p l y maximum p o s s i b l e no . o f n e i g h b o r s +1

b y t e RxPkt [ 5 4 ] ;

b y t e NL [ 8 ] ; / / 8 i m p l y maximum p o s s i b l e no . o f n e i g h b o r s +1

i n t RxPktLnth ; / / t o s t o r e t h e t o t a l l e n g t h ( i n b y t e s ) o f t h e p a c k e t i n c l u d i n g SD , chksum , l e n g t h

i n t i =0 , j , a , x ;

i n t r ; i n t c =0;

unsigned long s t a r t _ t i m e ;

unsigned long i n t r v l _ n t =300000; / / i n t e r v a l f o r r e p e a t i n g t h e e n t i r e a l g o r i t h m = 5 min

void s e t u p ( ) {

S e r i a l . b e g i n ( 9 6 0 0 ) ;

}

void l oop ( ) {

d e l a y ( 2 0 0 0 ) ;

TxBegin ( ) ; / / t r a n s m i t b e g i n frame

d e l a y ( 2 0 0 ) ;

NodeDisc ( ) ;

}

/ / TRANSMIT BEGIN FRAME

void TxBegin ( ) {

b y t e NI =0;

b y t e chksm =0;

b y t e cheksum ;

b y t e t x d a t a [ ] = { 0 x7E , 0x00 , 0x00 , 0x10 , 0x01 , 0 , 0 , 0 , 0 , 0 , 0 , 0 xFF , 0 xFF , 0 xFF , 0 xFC , 0 , 0 , ’B ’ ,0 } ;

t x d a t a [ 2 ] = 1 5 ;

f o r ( i =3 ; i <18; i ++) / / checksum c a l c u l a t i o n

chksm+= t x d a t a [ i ] ;

cheksum =0xFF−chksm ;

t x d a t a [ i ]= cheksum ;

S e r i a l . p r i n t ( " Tx P a c k e t " ) ;

f o r ( i =0 ; i <19; i ++)

S e r i a l . p r i n t ( t x d a t a [ i ] ,HEX ) ;

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 2 0 0 ) ;

S e r i a l . w r i t e ( t x d a t a , 1 9 ) ; / / t r a n s m i t t i n g b e g i n frame

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 5 0 0 ) ;

}



/ / R e c e i v e a l l t h e P a c k e t s

void Rx ( ) {

i f ( S e r i a l . a v a i l a b l e ( ) ) {

d e l a y ( 5 0 ) ;

i f ( S e r i a l . r e a d ( )==0 x7E ) {

RxPkt [ 0 ] = 0 x7E ;

f o r ( i =1 ; i <3 ; i ++){

RxPkt [ i ]= S e r i a l . r e a d ( ) ;

}

S e r i a l . p r i n t ( RxPkt [ 2 ] ) ;

RxPktLnth=RxPkt [ 2 ] + 4 ; / / 4 f o r chksum −1,SD−1, l e n g t h f i e l d −2 b y t e s

S e r i a l . p r i n t ( " T o t a l Length : " ) ;

S e r i a l . p r i n t l n ( RxPktLnth ) ;

whi le ( i <RxPktLnth ) {

RxPkt [ i ]= S e r i a l . r e a d ( ) ;

i ++;

}

f o r ( i =0 ; i <RxPktLnth ; i ++){

S e r i a l . p r i n t ( RxPkt [ i ] ,HEX ) ;

S e r i a l . p r i n t ( " " ) ;

}

S e r i a l . p r i n t l n ( ) ;

}

}

d e l a y ( 5 0 ) ;

}

/ / NODE DISCOVERY

void NodeDisc ( ) {

s t a r t _ t i m e = m i l l i s ( ) ;

i n t k , l , x =0;

i n t nd =0; a =0;

f o r ( k =0; k <8; k ++){

f o r ( l =0 ; l <12; l ++){

nodeTab le [ k ] [ l ] = 0 ;

}

}

b y t e broadHops [ ] = { 0x7E , 0x00 , 0x05 , 0x08 , 0x01 , 0x42 , 0x48 , 0x01 , 0x6B } ; / / ATBH1 (BH=1)

b y t e d i s c T i m e o u t [ ] = { 0x7E , 0x00 , 0x05 , 0x08 , 0x01 , 0x4E , 0x54 , 0x50 , 0x04 } ; / / ATNT50 ( NT=8s )

b y t e a p p l y c h a n g e s [ ] = { 0x7E , 0x00 , 0x04 , 0x08 , 0x01 , 0x41 , 0x43 , 0x72 } ; / / ATAC

b y t e nodeDisc [ ] = { 0x7E , 0x00 , 0x04 , 0x08 , 0x01 , 0x4E , 0x44 , 0x64 } ; / / ATND

S e r i a l . w r i t e ( broadHops , 9 ) ; / / Send ing ATBH1 t o l o c a l XBee

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 1 0 0 ) ;

S e r i a l . w r i t e ( d i s cT imeou t , 9 ) ; / / Send ing ATNT50 t o l o c a l XBee

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 1 0 0 ) ;

S e r i a l . w r i t e ( ap p l yc ha ng es , 8 ) ;

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 1 0 0 ) ;
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S e r i a l . w r i t e ( nodeDisc , 8 ) ; / / Send ing ATND t o l o c a l XBee

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 1 0 0 ) ;

whi le ( a <50 ) { / / r e c e i v e a l l t h e Neighbor Node I n f o r m a t i o n

r =0 ;

f o r ( i =0 ; i <54; i ++)

RxPkt [ i ] = 0 ;

d e l a y ( 2 0 0 ) ;

whi le ( r !=1 && S e r i a l . a v a i l a b l e ( ) ) { / / w a i t i n g f o r ATND r e s p o n s e frame

Rx ( ) ;

i f ( ( RxPkt [5 ]== ’N’ ) && ( RxPkt [6 ]== ’D’ ) )

r =1 ;

}

i f ( ( RxPkt [5 ]== ’N’ ) && ( RxPkt [6 ]== ’D’ ) ) {

f o r ( l =0 ; l <2 ; l ++){

nodeTab le [ nd ] [ l ]= RxPkt [ l + 1 8 ] ; / / S t o r i n g NI

}

f o r ( l =0 ; l <2 ; l ++){

nodeTab le [ nd ] [ l +2]= RxPkt [ l + 8 ] ; / / S t o r i n g 16 b i t n twrk addrs

}

f o r ( l =0 ; l <8 ; l ++){

nodeTab le [ nd ] [ l +4]= RxPkt [ l + 1 0 ] ; / / S t o r i n g 64 b i t addrs

}

nd ++;

}

a ++;

}

i f ( nd >1){ / / more than one node d e t e c t e d t h e n s t o r e Neighbor l i s t

S e r i a l . p r i n t l n ( " Node TAble : " ) ;

f o r ( k =0; k<nd ; k ++){

i f ( nodeTab le [ k ] [ 0 ] = = 8 2 )

S e r i a l . p r i n t ( "R" ) ;

i f ( nodeTab le [ k ] [ 0 ] = = 6 7 )

S e r i a l . p r i n t ( "C" ) ;

i f ( nodeTab le [ k ] [1 ] >=48 && nodeTab le [ k ] [ 1 ] < 5 8 ) { / / s t o r i n g Neighbor L i s t

S e r i a l . p r i n t ( ( nodeTab le [ k ] [ 1 ] ) −4 8 ) ;

NL[ k ] = ( ( nodeTab le [ k ] [ 1 ] ) −4 8 ) ;

c ++;

}

e l s e {

S e r i a l . p r i n t ( ( nodeTab le [ k ] [ 1 ] ) ) ;

NL[ k ]= nodeTab le [ k ] [ 1 ] ;

c ++;

}

S e r i a l . p r i n t ( " " ) ;

f o r ( l =2 ; l <12; l ++){ / / p r i n t i n g Node Tab le

S e r i a l . p r i n t ( nodeTab le [ k ] [ l ] ,HEX ) ;

S e r i a l . p r i n t ( " " ) ;

}

S e r i a l . p r i n t l n ( ) ;

}
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S e r i a l . p r i n t ( " Neighbor L i s t : " ) ;

f o r ( i =1 ; i <c ; i ++){ / / p r i n t i n g Neighbor L i s t

S e r i a l . p r i n t (NL[ i ] ) ;

S e r i a l . p r i n t ( " " ) ;

}

d e l a y ( 8 0 0 ) ;

TxNL( c −1);

}

}

/ / TRANSMITTING THE NL FRAME

void TxNL( i n t l e n g t h ) {

b y t e NI =0;

b y t e chksm =0;

b y t e cheksum ;

b y t e t x d a t a [ ] = { 0 x7E , 0x00 , 0x00 , 0x10 , 0x01 , 0 , 0 , 0 , 0 , 0 , 0 , 0 xFF , 0 xFF , 0 xFF , 0 xFC , 1 , 0 , ’S ’ , 0 , 0 } ;

t x d a t a [ 2 ] = l e n g t h +16;

t x d a t a [ 1 8 ] = NI ; / / p l a c i n g NI i n frame

f o r ( i =0 ; i < l e n g t h ; i ++) / / p u t t i n g n e i g h b o r l i s t i n t o f rame

t x d a t a [ i +19]=NL[ i + 1 ] ;

f o r ( i =3 ; i < l e n g t h +19; i ++) / / checksum c a l c u l a t i o n

chksm+= t x d a t a [ i ] ;

cheksum =0xFF−chksm ;

t x d a t a [ i ]= cheksum ;

S e r i a l . p r i n t ( " Tx P a c k e t " ) ;

f o r ( i =0 ; i < l e n g t h +20; i ++)

S e r i a l . p r i n t ( t x d a t a [ i ] ,HEX ) ;

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 2 0 0 ) ;

S e r i a l . w r i t e ( t x d a t a , ( l e n g t h + 2 0 ) ) ; / / t r a n s m i t i n g t h e NL frame

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 5 0 0 ) ;

r =0 ;

whi le ( r ! = 1 ) { / / w a i t i n g f o r da ta f r am es

i f ( S e r i a l . a v a i l a b l e ( ) ) {

Rx ( ) ;

i f ( ( RxPkt [3 ]==0 x90 ) && ( RxPkt [15]== ’D’ ) ) {

r =1;

D a t a P a t h ( ) ;

re turn ;

}

}

}

}

/ / EXTRACT DATA AND PATH FROM THE PACKET

void D a t a P a t h ( ) {

i n t l e n g t h , i , k , l , a , r ;

b y t e NI =0;

b y t e p a t h [ ] = { 0 , 0 , 0 , 0 , } ;

a =0;
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whi le ( a <150 && ( ( unsigned long ) m i l l i s ()− s t a r t _ t i m e ) <= i n t r v l _ n t ) { / / c o n t i n u e t i l l 5min

l e n g t h =RxPkt [2] −12;

/ / g e n e r a t i n g node and c o r r e s p o n d i n g da ta

f o r ( i =0 ; i < l e n g t h ; i ++){

i f ( RxPkt [ i +15]== ’D’ ) {

S e r i a l . p r i n t ( RxPkt [ i + 1 6 ] ) ; / / node ID

S e r i a l . p r i n t ( " " ) ;

f o r ( k= i +17; k< i +17+4; k ++){

i f ( k== i +18)

S e r i a l . p r i n t ( char ( RxPkt [ k ] ) ) ; / / da ta

e l s e

S e r i a l . p r i n t ( RxPkt [ k ] ) ;

}

S e r i a l . p r i n t ( " " ) ;

}

}

/ / e x t r a c t i n g pa th i n f o r m a t i o n from t h e frame

k =0;

f o r ( l =0 ; l < l e n g t h ; l ++){

i f ( RxPkt [ l +15]== ’D’ | | RxPkt [ l +15]== ’P ’ ) {

p a t h [ k ]= RxPkt [ l + 1 6 ] ;

k ++;

S e r i a l . p r i n t ( RxPkt [ l + 1 6 ] ) ;

S e r i a l . p r i n t ( "−" ) ;

}

}

S e r i a l . p r i n t ( NI ) ;

S e r i a l . p r i n t l n ( ) ;

f o r ( i =0 ; i <k ; i ++)

S e r i a l . p r i n t ( p a t h [ i ] ) ;

S e r i a l . p r i n t l n ( ) ;

TxAck ( pa th , k ) ; / / send acknowledgment f rame

f o r ( i =0 ; i <RxPktLnth ; i ++)

RxPkt [ i ] = 0 ;

r =0 ;

/ / c o n t i n u e w a i t i n g f o r da ta f r am es t i l l 5min t i m e has n o t e x p i r e d

whi le ( r !=1 && ( ( unsigned long ) m i l l i s ()− s t a r t _ t i m e ) <= i n t r v l _ n t ) {

i f ( S e r i a l . a v a i l a b l e ( ) ) {

Rx ( ) ;

i f ( ( RxPkt [3 ]==0 x90 ) && ( RxPkt [15]== ’D’ ) ) {

r =1;

break ;

}

}

}

a ++;

}

}

/ / TRANSMIT ACKOWLEDGMENT FRAME

void TxAck ( b y t e p a t h [ ] , i n t k ) {
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b y t e NI =0;

i n t i , l ;

b y t e chksm =0;

b y t e cheksum ;

b y t e t x a c k [ ] = { 0 x7E , 0x00 , 0x00 , 0x10 , 0x01 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , ’K’ , 0 , 0 } ;

t x a c k [ 2 ] = k +14;

f o r ( i =0 ; i <( k−1); i ++)

t x a c k [ i +18]= p a t h [ i ] ; / / p l a c e r e s t o f t h e pa th i n t h e frame f o r f o r w a r d i n g ack frame

f o r ( l =0 ; l <c ; l ++){

i f ( p a t h [ i ]== nodeTab le [ l ] [1 ] −48)

break ;

}

f o r ( j =0 ; j <8 ; j ++) / / s e t d e s t i n a t i o n a d d r e s s w i t h node from where da ta frame has been r e c e i v e d

t x a c k [ j +5]= RxPkt [ j + 4 ] ;

f o r ( j =0 ; j <2 ; j ++)

t x a c k [ j +13]= RxPkt [ j + 1 2 ] ;

f o r ( i =3 ; i <k +17; i ++) / / checksum c a l c u l a t i o n

chksm+= t x a c k [ i ] ;

cheksum =0xFF−chksm ;

t x a c k [ i ]= cheksum ;

S e r i a l . p r i n t ( " Tx P a c k e t " ) ;

f o r ( i =0 ; i <k +18; i ++)

S e r i a l . p r i n t ( t x a c k [ i ] ,HEX ) ;

S e r i a l . p r i n t l n ( ) ;

S e r i a l . w r i t e ( txack , ( k + 1 8 ) ) ; / / t r a n s m i t t i n g ack frame

S e r i a l . p r i n t l n ( ) ;

}

Listing B.2: Router API

i n t s e n s r =0; / / s e n s o r o u t p u t c o n n e c t e d t o ana log p i n AD0

b y t e nodeTab le [ 8 ] [ 1 2 ] ; / / 8 i m p l y maximum p o s s i b l e no . o f n e i g h b o r s +1

b y t e NextHop [ ] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;

b y t e RxPkt [ 5 4 ] ;

b y t e NL [ 8 ] ; / / 8 i m p l y maximum p o s s i b l e no . o f n e i g h b o r s +1

b y t e ch i ldNode [ ] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;

i n t RxPktLnth ; / / t o s t o r e t h e t o t a l l e n g t h ( i n b y t e s ) o f t h e p a c k e t i n c l u d i n g SD , chksum , l e n g t h

i n t i =0 ;

i n t r , c , s , x , j , l ;

b y t e NI ; / / node i d e n t i f i c a t i o n

unsigned long t x t i m e 1 ;

unsigned long t x t i m e 2 ;

unsigned long i n t r v l _ d a t a =60000; / / i n t e r v a l f o r s e n d i n g da ta = 1 min

unsigned long i n t r v l _ n t =300000; / / i n t e r v a l f o r r e p e a t i n g t h e e n t i r e a l g o r i t h m = 5 min

unsigned long s t a r t _ t i m e ;

void s e t u p ( ) {

S e r i a l . b e g i n ( 9 6 0 0 ) ;

S e r i a l . p r i n t l n ( " Wai t i ng f o r Begin Frame " ) ;

}
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void l oop ( ) {

d e l a y ( 2 0 0 ) ;

r =0 ;

whi le ( r ! = 1 ) { / / w a i t i n g f o r t h e b e g i n frame t o a r r i v e

i f ( S e r i a l . a v a i l a b l e ( ) ) {

Rx ( ) ;

i f ( ( RxPkt [15]== ’B ’ ) && ( RxPkt [3 ]==0 x90 ) )

r =1 ;

}

}

}

/ / R e c e i v e a l l t h e P a c k e t s

void Rx ( ) {

i f ( S e r i a l . a v a i l a b l e ( ) ) {

d e l a y ( 5 0 ) ;

i f ( S e r i a l . r e a d ( )==0 x7E ) {

RxPkt [ 0 ] = 0 x7E ; / / S t a r t D e l i m i t e r o f t h e frame

f o r ( i =1 ; i <3 ; i ++){ / / l e n g t h f i e l d o f t h e l a c k e t

RxPkt [ i ]= S e r i a l . r e a d ( ) ;

}

S e r i a l . p r i n t ( RxPkt [ 2 ] ) ;

RxPktLnth=RxPkt [ 2 ] + 4 ; / / 4 f o r chksum −1,SD−1, l e n g t h f i e l d −2 b y t e s

S e r i a l . p r i n t ( " T o t a l Length : " ) ;

S e r i a l . p r i n t l n ( RxPktLnth ) ;

whi le ( i <RxPktLnth ) { / / s t o r i n g t h e f u l l f rame i n t o RxPkt [ ] a r r a y

RxPkt [ i ]= S e r i a l . r e a d ( ) ;

i ++;

}

f o r ( i =0 ; i <RxPktLnth ; i ++){ / / p r i n t i n g t h e frame

S e r i a l . p r i n t ( RxPkt [ i ] ,HEX ) ;

S e r i a l . p r i n t ( " " ) ;

}

S e r i a l . p r i n t l n ( ) ;

i f ( ( RxPkt [15]== ’B ’ ) && ( RxPkt [3 ]==0 x90 ) ) / / on r e c e v i n g t h e b e g i n frame s t a r t Node D i s c o v e r y

NodeDisc ( ) ;

}

}

d e l a y ( 5 0 ) ;

}

/ / NODE DISCOVERY PROCESS

void NodeDisc ( ) {

s t a r t _ t i m e = m i l l i s ( ) ; / / r e c o r d t h e t i m e a t which node d i s c o v e r y p r o c e s s s t a r t e d

i n t k , l , c =0;

i n t nd =0 , a =0;

f o r ( k =0; k <8; k ++){ / / c l e a r node t a b l e

f o r ( l =0 ; l <12; l ++){

nodeTab le [ k ] [ l ] = 0 ;

}
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}

b y t e broadHops [ ] = {0x7E , 0 x00 , 0 x05 , 0 x08 , 0 x01 , 0 x42 , 0 x48 , 0 x01 , 0 x6B } ; / / ATBH1 (BH=1)

b y t e d i s c T i m e o u t [ ] = {0x7E , 0 x00 , 0 x05 , 0 x08 , 0 x01 , 0 x4E , 0 x54 , 0 x50 , 0 x04 } ; / / ATNT50 ( NT=8s )

b y t e nodeDisc [ ] = {0x7E , 0 x00 , 0 x04 , 0 x08 , 0 x01 , 0 x4E , 0 x44 , 0 x64 } ; / / ATND

S e r i a l . w r i t e ( broadHops , 9 ) ; / / Send ing ATBH1 t o l o c a l XBee

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 2 0 0 ) ;

S e r i a l . w r i t e ( d i s cT imeou t , 9 ) ; / / Send ing ATNT50 t o l o c a l XBee

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 2 0 0 ) ;

S e r i a l . w r i t e ( nodeDisc , 8 ) ; / / Send ing ATND t o l o c a l XBee

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 2 0 0 ) ;

whi le ( a <50){ / / r e c e i v e a l l t h e Neighbor Node I n f o r m a t i o n

r =0 ;

i f ( ( RxPkt [5 ]== ’N’ ) && ( RxPkt [6 ]== ’D’ ) ) {

f o r ( i =0 ; i <54; i ++)

RxPkt [ i ] = 0 ;

}

d e l a y ( 2 0 0 ) ;

whi le ( r !=1 && S e r i a l . a v a i l a b l e ( ) ) { / / w a i t i n g f o r ATND r e s p o n s e frame

Rx ( ) ;

i f ( ( RxPkt [5 ]== ’N’ ) && ( RxPkt [6 ]== ’D’ ) )

r =1 ;

}

i f ( ( RxPkt [5 ]== ’N’ ) && ( RxPkt [6 ]== ’D’ ) ) {

f o r ( l =0 ; l <2 ; l ++){

nodeTab le [ nd ] [ l ]= RxPkt [ l + 1 8 ] ; / / S t o r i n g NI

}

f o r ( l =0 ; l <2 ; l ++){

nodeTab le [ nd ] [ l +2]= RxPkt [ l + 8 ] ; / / S t o r i n g 16 b i t n twrk a d d r e s s

}

f o r ( l =0 ; l <8 ; l ++){

nodeTab le [ nd ] [ l +4]= RxPkt [ l + 1 0 ] ; / / S t o r i n g 64 b i t a d d r e s s

}

nd ++;

}

a ++;

}

c =0;

i f ( nd >1){ / / more than one node d e t e c t e d t h e n s t o r e Neighbor l i s t

S e r i a l . p r i n t l n ( " Node TAble : " ) ;

f o r ( k =0; k<nd ; k ++){

i f ( nodeTab le [ k ] [ 0 ] = = 8 2 )

S e r i a l . p r i n t ( "R" ) ;

i f ( nodeTab le [ k ] [ 0 ] = = 6 7 )

S e r i a l . p r i n t ( "C" ) ;

i f ( nodeTab le [ k ] [1 ] >=48 && nodeTab le [ k ] [ 1 ] < 5 8 ) { / / s t o r i n g Neighbor L i s t

S e r i a l . p r i n t ( ( nodeTab le [ k ] [ 1 ] ) −4 8 ) ;

NL[ k ] = ( ( nodeTab le [ k ] [ 1 ] ) −4 8 ) ;

c ++;
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}

e l s e {

S e r i a l . p r i n t ( ( nodeTab le [ k ] [ 1 ] ) ) ;

NL[ k ]= nodeTab le [ k ] [ 1 ] ;

c ++;

}

S e r i a l . p r i n t ( " " ) ;

f o r ( l =2 ; l <12; l ++){ / / p r i n t i n g Node Tab le

S e r i a l . p r i n t ( nodeTab le [ k ] [ l ] ,HEX ) ;

S e r i a l . p r i n t ( " " ) ;

}

S e r i a l . p r i n t l n ( ) ;

}

NI=NL [ 0 ] ; / / i t s own Node ID

S e r i a l . p r i n t ( " Neighbor L i s t : " ) ;

f o r ( i =1 ; i <c ; i ++){ / / p r i n t i n g Neighbor L i s t

S e r i a l . p r i n t (NL[ i ] ) ;

S e r i a l . p r i n t ( " " ) ;

}

r =0;

whi le ( r ! = 1 ) { / / w a i t i n g f o r Neighbor L i s t f rame

i f ( S e r i a l . a v a i l a b l e ( ) ) {

Rx ( ) ;

i f ( ( RxPkt [3 ]==0 x90 ) && ( RxPkt [15]== ’S ’ ) ) {

r =1;

FindNextHop ( c , RxPkt ) ;

re turn ;

}

}

}

}

}

/ / NODE CLASSIFICATION PROCESS

void FindNextHop ( i n t c , b y t e RxPkt [ ] ) {

i =0 ;

x =0;

r =0 ;

l =0 ;

i n t a ;

i n t j , k , y ;

i n t b =0;

i n t l e n =0;

b y t e i n f o [ 4 ] [ 6 ] = { { ’B ’ , ’B ’ , ’B ’ , ’B ’ , ’B ’ , ’B ’ } ,{ ’B ’ , ’B ’ , ’B ’ , ’B ’ , ’B ’ , ’B ’ } ,

{ ’B ’ , ’B ’ , ’B ’ , ’B ’ , ’B ’ , ’B ’ } ,{ ’B ’ , ’B ’ , ’B ’ , ’B ’ , ’B ’ , ’B ’ } } ;

b y t e pa ren tNode [ ] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;

b y t e S ib [ ] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;

i n t p =0 , h =0 , cn =0 ,w;

S e r i a l . p r i n t ( " no . o f n e i g h b r nodes " ) ;

S e r i a l . p r i n t l n ( c −1);

j =0 ;
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whi le ( x <8){

i f ( ( RxPkt [3 ]==0 x90 ) && ( RxPkt [15]== ’S ’ ) ) {

f o r ( l =0 ; l <( RxPkt [2 ] −13) ; l ++){ / / s t o r i n g t h e n e i g h b o r l i s t o f t h e s o u r c e and s o u r c e i n f o r m a t i o n

i n f o [ j ] [ l ]= RxPkt [ l + 1 6 ] ;

}

j ++;

}

x ++;

d e l a y ( 5 0 0 ) ;

f o r ( i =0 ; i <54; i ++)

RxPkt [ i ] = 0 ;

r =0 ;

whi le ( r !=1 && S e r i a l . a v a i l a b l e ( ) ) { / / w a i t i n g f o r Neighbor L i s t f rame

Rx ( ) ;

i f ( ( RxPkt [3 ]==0 x90 ) && ( RxPkt [15]== ’S ’ ) ) {

r =1;

break ;

}

}

}

h =0; cn =0;

f o r ( y =1; y<c ; y ++){ / / f i n d i n g paren t , s i b l i n g and c h i l d nodes

x =0;

f o r ( j =0 ; j <4 ; j ++){

f o r ( l = 0 ; ( l <6 && i n f o [ j ] [ l ] ! = ’B ’ ) ; l ++){

i f (NL[ y ]== i n f o [ j ] [ l ] ) {

x =1;

break ;

}

}

i f ( x ==1)

break ;

}

i f ( x ==1){

Sib [ h ]=NL[ y ] ;

h ++;

}

e l s e {

ch i ldNode [ cn ]=NL[ y ] ;

cn ++;

}

}

p =0;

f o r ( j = 0 ; ( j <4 && i n f o [ j ] [ 0 ] ! = ’B ’ ) ; j ++){

pa ren tNode [ p ]= i n f o [ j ] [ 0 ] ;

p ++;

}

i =0 ; / / f i n d i n g Nex t hop nodes

whi le ( i <p ) {

NextHop [ i ]= pa ren tNode [ i ] ;

i ++;
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}

f o r ( l =0 ; l <h ; l ++){

x =0;

f o r ( r =0 ; r <p ; r ++){

i f ( pa ren tNode [ r ]== Sib [ l ] )

x =1;

}

i f ( x ! = 1 ) {

NextHop [ i ]= Sib [ l ] ;

i ++;

}

}

l =0 ;

whi le ( l <cn ) {

NextHop [ i ]= ch i ldNode [ l ] ;

i ++;

l ++;

}

l e n = i ;

S e r i a l . p r i n t ( " P a r e n t Nodes : " ) ;

f o r ( i =0 ; i <p ; i ++){

S e r i a l . p r i n t ( pa ren tNode [ i ] ) ;

S e r i a l . p r i n t ( " " ) ;

}

S e r i a l . p r i n t l n ( ) ;

S e r i a l . p r i n t ( " C h i l d Nodes : " ) ;

f o r ( i =0 ; i <cn ; i ++){

S e r i a l . p r i n t ( ch i l dNode [ i ] ) ;

S e r i a l . p r i n t ( " " ) ;

}

S e r i a l . p r i n t l n ( ) ;

S e r i a l . p r i n t ( " S i b l i n g s : " ) ;

f o r ( i =0 ; i <h ; i ++){

S e r i a l . p r i n t ( S ib [ i ] ) ;

S e r i a l . p r i n t ( " " ) ;

}

S e r i a l . p r i n t l n ( ) ;

S e r i a l . p r i n t ( " Next Hop Nodes : " ) ;

f o r ( i =0 ; i < l e n ; i ++){

S e r i a l . p r i n t ( NextHop [ i ] ) ;

S e r i a l . p r i n t ( " " ) ;

}

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 5 0 0 ) ;

i f ( cn >0){ / / NL frame t r a n s m i s s i o n t o a l l t h e c h i l d nodes

f o r (w=0;w<cn ;w++){

w=TxNLtoChild (w, cn , c ) ;

d e l a y ( 1 0 0 ) ;

}

}

do{
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t x t i m e 1 = m i l l i s ( ) ; / / r e c o r d t i m e a t which 1 s t da ta t r a n s m i s s i o n i s t a k i n g p l a c e

DataTx ( NextHop , len , c ) ;

r =0 ; a =0; s =0;

whi le ( s <50){

whi le ( r !=1 && a <150){ / / w a i t f o r da ta frame

i f ( S e r i a l . a v a i l a b l e ( ) ) {

Rx ( ) ;

i f ( ( RxPkt [3 ]==0 x90 ) && ( RxPkt [15]== ’D’ ) )

r =1 ;

}

a ++;

}

i f ( ( RxPkt [3 ]==0 x90 ) && ( RxPkt [15]== ’D’ ) )

DataTx ( NextHop , len , c ) ;

s ++;

}

t x t i m e 2 = m i l l i s ( ) ;

whi le ( 1 ) { / / r e p e a t da ta t r a n s m i s s i o n e v e r y 1min

i f ( ( ( ( unsigned long ) m i l l i s ()− t x t i m e 1 )== i n t r v l _ d a t a ) | | ( ( unsigned long ) m i l l i s ()− s t a r t _ t i m e ) >= i n t r v l _ n t )

break ;

i f ( S e r i a l . a v a i l a b l e ( ) ) { / / w a i t i n g f o r da ta frame

Rx ( ) ;

i f ( ( RxPkt [3 ]==0 x90 ) && ( RxPkt [15]== ’D’ ) )

DataTx ( NextHop , len , c ) ;

}

}

} whi le ( ( ( unsigned long ) m i l l i s ()− s t a r t _ t i m e ) <= i n t r v l _ n t ) ; / / r e p e a t o n l y t i l l 5min t i m e e x p i r e s

}

/ / NL FRAME TRANSMISSION TO CHILD NODES

i n t TxNLtoChild ( i n t w, i n t cn , i n t l e n g t h ) {

i n t k =0;

b y t e chksm =0;

b y t e cheksum ;

b y t e t x d a t a [ ] = { 0 x7E , 0x00 , 0x00 , 0x10 , 0x01 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , ’S ’ , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;

t x d a t a [ 2 ] = l e n g t h +15;

t x d a t a [ 1 8 ] = NI ;

f o r ( l =0 ; l < l e n g t h ; l ++){ / / g e t t i n g c h i l d nodes a d d r e s s e s

i f ( ch i l dNode [w]== nodeTab le [ l ] [1 ] −48)

break ;

}

f o r ( k =0; k <8; k ++) / / 64 b i t a d d r e s s

t x d a t a [ k +5]= nodeTab le [ l ] [ k + 4 ] ;

f o r ( k =0; k <2; k ++) / / 16 b i t a d d r e s s

t x d a t a [ k +13]= nodeTab le [ l ] [ k + 2 ] ;

f o r ( k =0; k <( l e n g t h −1); k ++) / / add ing Neighbor l i s t t o t h e frame

t x d a t a [ k +19]=NL[ k + 1 ] ;

f o r ( k =3; k< l e n g t h +18; k ++) / / checksum c a l c u l a t i o n

chksm+= t x d a t a [ k ] ;

cheksum =0xFF−chksm ;

t x d a t a [ k ]= cheksum ;
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S e r i a l . p r i n t ( " Tx P a c k e t " ) ;

f o r ( k =0; k< l e n g t h +19; k ++)

S e r i a l . p r i n t ( t x d a t a [ k ] ,HEX ) ;

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 1 0 0 ) ;

S e r i a l . w r i t e ( t x d a t a , ( l e n g t h + 1 9 ) ) ; / / t r a n s m i t t i n g frame

S e r i a l . p r i n t l n ( ) ;

re turn w;

}

/ / DATA FRAME TRANSMISSION

void DataTx ( b y t e NextHop [ ] , i n t l e , i n t c ) {

b y t e chksm =0;

b y t e cheksum , ch , chk ;

i n t l e n g t h ;

long i n t Vb ;

i n t y ;

i n t s o u r c e ;

i n t t , k , a , g ;

b y t e t x d a t a [ ] = { 0 x7E , 0x00 , 0x00 , 0x10 , 0x01 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;

S e r i a l . p r i n t l n ( " S t a r t " ) ;

f o r ( i =0 ; i < l e ; i ++){

S e r i a l . p r i n t ( NextHop [ i ] ) ;

S e r i a l . p r i n t ( " " ) ;

}

S e r i a l . p r i n t l n ( ) ;

i n t r e a d i n g = ana logRead ( s e n s r ) ; / / ADC r e a d i n g o f s e n s o r v a l u e

f l o a t v o l t a g e = r e a d i n g ∗5 ;

v o l t a g e / = 1 0 2 4 . 0 ; / / g e t t i n g a c t u a l s e n s o r v a l u e

whi le ( r !=1 && S e r i a l . a v a i l a b l e ( ) ) { / / w a i t i n g f o r da ta frame

Rx ( ) ;

i f ( ( RxPkt [3 ]==0 x90 ) && ( RxPkt [15]== ’D’ ) )

r =1 ;

}

i f ( v o l t a g e >=2 | | RxPkt [15]== ’D’ ) {

i f ( v o l t a g e <2 && RxPkt [15]== ’D’ ) { / / da ta r e c e i v e d b u t t h r e s h o l d n o t c r o s s e d

l e n g t h =RxPkt [2] −12+2; / / +2 f o r pa th b y t e s ’P NI ’

i f ( RxPkt [ l e n g t h +7]== ’D’ )

s o u r c e =RxPkt [ l e n g t h + 8 ] ;

i f ( RxPkt [ l e n g t h +11]== ’P ’ )

s o u r c e =RxPkt [ l e n g t h + 1 2 ] ; / / knowing t h e s o u r c e o f da ta frame r e c e i v e d

t x d a t a [ 2 ] = l e n g t h +14; / / / f rame l e n g t h o f t h e p a c k e t

f o r ( i =0 ; i <( l e n g t h −2); i ++) / / add r e c e i v e d da ta t o t h e frame

t x d a t a [ i +17]= RxPkt [ i + 1 5 ] ;

t x d a t a [ i +17]= ’P ’ ; / / add ing a stamp o f pa th

i ++;

t x d a t a [ i +17]= NI ;

}

i f ( v o l t a g e >=2 && RxPkt [15]== ’D’ ) { / / da ta r e c e i v e d and t h r e s h o l d c r o s s e d

l e n g t h =RxPkt [2] −12+6; / / +6 f o r ’D NI Data ’

i f ( RxPkt [ l e n g t h +3]== ’D’ )
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s o u r c e =RxPkt [ l e n g t h + 4 ] ;

i f ( RxPkt [ l e n g t h +7]== ’P ’ )

s o u r c e =RxPkt [ l e n g t h + 8 ] ; / / knowing t h e s o u r c e o f da ta

t x d a t a [ 2 ] = l e n g t h +14;

S e r i a l . p r i n t ( v o l t a g e ) ;

a= v o l t a g e ∗100;

i =3 ;

whi le ( i >=0){ / / v o l t a g e c o n v e r s i o n i n t o frame

i f ( i ==1){

t x d a t a [ i +13+ l e n g t h ]= ’ . ’ ; / / . has hex v a l u e o f 2E

i −−;

}

e l s e {

t =a %10;

t x d a t a [ i +13+ l e n g t h ]= t ;

a=a / 1 0 ;

i −−;

}

}

f o r ( i =0 ; i <( l e n g t h −6); i ++)

t x d a t a [ i +17]= RxPkt [ i + 1 5 ] ;

t x d a t a [ i +17]= ’D’ ; / / i d e n t i f y i n g t h a t i t s a da ta frame

i ++;

t x d a t a [ i +17]= NI ; / / i m p l y i n g t h e g e n e r a t o r o f t h e da ta

S e r i a l . p r i n t l n ( ) ;

}

i f ( v o l t a g e >=2 && RxPkt [ 1 5 ] ! = ’D’ ) { / / T h r e s h o l d c r o s s e d b u t n o t r e c e i v e d any da ta frame

l e n g t h =6;

t x d a t a [ 2 ] = l e n g t h +14;

S e r i a l . p r i n t ( v o l t a g e ) ;

a= v o l t a g e ∗100;

i =3 ;

whi le ( i >=0){ / / v o l t a g e b e i n g p u t i n f rame

i f ( i ==1){

t x d a t a [ i +19]= ’ . ’ ; / / . has hex v a l u e o f 2E

i −−;

}

e l s e {

t =a %10;

t x d a t a [ i +19]= t ;

a=a / 1 0 ;

i −−;

}

}

S e r i a l . p r i n t l n ( ) ;

f o r ( i =0 ; i <4 ; i ++){

S e r i a l . p r i n t ( t x d a t a [ i + 1 9 ] ) ;

S e r i a l . p r i n t ( " " ) ;

}

S e r i a l . p r i n t l n ( ) ;

t x d a t a [ 1 7 ] = ’D’ ; / / i d e n t i f y i n g t h a t i t s a da ta frame
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t x d a t a [ 1 8 ] = NI ; / / i m p l y i n g t h e g e n e r a t o r o f t h e da ta

s o u r c e = ’B ’ ; / i a s t h e r e i s no s o u r c e o f d a t a f rame a s s i g n i n g i t t o ’B ’

}

S e r i a l . p r i n t l n ( s o u r c e ) ;

g =0;

whi le ( g< l e ) {

i f ( NextHop [ g ] ! = s o u r c e ) { / / i f n e x t hop i s n o t as t h e node s e n d i n g da ta frame

f o r ( l =1 ; l <c ; l ++){

i f ( NextHop [ g ]== nodeTab le [ l ] [1 ] −48) / / comparing node t a b l e an d n e x t hop node

break ;

}

S e r i a l . p r i n t l n ( NI ) ;

S e r i a l . p r i n t l n ( NextHop [ g ] ) ;

f o r ( k =0; k <8; k ++) / / p u t t i n g d e s t i n a t i o n a d d r e s s i n t o t h e frame

t x d a t a [ k +5]= nodeTab le [ l ] [ k + 4 ] ;

f o r ( k =0; k <2; k ++)

t x d a t a [ k +13]= nodeTab le [ l ] [ k + 2 ] ;

/ / BATTERY VOLTAGE ASSESSMENT

b y t e V b a t t e r y [ ] = { 0 x7E , 0 x00 , 0 x0F , 0 x17 , 0 x01 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x00 , 0 x02 ,

’ I ’ , ’S ’ ,0 x00 } ; / / r emote ATIS command

f o r ( k =0; k <8; k ++) / / p u t t i n g a d d r e s s o f n e x t hop i . e , d e s t i n a t i o n a d d r e s s i n t o t h e frame

V b a t t e r y [ k +5]= nodeTab le [ l ] [ k + 4 ] ;

f o r ( k =0; k <2; k ++)

V b a t t e r y [ k +13]= nodeTab le [ l ] [ k + 2 ] ;

ch =0; chk =0;

f o r ( k =3; k <18; k ++) / / cheksum c a l c u l a t i o n

ch+= V b a t t e r y [ k ] ;

chk =0xFF−ch ;

V b a t t e r y [ k ]= chk ;

S e r i a l . p r i n t ( " V b a t t e r y P a c k e t " ) ;

f o r ( k =0; k <19; k ++){

S e r i a l . p r i n t ( V b a t t e r y [ k ] ,HEX ) ;

S e r i a l . p r i n t ( " " ) ;

}

S e r i a l . w r i t e ( V b a t t e r y , 1 9 ) ; / / t r e n s m i t t i n g ATIS command

S e r i a l . p r i n t l n ( ) ;

y =0;

whi le ( y ! = 1 ) { / / w a i t i n g f o r ATIS r e s p o n s e frame

i f ( S e r i a l . a v a i l a b l e ( ) ) {

Rx ( ) ;

i f ( RxPkt [3 ]==0 x97 && RxPkt [15]== ’ I ’ && RxPkt [16]== ’S ’ ) {

Vb = ( ( RxPkt [ RxPkt [2]+3−2] < <8) | RxPkt [ RxPkt [2 ]+3 −1 ] ) ;

Vb=(Vb∗1 2 0 0 ) / 1 0 2 4 ; / / Vb c a l c u l a t i o n

S e r i a l . p r i n t l n ( Vb ) ;

y = 1 ; ;

}

}

}

i f ( Vb>500){ / / c o n d i t i o n on minimum Vb r e q u i r e d

chksm =0; cheksum =0;

f o r ( k =3; k< l e n g t h +17; k ++) / / cheksum c a l c u l a t i o n
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chksm+= t x d a t a [ k ] ;

cheksum =0xFF−chksm ;

t x d a t a [ k ]= cheksum ;

S e r i a l . p r i n t ( " Tx P a c k e t " ) ;

f o r ( k =0; k< l e n g t h +18; k ++){

S e r i a l . p r i n t ( t x d a t a [ k ] ,HEX ) ;

S e r i a l . p r i n t ( " " ) ;

}

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 2 0 0 ) ;

S e r i a l . w r i t e ( t x d a t a , ( l e n g t h + 1 8 ) ) ; / / t r a n s m i t t i n g t h e da ta frame

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 1 0 0 0 ) ;

r =0 ;

x =0;

whi le ( r !=1 && x <150){ / / w a i t i n g f o r acknowledgement f rame

i f ( S e r i a l . a v a i l a b l e ( ) ) {

Rx ( ) ;

i f ( ( RxPkt [3 ]==0 x90 ) && ( RxPkt [15]== ’K’ ) ) {

r =1;

S e r i a l . p r i n t l n ( " S u c c e s s f u l l y t r a n s m i t e d t o C o o r d i n a t o r " ) ;

}

}

x ++;

}

}

i f ( ( RxPkt [3 ]==0 x90 ) && ( RxPkt [15]== ’K’ ) )

break ;

e l s e

g ++; / / go t o n e x t node i n n e x t hop node a r r a y

}

}

i f ( ( RxPkt [3 ]==0 x90 ) && ( RxPkt [15]== ’K’ ) ) {

k=RxPkt [2] −13;

i f ( k >0) / / i f ack i s t o be forwarded t o o t h e r nodes i n pa th

TxAck ( c ) ;

}

}

}

/ / FORWARDING ACKOWLEDGEMENT TO OTHER NODES IN PATH

void TxAck ( i n t c l ) {

i n t i , l , k , j ;

b y t e chksm =0;

b y t e cheksum ;

b y t e t x a c k [ ] = { 0 x7E , 0x00 , 0x00 , 0x10 , 0x01 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , ’K’ , 0 , 0 } ;

k=RxPkt [2] −13;

i f ( k >0){

t x a c k [2]=15+ k−1;

f o r ( i =0 ; i <( k−1); i ++) / / i n f o r m i n g abou t f u r t h e r pa th i f p r e s e n t

t x a c k [ i +18]= RxPkt [ i + 1 6 ] ;
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S e r i a l . p r i n t l n ( RxPkt [ i + 1 6 ] ) ;

f o r ( l =0 ; l < c l ; l ++){ / / f i n d i n g a d d r e s s o f t h e node t o which ack i s t o be fo rwarded

i f ( RxPkt [ i +16]== nodeTab le [ l ] [1 ] −48)

break ;

}

f o r ( j =0 ; j <8 ; j ++) / / p u t t i n g d e s t i n a t i o n a d d r e s s i n f rame

t x a c k [ j +5]= nodeTab le [ l ] [ j + 4 ] ;

f o r ( j =0 ; j <2 ; j ++)

t x a c k [ j +13]= nodeTab le [ l ] [ j + 2 ] ;

f o r ( i =3 ; i <( k−1)+18; i ++) / / checksum c a l c u l a t i o n

chksm+= t x a c k [ i ] ;

cheksum =0xFF−chksm ;

t x a c k [ i ]= cheksum ;

S e r i a l . p r i n t ( " Tx P a c k e t " ) ;

f o r ( i =0 ; i <( k−1)+19; i ++)

S e r i a l . p r i n t ( t x a c k [ i ] ,HEX ) ;

S e r i a l . p r i n t l n ( ) ;

d e l a y ( 2 0 0 ) ;

S e r i a l . w r i t e ( txack , ( ( k −1)+19) ) ; / / t r a n s m i t t i n g t h e frame

S e r i a l . p r i n t l n ( ) ;

}

}
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