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ABSTRACT

KEYWORDS: Hybrid Memory Cube, Requester, Link Retry, FLIT and CRC

Hybrid Memory Cube (HMC) is new DRAM technology. HMC scores better in terms

of power, area and performance compared to current DDR SDRAMs. So it is said, HMC is

going to be the future of DRAMs. As the data transmission techniques followed by HMC

are completely different from DDR SDRAMs, we need a new interface block to connect

the processors with HMC. My project work involves building a circuit which interfaces the

processor with HMC. This involves study of data transmission mechanism used by HMC

and implementation of interface block using the same.

The interface block being on the processor side can be called Requester as it sends

the requests to memory. As per the HMC data transmission protocol, Requester block

consists of three layers namely Transaction, Link and Physical layers. The Requester block

can also be divided into two blocks namely Sending and Receiving block. In addition to

them, Requester also consists of a Retry block to take care of transmission failures. Entire

Requester block is implemented. A Test Bench is also written to verify the working of

the Requester block. The test bench involved creating read and requests to Memory and

printing out the Responses from Memory. The code for the entire project is written in a

HDL namely Bluespec System Verilog(BSV).
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CHAPTER 1

INTRODUCTION

1.1 Overview

A group of people in Reconfigurable and Intelligent Systems Engineering (RISE) Lab

in the Computer Science Dept. of IIT Madras are actively involved in building processors

for various applications. They want their processors to have support for Hybrid Mem-

ory Cube(HMC), as HMC is going to be upcoming DRAM technology. So I am given a

task to build an interface block that connects processor with HMC. The interface block

needs to have both sending and receiving sections. Sending section receives read/write

requests from processor and converts them to packets and sends them to HMC. The re-

ceiving section will take care of extracting packets received from HMC, and sending the

extracted read/write responses to the processor. As per the HMC data transmission proto-

col, Requester block can also be divided into 3 layers namely transaction, link and physical

layers. The packets pass through all the 3 layers in both directions.

1.2 Objective

Main focus of the project is to implement both sending and receiving sections of the in-

terface block. It should support the retry mechanism to take care of transmission failures.

The block needs to be designed by writing code in HDL namely Bluespec System Verilog.

It needs to be synthesized and tested on FPGA which has HMC installed on it.



1.3 Organization of the thesis

Chapter 2 deals with architecture and configuration of Hybrid Memory Cube. It dis-

cusses its logic base configuration which consists of multiple serial I/O links. It also dis-

cusses bandwidth details of HMC.

Chapter 3 deals with data transmission mechanism used by HMC. It discusses the 3

layers of the link in detail. It discusses the constituents of Request and Response packets.

It discusses error detection technique used by the protocol. It also describes the link retry

feature that is used to to take care of transmission failures.

Chapter 4 gives us implementation perspective of the project. It explains in detail how

each block of the interface is implemented in Bluespec System Verilog(BSV). It also de-

scribes how the Test Bench was written to verify the working of the interface module.

Chapter 5 contains a conclusion and description on the future work.
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CHAPTER 2

HYBRID MEMORY CUBE

HMC is a new DRAM architecture that is being worked out by a consortium of many

technology companies. The companies include Micron, Hynix, Samsung, Altera, Xilinx,

IBM, ARM and Open Silicon. HMC promises higher access speeds when compared to the

current DDR SDRAMs. It is said that HMC is going to replace the current DDR SDRAMs

in near future.

2.1 Architecture

Architecture of HMC differs from conventional DRAMs. In HMC, several DRAM die

are stacked one above the other to make a 3D structure, a cube. This structure will have a

logic die at the base. As it contains both memory and logic die, it is called Hybrid Memory

Cube. Generally in a single package of HMC, there will be either four or eight DRAM

die and one logic die. All of them are stacked one above the other using through-Silicon

Via(TSV) technology. TSV technology makes the connections between the die possible.

Memory is organized vertically in each cube of HMC. Memory layers are divided into

partitions. Memory Partitions from various layers in a single stack combined with a cor-

responding controller in logic layer form a vault. Each vault is functionally and opera-

tionally independent.Each vault has a memory controller (called a vault controller) in the

logic base that manages all memory reference operations within that vault. Each vault con-

troller determines its own timing requirements. Refresh operations are controlled by the

vault controller, eliminating this function from the host memory controller.

Each vault controller may have a queue that is used to buffer references for that vault’s

memory. The vault controller may execute references within that queue based on need

rather than order of arrival. Therefore, responses from vault operations back to the external



Figure 2.1: HMC Organization

serial I/O links will be out of order. However, requests from a single external serial link to

the same vault/bank address are executed in order. Requests from different external serial

links to the same vault/bank address are not guaranteed to be executed in a specific order

and must be managed by the host controller.
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2.2 Logic Base Architecture

The logic base manages multiple functions for the HMC. It has multiple I/O links which

are full duplex. The data sent and received through link is serialized. The logic base con-

tains memory controllers for all the vaults. It manages the routing and buffering between

I/O links and vaults. It has Mode and Configuration registers. It also contains BIST for

the memory and logic layers. It also supports JTAG,I2C,SPI interfaces for maintenance

purpose. Below given is the block diagram of 4-link configuration.

Figure 2.2: HMC Block Diagram

All HMC vaults are connected to external I/O links through crossbar switch as shown

in the figure above. External I/O links contain 16 input lanes and 16 output lanes for full

duplex operation. This is called full-width configuration. HMC can also support half-

width(8 lanes) and quarter-width(4 lanes) configuration. Number of links that HMC can

support varies from 2 to 4. Speed of each link varies from 12.5 to 30 Gb/s. The memory

5



density it can support is either 4 GB or 8 GB. Number of vaults is 32. Memory banks

can be either 256(4 GB) or 512(8 GB). Maximum aggregate link bandwidth it can support

is 480 GB/s. Maximum suported DRAM data bandwidth is 320 GB/s and the maximum

vault bandwidth it can support is 10 GB/s.

The communication across a link is in the form of packets. Packets specify single,

complete operations. For example, a WRITE request of 128 bytes of data. No specific

timing can be mentioned for a request i.e the amount it takes to serve a request varies. The

reasons for such a behavior are given below.

• The vaults reorder their requests to optimize bandwidths and to reduce average la-
tency

• Independent vaults serving their requests independently of other vaults. So the order
in which the responses returned may not be the order in which the requests were
made.

6



CHAPTER 3

DATA TRANSMISSION MECHANISM

HMC talks to the outside world only through I/O links. As per the data transmission

mechanism followed by HMC, these links send and receive data in the form of packets.

All the read/write requests/responses should be in the form of packets before they are sent

across. Each packet is further divided into 128-bit flow units called ”FLITs”. These FLITs

are serialized, transmitted across the physical lanes of the link, then re-assembled at the

receiving end of the link.

Figure 3.1: Link Data Transmission

As we see in the figure above, two sides of the link are connected to two blocks namely

Requester and Responder. Requester is a block which sends requests and receives re-

sponses. Responder is a block which sends responses and receives requests. As we can



see here, these blocks can be further divided into 3 layers namely Transaction, Link and

Physical layers. Now let us discuss these 3 layers in detail.

3.1 Transaction Layer

Transaction Layer plays a major role in data transmission. This is the layer where the

requests/responses get converted to packets and vice-versa. The transaction layer provides

the definition of the packets, the fields within the packets, and the packet verification and

retry functions of the link. A packet always includes an 8-byte header at the beginning of

the packet and an 8-byte tail at the end of the packet. The header includes the command

field that identifies the packet type, other control fields, and when required, the address-

ing information. The tail includes flow and link-retry control fields along with the CRC

field. Two different packet types are used at the transaction layer. They are Request and

Response packets.

Request Packets These are issued by the requester (host or HMC configured as a pass-

thru link). The request packet header includes address information to perform a READ or

WRITE operation. Write request packets include data FLITs.

Response Packets These are issued by the responder (HMC configured as a host link).

Response headers do not include address information. READ responses include data

FLITs, and can optionally include write response tags embedded in the header. Write

response packets do not include data FLITs.

Each packet type has its own defined header and tail formats. Packets that consist of

multiple FLITs are transmitted across the link with the least significant FLIT number first.

The first FLIT includes the header and the least significant bits (LSBs) of the data. Subse-

quent data FLITs progress with more significant data following. The figure 3.2 shows the

layout for packets with and without data.

In the following sections, first we will look at what the request/response packet’s Head-

/Tail comprises. We will discuss various fields available in Head and Tail of a packet. We

8



Figure 3.2: Packet Layouts

will also discuss how each field of Head/Tail is useful for packet transmission in a detailed

manner.

3.1.1 Packet Formats

Here we see the formats of Request and Response packets. We will see what the Header

and Tail of Request/Response packets will consist of.

Request Packets carry request commands from the processor to HMC. The table given

below shows the fields of Header of a Request Packet.

Table 3.1: Request Packet Header Fields

Name Field
Label

Bit
Count

Bit
Range

Function

Cube ID CUB 3 [63:61] CUB field used to match request with tar-
get cube.

Reserved RES 3 [60:58] Reserved: These bits are reserved for fu-
ture address or Cube ID expansion.

Address ADRS 34 [57:24] Request address
Reserved RES 1 [23]
Tag TAG 11 [22:12] Tag number uniquely identifying this re-

quest.
Packet Length LNG 5 [11:7] Length of packet in FLITs
Command CMD 7 [6:0] Packet Command

9



The table given below shows the fields of Request Packet’s Tail.

Table 3.2: Request Packet Tail Fields

Name Field
Label

Bit
Count

Bit
Range

Function

Cyclic Redun-
dancy Check

CRC 32 [63:32] The error-detecting code field that covers
the entir packet.

Return Token
Count

RTC 3 [31:29] Return token count for transaction-layer
flow control.

Source Link
ID

SLID 3 [28:26] Used to identify the source link for re-
sponse routing.

Reserved RES 5 [25:21] Reserved
Sequence
number

SEQ 3 [20:18] Incrementing value for each packet trans-
mitted.

Forward Retry
Pointer

FRP 9 [17:9] Retry pointer representing this packet’s
position in the retry buffer.

Return Retry
Pointer

RRP 9 [8:0] Retry pointer being returned for other side
of link

Response packets carry response commands from the HMC to processor. The table

given below shows the fields of Header of a Response Packet.

Table 3.3: Response Packet Header Fields

Name Field
Label

Bit
Count

Bit
Range

Function

Cube ID CUB 3 [63:61] The target cube inserts its Cube ID num-
ber into this field.

Reserved RES 19 [60:42] The host will ignore bits in this field.
Source Link
ID

SLID 3 [41:39] Used to identify the source link for re-
sponse routing.

Reserved RES 5 [38:34] The host will ignore bits in this field.
Atomic Flag AF 1 [33] Atomic Flag
Reserved RES 10 [32:23] The host will ignore bits in this field.
Tag TAG 11 [22:12] Tag number uniquely associating this re-

sponse to a request
Packet Length LNG 5 [11:7] Length of packet in FLITs
Command CMD 7 [6:0] Packet Command

10



The table given below shows the fields of Response Packet’s Tail.

Table 3.4: Response Packet Tail Fields

Name Field
Label

Bit
Count

Bit
Range

Function

Cyclic Redun-
dancy Check

CRC 32 [63:32] The error-detecting code field that cov-
ers the entire packet.

Return Token
Count

RTC 3 [31:29] Return token count for flow control.

Error Status ERRSTAT 7 [28:22] Error status bits
Data Invalid DINV 1 [21] Indicates validity of packet payload.
Sequence
number

SEQ 3 [20:18] Incrementing value for each packet
transmitted.

Forward Retry
Pointer

FRP 9 [17:9] Retry pointer representing this
packet’s position in the retry buffer.

Return Retry
Pointer

RRP 9 [8:0] Retry pointer being returned for other
side of link.

The tables given above show the various fields available in the packet’s header/tail. Be-

low we will see how each field of the packet is used for successful transmission of data

between processor and HMC.

3.1.2 Commands

Each request/response packet carries a command associated with it. CMD field of the

packet’s header indicates specific command associated with the packet. From a command,

the following details can be inferred.

• Whether the request is read/write

• length of a packet

• the size of the data associated with a request/response i.e. it tells us no of bytes need
to be read/written to/from the memory

• if it is a request packet, whether response needs to be returned or not.

Commands can be divided into 3 categories based on the type of packets they reside

in. We will look at them one by one.

11



3.1.2.1 Request Commands

Request commands are issued by the requester i.e. processor. These are available in request

packet headers. Here are the various commands available.

• Write Requests size of the data can vary from 16-byte to 256-bytes

• Posted Write Requests size of the data can vary from 16-byte to 256-bytes

• Read Requests size of the data can vary from 16-byte to 256-bytes

• Mode Read/Write Requests

• Atomic Requests

3.1.2.2 Response Commands

Response Commands are issued by the responder i.e. HMC. These are available in re-

sponse packet headers. The table below shows various commands available.

Table 3.5: Response Commands

Command Description Symbol CMD field Packet Length
in FLITs

READ response RD RS 0111000 1 + data FLITs
WRITE response WR RS 0111001 1
MODE READ response MD RD RS 0111010 2
MODE WRITE response MD WR RS 0111011 1
ERROR response ERROR 0111110 1

3.1.2.3 Flow Commands

Flow Commands are issued by link master to facilitate retry and flow control on the link.

These are available in flow packet headers.These are not considered as requests so response

command is associated with them. The table 3.6 shows various commands available.

12



Table 3.6: Flow Commands

Command Description Symbol CMD field Packet Length
in FLITs

Null NULL 0000000 1
Retry Pointer Return PRET 0000001 1
Token Return TRET 0000010 1
Init Retry IRTRY 0000011 1

3.1.3 Packet Length

Packet Length is indicated by Length(LNG) field which is available in the packet’s

header. It indicates the total number of FLITs available in the packet. It’s a 5-bit field

i.e. the maximum length of a packet is 32. A packet that contains no data FLITs would

have LNG = 1; this represents the single FLIT holding the 8-byte header and 8-byte tail.

When generating response packets, the necessary data size is determined from the CMD

field in the corresponding request packet.

3.1.4 Tags

Each request is tagged with a unique number. Tag of a request resides in the TAG field

of packet’s header. TAG of a response is also unique as it is copied from the correspond-

ing request packet. Operational closure for requests is accomplished using the tag fields

in request and response packets. The tag value remains associated with the request until

a response is received indicating that the request has been executed. Tags in READ re-

quests are returned with the respective read data in the read response packet header. Write

response tags are returned within a write response packet. In the case of posted write re-

quests, because no response is returned and the HMC does not use the TAG field of posted

write requests, the host can populate this field with any value. When multiple host links

are connected to the HMC, each response packet will be returned on the same link as its

associated request. This keeps the tag range independent for each host link.

Tag fields in packets are eleven bits long, which is enough space for 2048 tags. All tags

are available for use. Tag assignment and reassignment are managed by the host. There

is no required algorithm to assign tag values to requests. HMC does not use the tag for

13



internal control or identification, only for copying the tag from the request packet to the

response packet.

Tags are assigned by control logic at the host link master and must not be used in another

request packet until a response tag with the same tag number is returned to that host link.

Other host links will use the same tag range of 2048 tags, but they are uniquely identified

by their association with each different host link. Additionally, in a multiHMC topology,

the host could choose to expand the number of usable tags by associating each tag set

(based on host link) with the target cube of the request. This is enabled by the inclusion

of the cube number in each response packet. Thus, the total maximum number of unique

tags is 2048 times the number of host links of one HMC, times the number of cubes in the

chain. For example, if four links of one HMC are connected from an HMC to the host,

there are 8192 usable tags for requests to the HMC.

As an implementation example, a host control logic might decide to provide a time-out

capability for every transaction to determine whether a request or response packet has been

lost or corrupted, preventing the tag from being returned. The timer in this implementation

example would consider link retry periods that occur to account for response packets that

are delayed, but still returned. Host timeout values must be determined from performance

modeling of the HMC using specific host request streams, with its address patterns and

transaction mix, to determine expected maximum latency of transactions. The transaction

timeout period must be guard-banded to allow for possible significant variability in latency

doe to host request stream variability.

3.1.5 Token counts

Flow control occurs in both directions on each link. The flow of transaction layer packets

is managed with token counts. Token counts are related to the available space in the input

buffer. It will help the transmitter to know the available space in input buffer of the receiver.

Token counts are represented as RTC field available in the tail of a packet. The value of

RTC field is not equal to the number of token counts returned. Actually, number of token

counts returned is encoded in the RTC field. The encoding is listed in Table 3.7 .
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Table 3.7: RTC Encoding

RTC[2:0] Token Count Returned
000 0
001 1
010 2
011 4
100 8
101 16
110 32
111 64

Each token represents the storage to hold one FLIT (16 bytes). The link slave input

buffer temporarily stores transaction layer packets as they are received from the link. (Flow

packets are not stored in the input buffer, and therefore, are not subject to flow control.)

The minimum size of this buffer must be equal to or greater than the number of FLITs in a

single packet of the largest supported length, but in general can hold many FLITS to enable

a constant flow across the link. The available space in this input buffer is represented in

a token count register at the link master. This gives the link master knowledge of the

available buffering at the other end of the link and the ability to evaluate whether there is

enough buffer space to receive every FLIT of the next packet to be transmitted.

The token count register is loaded during the initialization sequence with the maximum

number of tokens representing the available buffer space at the link slave when it is empty.

As the link master sends each transaction layer packet across the link, it must decrement

the token count register by the number of FLITs in the transmitted packet. As the packet

is received and stored in the input buffer, its FLITs use up the space represented by the

decremented value of token count register at the link master. As each packet is read out

of the input buffer, it is forwarded to a destination, and its FLIT location is freed up. This

requires a mechanism to return packet tokens to the link transmitter, using the opposite

link direction.

The input buffer control logic sends a count (representing the number of FLITs that

were read out of the input buffer when the packet was forwarded) to the local (adjacent)

link master. This count is returned in the return token count (RTC) field of the next possible
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packet traveling in the opposite direction on the link. At the link slave, the RTC field is

extracted from the incoming packet and sent back to the original link transmitter where its

value is added to the current value of the token count register. If no transaction layer packet

traffic is occurring in the return direction, the link master must create a flow packet known

as a token return (TRET) to return the token. Not returning tokens can lead to performance

degradation or stalling. TRET is described in TOKEN RETURN (TRET) Command.

Appropriate sizing of the link slave input buffer requires weighing the trade-offs be-

tween latency, throughput, silicon real estate, and routability. If there is a temporary pause

in the packet forwarding priority at the output of the input buffer (internal switch conflicts,

or destination vault flow control), a packet might not be emptied from the input buffer.

This would cause a pause in the return of the tokens. As long as this is infrequent and the

input buffer is sized to accommodate it, the packet flow will not be disrupted unless the

link is running at 100 percent busy. If the input buffer is empty, a specific implementation

may choose to bypass the input buffer and forward a packet immediately to its destination.

In this case, the tokens for the packet would be immediately returned to the link master.

As noted previously, the link master must not transmit a packet if there is insufficient

space in the input buffer at the other end of the link. The LNG field within the header of

each outgoing packet must be compared to the token count register to determine whether

the packet should be transmitted or the packet stream should be paused.

3.1.6 Error Detection

Cyclic Redundancy Check(CRC) is used as an error detection method in this protocol.

Calculated CRC for the entire packet is included in the CRC field of a packet’s tail. It

covers header, all data and non-CRC tail bits. CRC will be generated again at the receiving

end of the link. Error is detected if the generated CRC does not match the CRC embedded

in the packet. If there is an error, the packet will be re-transmitted.

The CRC algorithm used on the HMC is the Koopman CRC-32K. This algorithm was

chosen for the HMC because of its balance of coverage and ease of implementation. The
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polynomial for this algorithm is:

x32+x30+x29+x28+x26+x20+x19+x17+x16+x15+x11+x10+x7+x6+x4+x2+x+1

The CRC calculation operates on the LSB of the packet first. The packet CRC calcula-

tion must insert 0s in place of the 32-bits representing the CRC field before generating or

checking the CRC. For example, when generating CRC for a packet, bits [63: 32] of the

Tail presented to the CRC generator should be all zeros. The output of the CRC generator

will have a 32-bit CRC value that will then be inserted in bits [63:32] of the Tail before for-

warding that FLIT of the packet. When checking CRC for a packet, the CRC field should

be removed from bits [63:32] of the Tail and replaced with 32-bits of zeros, then presented

to the CRC checker. The output of the CRC checker will have a 32-bit CRC value that can

be compared with the CRC value that was removed from the tail. If the two compare, the

CRC check indicates no bit failures within the packet.

CRC field in the tail of every packet maintains the packet integrity. Because the entire

packet (including header and tail) is transmitted from the source link all of the way to the

destination vault, CRC is used to detect failures that occur not only on transmission across

the link, but along the entire path. CRC may be regenerated along the path if flow control

fields within the header or tail change. CRC regeneration is done in an overlapped fashion

with respect to a CRC check to ensure that no single point of failure will go undetected.

There may be cases when the first FLITs of a packet are forwarded before the tail is

received and the CRC is checked. This occurs in the HMCs link slave after a request

packet crosses a link and is done to avoid adding latency in the packet path. If the packet

is found to have a CRC error as it passes through the link slave, the packet is poisoned,”

meaning that a destination, in this case a vault controller, will recognize it as nonfunctional

and will not use it. The link slave poisons the packet by inverting a recalculated value of

the CRC and inserting that into the tail in place of the errored CRC. A successful link retry

will result in the original packet being resent, thus replacing the poisoned packet.
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Another example of a forwarded poisoned packet is the case in which DRAM errors

occur and are internally retried. If a parity error occurs on the command or address from

the vault controller to the DRAM, a response packet may be generated and transmission

back to the requester could be started before the parity error is detected. In this case, the

CRC in the tail of the response packet will be poisoned, meaning the vault controller will

invert the CRC and insert it into the tail of the packet. Consequently, the requester will

receive the poisoned packet and must drop it. The vault controller will retry the DRAM

request, and upon a successful DRAM access, another response packet will be generated

to replace the poisoned one.

If a packet travels across a link after it is poisoned, a link master will still be able to em-

bed flow control fields in the packet by recalculating the CRC with the embedded values,

then inverting the recalculated CRC so that the poisoned state will be maintained. Because

the flow control fields are valid in a poisoned packet, it is stored in the retry buffer. In

this case, the link slave on the other end of the link will recognize the poisoned CRC and

will still extract the flow control fields. Whenever a packet is poisoned, the CMD, ADRS,

TAG, and ERRSTAT fields are not valid, but the flow control fields (FRP, RRP, RTC) are

valid.

3.2 Link Layer

The link layer provides the low-level handling of the packets at each end of the link.

This layer is not assigned much of a task apart from handling communication across the

link not associated with the transaction layer. This consists of the transmission of NULL

FLITs and flow packets. These packets actually are dropped or created only at Link layer.

NULL FLITs All FLITs of a packet must be transmitted sequentially, without interrup-

tion, across the link. NULL FLITs are generated at the link layer when no other packets are

being transmitted. A NULL FLIT is an all-zeros pattern that (in common with all FLITs)

is scrambled prior to transmission. Any number of packets can be streamed back-to-back

across the link, or they can be separated by NULL FLITs, depending upon system traffic

and transaction layer flow control. There is no minimum or maximum requirement associ-
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ated with the number of NULL FLITs transmitted between packets. NULL FLITs are not

subject to flow control. The first nonzero FLIT following a NULL FLIT is considered to

be necessarily the first FLIT of a packet. Data FLITs within a packet may be all zeros, but

these lie between a header FLIT and a tail FLIT and therefore cannot be misinterpreted as

NULL FLITs.

Flow Packets Flow packets are generated by the link master to pass flow control and

retry control commands to the opposite side of the link. Flow packets are sent when no

other link traffic is occurring or when a link retry sequence is to be initiated. Flow packets

are single-FLIT packets with no data payload and are not subject to flow control. Flow

packets utilize the same header and tail format as request packets, but are not considered

requests, and do not have corresponding response commands.

3.3 Physcial Layer

Physical layer handles serialization, transmission, and deserialization. This layer takes

the FLITs sent from link/transaction layer and sends them over the outgoing lanes. It also

receives the data from the incoming lanes and sends the FLITs created from the data to the

link/transaction layer. It consists of two sub blocks namely logical sub-block and electrical

sub-block. Here we discuss the logical sub-block.

3.3.1 Logical Sub-Block

The transmitting logical sub-block contains serializer and scrambler, while the receiving

logical sub-block consists of deserializer and descrambler. Each FLIT takes the following

path.

1. 128-bit FLIT is sent over a wire(128-bit width) from link layer to the transmitting
logical sub-block in the physical layer.

2. The transmitting logical sub-block serializes each FLIT and drives it across the link
interface in a bit-serial form on each of the lanes.

3. The receiving logical sub-block deserializes each lane and recreates the 128-bit par-
allel FLIT. Receive deserializer FLIT alignment is achieved during link initialization.
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4. The 128-bit parallel FLIT is sent to the link layer.

The following subsections will describe the serialization and scrambling in detail.

3.3.1.1 Serialization and Deserialization

Link serialization occurs with the least-significant portion of the FLIT traversing across

the lanes of the link first. During one unit interval (UI) a single bit is transferred across

each lane of the link. For the full-width configuration, 16 bits are transferred simultane-

ously during the UI, so it takes 8UIs to transfer the entire 128-bit FLIT. For the half-width

configuration, 8 bits are transferred simultaneously, taking 16UIs to transfer a single FLIT.

The following table shows the relationship of the FLIT bit positions to the lanes during

each UI for full-width configuration.

Table 3.8: Unit Interval FLIT Bit Positions for Full-Width Configuration

Lane
UI 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
2 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
3 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48
4 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64
5 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80
6 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96
7 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112

Deserialization The receiving sub-block is connected to 16 incoming lanes for a full-

width configuration. It receives the data of 16 bits in each UI as shown in the table above.

Once 8 UIs are completed, the FLIT is built and sent to the link layer.

3.3.1.2 Scrambler and Descrambler

The protocol implements a scrambler to provide serial data with adequate edge density

for AC coupling and data driven clock recovery. Both scrambler and descrambler contain

the same logic. The difference is, scrambler lies in the transmitting section and the de-

scrambler resides in receiving logical sub-block. Figure 3.3 shows how they are included

in the path of data flow.
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Figure 3.3: Scrambler and Descrambler paths

For scrambling and descrambling we use Linear Feedback Shift Register(LFSR). Poly-

nomial of LFSR is set to 1 + x−14 + x−15. For scrambling, we XOR the data with LSB of

LFSR. We need a LFSR for each lane. So there will be 16 LFSRs in each of Scrambler and

Descrambler for full-width configuration. Seeding of LFSRs vary per lane. Below given

are the seeding values per lane.

Table 3.9: Scrambler Seed Values

Lane Seed Value
0 15’h4D56
1 15’h47FF
2 15’h75B8
3 15’h1E18
4 15’h2E10
5 15’h3EB2
6 15’h4302
7 15’h1380
8 15’h3EB3
9 15’h2769

10 15’h4580
11 15’h5665
12 15’h6318
13 15’h6014
14 15’h077B
15 15’h261F

3.4 Retry Mechanism

As the link transmits data at a very high speed, we need a mechanism to take care of

correcting transmission failures to increase system reliability and availability. Link retry is
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one such fault-tolerant feature that recovers the link when link errors occur. We rely upon

CRC, SEQ checks to detect transmission errors on link. Here is the mechanism to correct

the transmission failures.

Figure 3.4: Retry Block Diagram

In link master, we maintain a Retry Buffer. Link master keeps a copy of each packet

transmitted across the link in the Retry Buffer until it gets acknowledgement saying the

packet is transmitted without error. This acknowledgement process happens through Retry

Pointers embedded in the tail of the packet. Retry Pointer points to the position of the

packet in the Retry buffer. Retry Pointer is sent as FRP in tail along with the packet. If the

packet is transmitted successfully, it will sent as RRP in tail of some other packet traveling

in the opposite direction.

If there is an error(CRC,SEQ) which is detected by link slave, then link slave enters

error abort mode. In this mode, it will ask the local link master to send a StartRetry flag

back to the transmitting end using the other side of the link. The whole thing is captured
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in the figure 3.4 . The information related to the packets(FRP,RRP,buffer) that are flowing

from Device A to B are colored in Green, where as the information relating to the packets

traveling in opposite direction are colored in Blue.

3.4.1 Retry Pointers

As mentioned earlier, the retry pointer represents the packet’s position in the retry buffer.

The retry pointer transmitted with the packet points to the retry buffer location + 1 (to

which the tail is being written). This is the starting address of the next packet to be trans-

mitted.

There are two versions for the retry pointer.

FRP Retry pointer will be in the form of FRP as it is travelling in the forward direction,

this will be along with the packet. FRP is sent with every packet that is part of the normal

packet flow. This is embedded in FRP field of in the packet’s tail.

RRP RRP is a copy of FRP in the opposite direction of the link. This is embedded in the

RRP field of any packet’s tail that is traveling in the opposite direction. If there is no traffic

flowing in the opposite direction, then a PRET packet is created to send the FRP received

as RRP to the other side of the link.

The figure 3.5 shows implementation of Retry Buffer. The retry buffer is addressed

using FLIT addresses, and the retry pointer represents a FLIT position in the retry buffer.

Retry pointer of a packet always points to header FLIT of next packet in the Retry Buffer.

There will be two pointers to track the status of FLITs stored in the buffer. Read pointer

points to the FLIT that is going to retire from the buffer next. Write pointer points to the

position where next FLIT is going to be written. As retry buffer is a circular one, these

pointers wrap around the positions in the buffer.

Write pointer is incremented as the FLITs are written into the retry buffer from Output

buffer. When there is no error, read pointer will be changed to received RRP. That means,

it is retiring all the FLITs of the packet which transmitted without errors. If there is an
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Figure 3.5: Retry Buffer Implementation

error, link master starts a retry sequence. During retry sequence, FLITs will be read out

from buffer one by one and read pointer is incremented. FLITs will be retired until the

read pointer equals the write pointer.
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CHAPTER 4

IMPLEMENTATION DETAILS

This chapter describes how the interface block is implemented in Bluespec System Ver-

ilog. Then we discuss how the working of the block is verified by writing a Test Bench.

Figure 4.1: Requester Block

4.1 Design

The interface block being on the processor side can be called as Requester as it sends

requests to the Memory. Figure 4.1 shows the block diagram of the Requester block.



For easier understanding, the interface block can be divided into three parts namely

sending part, receiving part and retry section. We will discus in detail in the following

sections.

4.1.1 Sending

Sending part will handle the requests sent from processor. It will convert the requests

into packets and sends them to Memory. The packets are divided into FLITs. FLITs are

serialized and scrambled before they sent over the link. Here are microscopic details of the

Sending part.

Requests (read, write) sent to the Memory from the processor are added to Request

Queue. Requests taken out of Queue one by one will be sent to CreateFLITs module.

CreateFLITs module creates the packet for the corresponding request. The packet will be

created in the form of FLITs. CRC for a packet will be generated before the FLITs are

added to Output FIFO Buffer. Each FLIT taken out from Output FIFO will be sent to

Serializer block. Serializer block serializes the 128-bit FLIT into 16-bit subFLITs. That

means, each FLIT will be transformed into 8 subFLITs over 8 Unit Intervals of time. Each

subFLIT is converted to 16 1-bit lines. Each line will be scrambled before it is connected

to 16 sending lanes of link. Below we discuss each block in detail.

4.1.1.1 Request Queue

Request Queue is a FIFO data structure, an instantiation of mkSizedFIFO. The size of

Queue is fixed as 20 for testing purpose. i.e. It can hold a maximum of 20 Requests. Each

Request contains request command, address, data to be written to the memory if it is a

write request.

4.1.1.2 CreateFLITs

Each request taken out of Request Queue is stored in a PipelineFIFO. The current request

from PipelineFIFO will be dequeued and enqueued with a new request once the packet for

the current request is generated and sent to Output FIFO. Number of FLITs generated for
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a request depends on the Request command available in the request. The block diagram of

the CreateFLITs is given below.

Figure 4.2: CreateFLITs Block

Each FLIT will go through CRC Generator block before getting added to Output FIFO.

The Tail FLIT of a packet will be embedded with the CRC generated for the entire packet

before sending it to Output FIFO. When generating FLITs, we will be generating 4 types

of FLITs namely Head FLIT, Tail FLIT, Body FLIT and HeadTail FLIT. Each packet may

contain one or many of them depending on request command. If the number of FLITs is

1, then a packet will consists of only one HeadTail FLIT. If the number of FLITs is 2, then

the packet will consists of one Head FLIT and one Tail FLIT. If the number of FLITs is

more than 2, apart from one Head FLIT and one Tail FLIT the packet will contain one or

more Body FLITs. The FLITs will be generated in the following order and sent to CRC

Generation block. Head FLIT first, then Body FLITs and then Tail FLIT. Now lets have a

closer look at the CRC Generation block in details.

CRC Generation 32-bit CRC is generated using Koopman32K algorithm. CRC Gen-

erator contains a Register for the FLIT it is processing. The CRC Generator contains a

MyCRC module which takes 32 bits of data and results 32-bit CRC in one clock cycle. So
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Figure 4.3: CRC Generation Block

we need 4 clock cycles to processor a single FLIT. Thats why we need a Register to store

the FLIT for 4 clock cycles. We process Lower Significant bits of a FLIT first, then come

the Higher Significant bits. At the end of the 4th clock cycle FLIT will be transferred to

Output FIFO if it is not a Tail or HeadTail FLIT. If it is a Tail or HeadTail FLIT, we need

to wait for one more cycle for CRC result before we embed that into Tail of the packet. So

for Head and Body FLITs, CRC generator takes 4 clock cycles to process where as it takes

5 clock cycles for Tail and HeadTail FLITs. The block diagram of the CRC Generation is

given in figure 4.3 .

4.1.1.3 Output Buffer

This is a FIFO data structure, an instantiation of mkSizedFIFO. Outgoing FLITs will be

stored in this Buffer. Size of buffer is 20, i.e we can store a maximum of 20 FLITs. If the

FIFO is full, we will have a stall in the pipeline.
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4.1.1.4 Serializer and Scrambler

128-bit parallel FLIT sent from Output Buffer is first serialized and then scrambled.

Serializer FLITs taken from Output FIFO or Retry Buffer are sent to Serializer. 128-bit

FLIT is saved in a register. 16-bit wire rolls over the 128-bit FLIT register connecting 16

bits of the FLIT every cycle from LSB to MSB. It will take 8 clock cycles to transfer a

FLIT on to 16-bit wire. This 16-bit wire is connected to 16 1-bit wires.The block diagram

of Serializer is given below.

Figure 4.4: Serializer Block
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Scrambler There are 16 15-bit LFSRs created to scramble the data on 16 wires. Each

LFSR is seeded to a unique value as per the specifications. Each 1-bit wire is XORed with

LSB of LFSR and the result is connected to outgoing lane. Thus, 16 1-bit wires are XORed

with 16 LFSR LSBs and connected to 16 outgoing lanes. Below is the figure of Scrambler.

Figure 4.5: Scrambler Block

4.1.2 Receiving

Receiving part will handle the response packets received from Memory. Responses will be

extracted from the packets received and sent to Response Queue. Here are the microscopic

details of Receiving part.
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Responses from the Memory are received in the form of FLITs. 16 Receiving lanes

will be descrambled before they are connected to 16 1-bit lanes. These 16 1-bit lanes are

grouped to form a 16-bit subFLIT. SubFLITs received over the 8 clock cycles are grouped

together to form a 128-bit FLIT. Each FLIT will be marked as either Head/Tail/Body FLIT

before they are sent for CRC checking. After CRC checking each FLIT will loaded into

Input FIFO Buffer. Each FLIT taken from Input FIFO will be sent for packet extraction

module to extract the data or write acknowledgement received from memory. Each re-

sponse will be added to Response Queue from which processor can get the data.

4.1.2.1 Deserializer and Descrambler

16 incoming lanes are first converted to 16 1-bit wires. In this block, we have 16 15-bit

LFSRs to descramble the data. Like in Scrambler, here we XOR 16 1-bit wires with LSBs

of 16 LFSRs to get a sub FLIT of size 16 bits. Every cycle we will get a new sub-FLIT.

The sub-FLITs collected over 8 cycles are grouped together to form a FLIT. First we get

lower significant bits of FLIT. Here we use a simple shifter and OR functionality to create

a FLIT with the data collected over the past 8 cycles. Block diagram of Deserializer is

given in figure 4.6 .

CRC Checker 128-bit data received from deserializer is tagged as one of the types

namely Head, Tail, Body and HeadTail FLIT. Each FLIT goes through CRC checker be-

fore gets added to Input Buffer. CRC checker works same way as CRC generator with only

one difference. CRC checker not only generates the CRC, it also compares the generated

CRC with the CRC embedded in the packet and results error if there is a mismatch. This

error will be used to force retransmission of corresponding packet.

4.1.2.2 Input Buffer

This is a FIFO data structure, an instantiation of mkSizedFIFO. Incoming FLITs will be

stored in this Buffer. Size of buffer is 20, i.e we can store a maximum of 20 FLITs. If the

FIFO is full, we will have a stall in the pipeline.
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Figure 4.6: Deserializer Block

4.1.2.3 Extract Packet

Each FLIT taken out from Input FIFO will be sent for Packet Extraction. In this module,

from each FLIT we take the necessary data to get complete response from a packet. If the

packet consists of HeadTail FLIT, it must be a write response packet as there is no data

payload. We just take the TAG and errorstat is associated with the packet. Zero errorstat

field means the write is successful. If packet consists of more than 1 FLIT, obviously it

would be Read Response packet. We extract data payload from the packet by grouping

together the data received from Various FLITs. We reject the packets that show CRC

errors.

Each Response data taken from the Packet Extraction block will be sent to Response

Queue. Output of Response Queue will available for the processor. Response will contain
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Tag value of the Request to which it is attached, Errorstat message and the data read from

memory if it is a read response.

4.1.3 Retry

Retry mechanism involves majorly Retry Buffer and Retry block.

4.1.3.1 Retry Buffer

Retry Buffer is implemented using a Register File. Two pointers are created namely Read

and Write pointers. Read pointer is modified in 2 scenarios.

• Read pointer will be incremented by one when a FLIT is read out from the buffer.
This happens when there is a Link Retry.

• Read pointer can also be changed to a specific value. This happens when RRP is
received by link slave. Read pointer will be set to the RRP received.

Write pointer is incremented by one whenever there is a FLIT written to the buffer. As

Retry buffer needs to be a circular buffer, whenever the pointers are changed it is made

sure that they are wrapped around the buffer. Retry Buffer size is randomly selected such

that it is adequate enough for Link Retry testing. In real scenarios, Retry Buffer size needs

to be calculated based on traffic flow and transmission failures.

4.1.3.2 Retry Control Block

Retry block manages the Retry mechanism of the link. CRCSEQ Checker sends RRPs

extracted from received packets to Retry Control Block. It takes the RRPs and changes the

Read Pointer of the Retry Buffer. It also receives error abort signal from CRCSEQ Checker

when there is an error in received packet. It starts the Link Retry process. It manages

the state of link master during the Retry mechanism. It maintains the counters related

to IRTRY, clearErrorAbort and Retry Timer. It also keeps the FRP of last successfully

received packet. This will be used for link retry initiation. When there is a Link Retry,

it will prevent Output Buffer from sending out FLITs until Link Retry is finished. When

there is a Link Retry, it will make Retry Buffer to send out its FLITs one by one until Read

pointer equals Write pointer.
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Code The entire code of Requester block is distributed over the following files.

- Requester.bsv

- CreateFLITs.bsv

- Scrambler Serializer.bsv

- Descrambler Deserializer.bsv

- Extract Packet.bsv

- CRCGeneration.bsv

- CRCChecker.bsv

- Typedfn.bsv

- RetryBuffer.bsv

- RetryControlBlock.bsv

4.2 Verification

Verification of the Requester module(interface block) can be done in two phases.

Phase-I: This involves testing the module using simulations on Bluesim and GtkWave

Phase-II: Synthesize and dump the module on to FPGA and connect it to HMC. Altera

has some FPGA boards which have HMC installed on them. We can synthesize on to them

and test the module.

Phase-II was not carried out, as we couldnt get the FPGA board. So, only Phase-I is

carried out and below we see details of Phase-I.

Setup: To test the module on Bluesim, a verification setup has to be created which in-

volves Responder module, a Register File and a test bench along with Requester module.

All these units are connected as shown in the figure 4.7 . Here the Responder acts as re-

sponder link of HMC and Register File is used in place of HMC. Here the requests sent

will have addresses of Register File.

Here are various test cases to verify the working of the module. They are named based

on what they are trying to verify.
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Figure 4.7: Verification Setup

Data transmission: Here the test bench takes the requests from an input file and sends

it to the Requester and prints the responses in to an output file. Best way to check the

working of interface is to read the data that is written to a particular address i.e. first we

send a write request to a particular address and then a read request to the same address.

The read response should give us the data that we have to written to the address by write

request. This, we can do for various addresses. If data received and data sent matches for

all the addresses, then we can say data is transmitted correctly over the link. Mismatch

will result in debugging and rectifying the flaw in the design.

Here we have to check whether data is transmitted properly in both directions. We have

to check whether requests sent from Test Bench are received correctly by the DataMemory.

Similarly, we can check whether responses sent from DataMemory are received correctly

by the Test Bench. The requests/responses are converted to various formats such as FLITs,

Serialized bits etc. as they go over the link. We can tap at various places in packet flowing

path to check whether

• the FLITs are generated correctly for a request/response packet

• the FLITs are serialized and scrambled correctly

• the data is sent properly over the lanes,

• the data is received correctly over the lanes,

• the FLITs are reconstructed correctly

• the requests/responses are properly extracted at the other side of the link
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This tapping can be done in 2 ways either by printing to the shell or checking the

waveforms on gtkWave. We can also check the contents of all the buffers namely Output,

Input and Retry Buffers in every cycle. Location of the error is easily identified by tapping

which will be helpful in debugging.

CRC, SEQ check: Sequence checker can be tested by inducting a wrong sequence num-

ber while sending a packet from Responder. Same way we can alter some bits of the packet

intentionally to test whether the CRC checker is detecting the errors properly.

Retry Mechanism: Once there is an error in the packet transmitted, link slave goes into

error abort mode and erroneous packet will be retried. Here, we intentionally alter some

bits of the packet which results in CRC error. CRC error will trigger a link retry. We can

check the transmissions over the link once the retry starts up on bluesim shell or gtkWave.

We can see whether the transmissions over the link are following the Link Retry protocol

properly. Once the rety is completed, we have to receive the packet without any errors.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Hybrid Memory Cube specification 2.0 is followed to design the interface module. The

work mainly focused on the functionality of the interface module. Functionality wise, the

design is working correctly. Performance needs to be taken care in the future revisions.

Request template is assumed. Request template needs to be changed when it is integrated

with the processor. Sizes of the buffers used are some random numbers that are adequate

enough for testing purposes. These buffer sizes need to be modified based on the packet

traffic to avoid stalling. At the same time, storage requirement also need to be taken care

of while choosing the sizes.

This design works well with a single processor. To work in a multi-core environment

this needs to be modified if it has to work like a switch. They are many topologies available

for a multi-core environment. The best suited topology must be chosen to meet timing and

area requirements. Electrical interface to the module is not implemented as there are no

specifications related to it in the HMC spec document. While implementing scrambler

and descrambler, PRBS15 1.0 revision is followed instead of PRBS31 2.0 revision, as

the seeding values are not mentioned for PRBS31 2.0 in spec document. The module is

simulated on Bluesim and the waveforms are checked in GtkWave. As the HMC installed

FPGA board is not available, the design is not tested on FPGA.

Future Work:

• Integration with processor

• Optimization in terms of performance and storage

• Synthesis and Test on HMC installed FPGAs

• Implementation of Electrical Interface

• ASIC synthesis to know hardware parameters such Power, Timing and Area
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APPENDIX A

Bluespec System Verilog

BSV is a language used in design of electronic systems (ASICs, FPGAs and systems).

It is a very high level hardware description language and the code written in Bluespec is

completely synthesizable to hardware. Because of its high level and completely synthe-

sizable features, it has made many activities that are done in software simulation move to

FPGA based simulation.

A.1 Key Features of BSV

• High level atomic rules in place of Verilog method of always block.

• High level Interfaces instead of Verilog method of port list.

• Nested, parameterizable interfaces, allowing easy construction of complex inter-
faces.

• Automatic synthesis of the control logic to manage complex concurrency which is
the most error prone part of RTL design.

• High level constructs for types, with very flexible type parameterization and strong
static type-checking.

A.2 Bluespec System Verilog Constructs

A.2.1 Rules

BSV expresses synthesizable behavior with rules instead of synchronous always blocks.

Rules are powerful concepts for achieving correct concurrency and eliminating race con-

ditions. A primary feature of rules in BSV is that they are atomic; each enabled rule can

be considered individually to understand how it maintains or transforms state. Atomic-

ity allows the functional correctness of a design to be determined by looking at each of



the rules in isolation, without considering the actions of other rules. This one-rule-at-a-

time semantics greatly simplifies the process of determining the functional correctness of

a design.

In the hardware implementation compiled by the BSV compiler, multiple rules will ex-

ecute concurrently. The compiler ensures the actual behavior is consistent with the logical

behavior, thus preserving functional correctness while achieving performance goals.

Components of Rules

Rule Condition: A boolean expression which determines if the rule body is allowed to

execute or not.

Rule Body: A set of actions which describe the state updates that occur when the rule

fires.

Properties of Rules:

Execution of a rule w.r.t to all other rules is instantaneous, complete and ordered.

Instantaneous: All the actions in the rule body occur at a single, common instant and

there is no sequencing of actions within a rule.

Complete: When the rule fires, the entire body of the rule executes. There is no concept

of partial execution of a rule body.

Ordered: Each rule execution conceptually occurs either before or after every other rule

execution, but never simultaneously.

A.2.2 Modules

A module consists of three things: state, rules that operate on that state, and an interface

to the outside world (surrounding hierarchy). A module definition specifies a scheme that
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can be instantiated multiple times.

A.2.3 Methods

Signals and buses are driven in and out of modules using methods. These methods are

grouped together into interfaces. There are three kinds of methods:

Value Methods: Take 0 or more arguments and return a value.

Action Methods: Take 0 or more arguments and perform an action (side-effect) inside

the module.

ActionValue Methods: Take 0 or more arguments, perform an action, and return a result.

A.2.4 Interfaces

Interfaces provide a means to group wires into bundles with specified uses, described

by methods. An interface is a reminiscent of a struct, where each member is a method.

Interfaces can also contain other interfaces.
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A.3 Building a design in Bluespec System Verilog

The various steps involved in building a design in BSV is shown in Figure: A.1.

Figure A.1: Building a design in BSV

1. The designer writes the BSV code and it may contain Verilog, VHDL and C compo-
nents.

2. The BSV code is compiled into a Verilog or a Bluesim specification. This step has 2
stages:

• Pre-elaboration parsing and type checking.

• Post-elaboration code generation.

3. The compiled output is either linked to a simulation environment or processed by
synthesis tool.
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