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ABSTRACT

Deeply scaled CMOS circuits are vulnerable to soft and hard errors. These errors pose reliabil-

ity concern especially for systems used in space or in harsh environment. Some level of fault

mitigation techniques are now the essential requirement for the system design.

This thesis aims to develop a fault tolerant microarchitecture for an in-order RISC-V proces-

sor that provides a solution to the reliability issues considering power and area budget. Fault

tolerance is provided for the memories, specific registers and ALU which constitute the major

part of chip area. Instruction memory, data memory, architectural register file and program

counter register are supported with parity bits for Error Correcting Code (ECC). In our ap-

proach, data flows along with parity bits throughout the pipeline stages and shall be corrected

wherever it is required. The fault handling implementation of ALU is the combination of space

redundancy and time redundancy. The fault tolerant ALU comprises 5 types of functional units

(FUs) namely adder, multiplier, shifter, comparator and logical unit. All FUs are in dual modu-

lar redundant (DMR) configuration with their fault handling logic. Time redundancy technique

has been used for isolating faulty FU in case of permanent fault, where different recomputation

techniques have been used for different types of FUs. We implement this approach on a 5-stage

in-order pipelined processor based on RISC-V ISA (i.e. in-house C-Class Shakti processor) as

case study to make it resilient against transient and permanent faults.

Keywords: fault tolerant, single event effects, soft and hard errors, redundancy, pipelined

microprocessor
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CHAPTER 1

INTRODUCTION

As complementary metal-oxide-semiconductor (CMOS) technology advances to the nanome-

ter scale, the ever-increasing capability of integrating more and more devices and elements on

a single die is boon to the semiconductor industry. Meanwhile, the reliability of the integrated

circuits (ICs) product is being severely challenged due to the fact that many previous negligible

effects are becoming more prominent, causing significant performance and reliability degrada-

tions of nanometer scale integrated circuits.

Moores Law which stipulates that transistor density will double every eighteen months, has

been the driving force in advancing CMOS technology. As CMOS technology evolves into the

nanometer regime, advanced manufacturing technologies and CAD techniques enable billions

of transistors to be fabricated on a single chip, and multiple components will be integrated onto

a chip to become a System-on-a-Chip (SoC).While transistor scaling results in high architec-

tural performance , high transistor density and low power consumption, it also increases the

concern on the reliability of ICs, specially systems working in space or in harsh environment.

As the design complexity continues increasing, power consumption, yield and reliability are

three prime challenges for designers in deep nanometer technologies.

Power Consumption: Increasing leakages (band-to-band tunnelling and sub-threshold cur-

rent), Increasing devices count and high clock frequencies in modern designs constantly lead

to an increase of static and dynamic power dissipation, power density and heating at unaccept-

able levels. These concerns affect any design in general, but they are even more critical in

portable and embedded applications due to battery duration and heating dissipation constraints.

Clearly, reducing power dissipation has become one of the fundamental constraints for present

and future designs. A variety of process-level, architectural-level, circuit-level and software-

level approaches have been investigated to deal with this problem. At circuit level, an efficient

power reduction approach consists at lowering voltage levels as much as possible. However,

this action affects adversely the reliability as noise margin reduces that leads to significant soft



errors and delay/timing faults. Dynamic Voltage Scaling (DVS) has emerged as the most effi-

cient scheme to reduce SoC power dissipation.

Yield: As we scale deeper to nanometric domain, permanent faults related to the fabrica-

tion process gain importance and affect severely the fabrication yield of complex SoCs. Such

faults are already a concern for embedded memories and require built-in-self-repair (BISR) to

maintain acceptable yield for SoCs which include large memory arrays. Memories are early

indicators of yield and reliability trends. As to the combinational logic, spot defects create var-

ious fault types such as stuck-at faults, short circuits and open circuits etc, which often affect

correct operation or increase the circuit delays. With nowadays clock operating speeds, even

short delay variations will result in delay/timing faults. Thus, delay/timing faults produced by

small spot defects are becoming a severe concern. Furthermore, process parameter variations,

both intra-die and inter-die variations in channel length, oxide thickness, gate oxide thickness

and flat-band voltage are another important concern.

Reliability: With the channel length shrinks to nanometer scale, reliability degradation has

become serious design concern. Several factors conjointly contribute to the reliability degra-

dation, such as radiation-induced soft/hard-error effects, device degradation and fabrication-

induced parameter variability. Single event effects (SEE) are now the major concern in secure

or critical systems. Meeting reliability specifications will be a critical customer requirement

especially in space and nuclear industries. Several factors impact the reliability of the ICs de-

sign. First of all, as the device dimensions approaches to the size of atoms, the environmental

interferences plays a pivotal role than ever. Secondly, as the supply voltage reaches sub-volt

range, noise margin of the semiconductor devices has been greatly reduced. Also, the number

of devices on a single die is increasing exponentially with the integration capability; they are

operating at a much faster rate as the operating frequency reaches multi-GHz range. This result

in cross talk, ground bounce, EMI related problems that lead more transient faults in the sys-

tem.

Design-for-Reliability (DFR) becomes an important practice to achieve a high level of fault

tolerance and the reliable design becomes imperative in the current and next technology gener-

ations. Many techniques to improve reliability can incur performance, energy, or cost penalties.

However, some solutions targeting at a specific failure mechanism could adversely affect other

mechanisms. For example, lowering operational voltage can help mitigate power problems but
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increases the vulnerability to soft errors. Hardware redundancy techniques like Triple Modular

Redundancy (TMR) increases the reliability of the system by fault masking but on the other

hand require significant power and area overhead. Therefore there is always some trade-off

between reliability and area/power penalty.

In this thesis, we will provide a fault-tolerant solution for mitigating soft and hard errors in

the processor design keeping area and power budget in mind. We will discuss that how tradi-

tional Error Correcting Codes (ECC) technique is implemented on memories and registers to

give better fault tolerance to the overall system architecture. Our main focus will be on pro-

tecting the ALU against transient and permanent faults. The organisation of this thesis is as

follows: Chapter 2 introduces an overview of the soft and hard errors in nanometer technolo-

gies. Chapter 3 explains our proposed fault tolerant approach and its implementation. Chapter

4 covers the verification methodology adopted for fault tolerant design. Chapter 5 provides

overview of simulation set up and FPGA implementation .Chapter 6 concludes the thesis and

discusses possible improvements as future work.
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CHAPTER 2

SOFT AND HARD ERRORS IN NANOMETER

TECHNOLOGIES

With the continuous downscaling of CMOS technologies, the device reliability has become a

major bottleneck. The harsh environment of space or nuclear plants can introduce a variety of

faults in the logic circuits. The radiations and high energetic particles poses causes soft and

hard errors in the system and becoming more prominent now a days. This radiation causes two

types of failures namely Total Ionising Dose (TID) Effects and single event effects (SEE) which

posing design and test challenges. TID is basically the cumulative long term ionising damage

due to electrons and protons deposited in a device. It is measured in Radiation Absorbed Dose

(Rads). The device that collects a charged particle for a long time may leads to functional fail-

ure. SEE is basically, any measurable effect on the circuit due to an ion strike and these are

instantaneous events. SEE basically categorised into soft and hard errors. Both TID and SEE

are studied first since they make anomalies in satellite, avionics and nuclear equipments. These

effects become one of the most challenging issues that impact the reliability of modern elec-

tronic systems used for space applications or even at ground-level applications. This chapter

presents an overview of the soft and hard errors in nanometer technologies. The overview of

mitigation techniques against soft and hard errors is also presented here.

2.1 Soft Errors

2.1.1 Soft Errors Overview

Radiation-induced soft errors are an increasingly important threat to the reliability of integrated

circuits processed in advanced CMOS technologies. Soft error is any measurable or observable

change in the state or performance of a microelectronic device, component, subsystem, or



system resulting from energetic particle strike. Soft errors are non permanent, random, non-

recurring in nature. When a particle strikes on the transistor then it displaces electrons and

holes, thus ionizing a part of the silicon substrate. The displaced electrons and holes begin to

recombine and creates a current pulse. The current pulse propagates to other parts of the circuit.

When the displaced charge, Qcoll , is more than Qcrit, the pulse is large enough to create a

change in state or upset. Qcoll is a function of the ionizing particle’s energy, trajectory, point

of impact, and the local electric field. The current transient lasts for around 200 picoseconds.

Most of the impact is within 2-3 microns of the impact site.

If the effect of soft errors is manifesting up to the system level, it is generally in the form of a

sudden malfunctioning of the electronic equipment. Soft errors can not be traced, once memory

is updated with new data where corrupted bits were stored earlier. Therefore, failure analysis is

not able to conclude that soft errors as the root cause of the problem. Furthermore, the problem

is not reproducible or recreated, due to its stochastic or random nature. Therefore,it is usually

very difficult to show that soft errors are causing the observed failures.

2.1.2 Soft Errors Classification

Single-event effects (SEEs) are associated with the change of states or transients in a device

that energetic external radiation particles induce. Normally, SEEs can be classified into soft and

hard errors. Soft errors are non destructive, because resetting or rewriting the device restores

normal behaviour thereafter; hard errors are permanent. Soft errors are a subset of single-event

effects and can be classified into the following categories:

1. Single-bit upset (SBU): It is also called Single Event Upset (SEU). The event causes a
bit flip in a memory cell or a register due to the particle strike. This event causes temporal
loss of device functionality and shall be recovered by rewritten the memory or register.

2. Multiple-bit upset (MBU): The event causes the upset of two or more bits in the same
word of memory or registers.

3. Single-event transient (SET): The event causes a voltage glitch in the net or wire of the
circuit, which propagates and becomes a bit error when captured by a storage element.

4. Multiple-event transient (MET): The event causes multiple voltage glitches in the nets
or wires of the circuit, which propagate and becomes multiple bit errors when captured
by storage elements.
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5. Single-event functional interrupt (SEFI): The event causes the lock-up, reset, or other
detectable malfunctioning of a component.

2.1.3 Soft Error Specification

Generally, Soft Error Rate (SER) is the rate at which a device or system encounters or is pre-

dicted to encounter soft errors. SER is measured in units of Failures In Time (FIT), where 1 FIT

denotes one failure per billion device hours (i.e. one failure per 114,115 years). The additive

property of FIT makes it convenient for calculations, but mean time to failure (MTTF) is often

more intuitive. MTTF is inversely related to FIT and it is not additive. A FIT rate of 1000 is

equivalent to MTTF of 114 years. A single bit has fault rate of about 1-10 mFIT then 1 GB

memory has fault rate of 109*8*0.01 = 8*107 FIT i.e. an error every 12.5 hours.

Researchers expect about an 8 percent increase in soft-error rate per logic state bit each tech-

nology generation. Since the number of logic state bits on a chip is following Moores law,

and the aggregate effect on soft-error FIT on a chip is shown in Figure 2.1. Notice that by

the 16nm generation, the failure rate will be almost 100 times that at 180nm technology. In an

electronic component, the failure rate induced by soft errors can be relatively high compared to

other reliability issues.

2.2 Hard Errors

2.2.1 Hard Errors Overview

Hard errors are the events which interrupt device function and permanently damage the device.

They are destructive in nature and cause permanent damage to the device. Under hard error

when a bit can never be read or written reliably, the processor might not be able to correct and

recover from the error. Hard errors may be caused by wire wear out due to electro-migration,

gate oxide wear-out and ageing defects that increase over time. This cause a open or short

mode failure.
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Figure 2.1: Soft Error failure-in-time of a chip (Figure taken from [8])

2.2.2 Hard Errors Classification

Hard errors are a subset of single-event effects and can be classified into the following cate-

gories.

1. Single Event Latch Up (SEL): An abnormal flow of high-current in a device caused by
the passage of a single energetic particle through sensitive regions of the device structure
and resulting in the loss of device functionality. It is triggered by heavy ions, protons,
neutrons and cause catastrophic failure.

2. Single Event Gate Rupture (SEGR): An event in which a single energetic-particle strike
results in a breakdown and subsequent conducting path through the gate oxide of a MOS-
FET. An SEGR is caused by an increase in gate leakage current which finally cause either
the degradation or the complete failure of the device.

3. Single Event Burn out (SEB): An event causes direct path between source and drain of
the transistor. This cause a local hotspot and finally failure of the device.

2.3 SEE in Integrated Circuits

Digital systems are typically divided into two subsystems - combinational subsystems and se-

quential subsystems (composed of memory elements). Processor is basically a Finite State

7



Figure 2.2: FSM Representation of the Processor

Machine (FSM) and shall be represented as shown in Figure 2.2. Combinational logic and

memory elements are affected by ionizing radiation quite differently; however both contribute

to the SEE rate of digital systems.

SEEs induced by memory elements can occur when radiation particles strike memory elements

directly. However, SEEs induced by combinational elements can occur only if the SETs gener-

ated when radiation particles strike a vulnerable combinational node, are latched by a memory

element or energetic particle causes permanent open or short mode failure.

2.3.1 SEE in Memory Elements

Memory elements comprises SRAMs, DRAMs, Latches, Flip Flops etc. SRAMs are non

volatile memory therefore their storage signals do not need to be refreshed periodically. SRAMs

use a bistable latching circuitry to store bit information. Similarly, Flip Flops, registers are ba-

sically back to back inverter which stores a bit. A particle strike on any of the nodes may cause

the node to transition. If this transient glitch propagates through the inverters, it causes the

wrong value to be latched. When this happens, external circuitry is needed to rewrite the nodal

value. Latches also contain a regenerative path similar to SRAMs, thus latch-induced SEUs are

largely based on the same principles as SRAM-induced SEUs. Flip-flops typically consist of

two latches in a master-slave setup thus radiation particle strikes on FFs have similar effects as

8



Figure 2.3: SEU propagating through a logical circuit

in latches and SRAMs.

2.3.2 SEE in Combinational Logic

As in memory elements, charge collection occurs at a combinational node affected by a radi-

ation particle strike. If the collected charge exceeds the Qcrit, a 100 to 200 picosecond (ps)

wide transient voltage glitch is generated. The transient voltage may propagate through combi-

national elements and be latched by a memory element as seen in Figure 2.3. However, three

masking effects present in digital circuits generally prevent transients from becoming SEUs.

1. Logical Masking: The logical masking effect can be described with the NAND gate
seen in Figure 2.4(a). If a particle strikes one of the input nodes of the NAND gate, but
the other input remains in the controlling state (0 in this case), the output of the gate will
not change and the SEU will be completely masked. For an SEU to propagate through
a combinational logic element, sensitive path must exist from the affected node to the
output of the logic element.

2. Electrical Masking: All CMOS circuits have limited bandwidths. SEUs with band-
widths higher than the cut-off frequency of a circuit will be attenuated. This causes the
amplitude of the SEU to reduce, the rise and fall times to increase, and, eventually, the
pulse to disappear as it propagates through logic elements as seen in Figure 2.4(b).

3. Latching Window Masking: This effect, also known as Temporal Masking, can be
described with Figure 2.4(c). As the SEU moves towards the D input node of the FF, it
might show up outside the latching window of the FF preventing it from being latched,
thereby preventing an SEU from occurring. In FFs and latches, setup and hold time
requirements make up the latching window. As the operating frequency for subsequent
technology nodes increases, the latching window decreases due to a resulting decrease in

9



Figure 2.4: Different SEU masking effects in combinational logic

setup and hold time requirements, thus the effect of latching window masking decreases,
effectively causing an increase the SEU rate.

2.4 Contribution of Memory Elements and Combinational

Logic to SEE Rate

We have determined the mechanisms through which combinational logic and memory elements

generate Single Event Upsets(SEUs), however it is important to understand the relative contri-

bution of combinational and sequential elements to be able to choose a suitable protection

technique against SEEs. Conventionally,the SEE rate of CMOS designs is largely dominated

by sequential elements for low frequency circuits primarily because the three masking effects

observed in combinational logic often prevent SETs from being latched by a memory element.

Another reason for the domination of sequential element SEUs is that memory elements usu-

ally have a lower Qcrit than combinational elements, thus a radiation particle is more likely to

cause an SEU in a sequential circuit than in a combinational circuit. However,the distinction

between the relative contribution of combinational logic and memory elements to SEE rate is

not always as clear-cut as implied. The combinational logic area is typically greater than the
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sequential area; this makes combinational elements more probable to be effected by radiation

particles. Therefore, it is possible that increasing the combinational logic area exponentially

can cause combinational elements to dominate SEE rate.

Research studies have shown that the SEE rate of ICs is frequency dependent. Radiation ef-

fects experts postulate that as the operating frequency of CMOS devices continues to increase,

an increase in SEE rate is observed. For low frequency applications, sequential logic errors

dominate combinational logic errors. However, as sequential logic error rate is relatively in-

dependent of frequency, combinational logic error rate dominates for high frequency ICs, in-

creasing the overall error rate. Much of this increase in combinational logic induced SEUs can

be attributed to a weakening of the latching window masking effect at high frequencies. Since

set-up and hold time, which typically makes up the latching window, has to be less than clock

frequency, latching window decreases with an increase in clock frequency. Another reason for

combinational logic error domination at high frequencies is that as transistors switch faster, the

effects of electrical masking diminishes.

We may face the next barrier i.e. hard errors. Hard errors in combinational logic cannot be

neglected due to stress and hostile environment system may be exposed to. Wear out, device

degradation, avalanche effects etc. poses a probability of permanent failure in deep nanometer

technologies. We cannot neglect permanent failure in combinational logic in critical systems

which may cause catastrophic failure.

2.5 Fault Mitigation Techniques

Various techniques at different levels exist to mitigate the TID and SEE effects on the system.

These methods are broadly categorised into two types as mentioned below.

2.5.1 Fault Avoidance

Fault avoidance is refer to the mechanics which is preventing the system from the occurrences

of faults, in other words, in-built fault tolerance exists in the system. The main techniques for

fault tolerance are as follows :
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1. Shielding : This involves the protective coating, so that energetic particles cannot pene-
trate. This can be done at chip level by selecting suitable chip packaging material or at
system level also.

2. High Quality Fabrication Material: The high quality material and ultra clean fabri-
cation facility make the device contaminant free and avoid the faults which may occur
later.

3. Radiation Hardened Process Technologies: This refers to avoid the faults by process
selection. Specific methods such as use additional well isolation, replace bulk silicon
with SOI are commonly used to make radiation hardened design.

2.5.2 Fault Tolerance

1. System Level Tolerance: Various methods exists at system level to compute reliably
in harsh environment. The use of redundancy, self checking hardware, watchdog timers
are the most common methods found at both hardware and software level. Table 2.1
summarizes the common fault tolerance methods.

2. Error Detection and Correction Logic (EDAC): Sometimes, it is impractical to use
above mentioned mitigation techniques to avoid SEEs. EDAC techniques like cyclic
redundancy check (CRC), hamming code, convolution encoding are mostly preferred in
memories where parity bits are added to each memory word. Depending upon the level of
fault tolerance, number of parity bits increases. Mostly Single Bit Error Correction and
Double Bit Error Detection (SEC-DED) based on hamming codes is commonly followed
to achieve fault tolerance in memory based systems.

Protection Methods Capability

Watchdog Timer If a refresh pulse is not generated within a specified period means
faulty condition. Perform the required action.

Dual Modular Redundancy
(DMR)

Two equivalent systems working on same data, if the two system
disagrees, then system reset shall be performed.

Triple Modular Redundancy
(TMR)

Use 3 systems to perform the same operation. Voter logic to de-
cide the outcome and mask the fault.

Time Redundancy A system is redoing the same operation more than once to mitigate
the transient fault.

Lockstep Two devices in the system are clock synchronised and working
on same input. If devices disagrees, then system reset shall be
performed.

Table 2.1: Summary of Fault Tolerance Methods
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CHAPTER 3

PROPOSED FAULT TOLERANT

MICROARCHITECTURE

Due to the fact that soft errors are non-persistent, they will not be able to be detected when the

environmental noise source disappears. This makes the detection, diagnosis and correction of

soft error effects relatively difficult. With the technology shrinking at faster rate, hard errors

cannot be overlooked. Ever since the discovery of the soft and hard errors, researchers in

universities and semiconductor companies have spent tremendous efforts and resources on the

techniques and methodologies to prevent it from causing damage to electronic product. We

have studied some of previous work done in fault tolerance area. In this chapter, we proposed

our idea to achieve fault tolerance in the in-order RISC-V processor design and showing our

main contributions.

3.1 Soft Error Mitigation Techniques

They can be roughly classified into three distinct categories as explained below.

3.1.1 Technology and device-level

This technique requires fundamental changes to the underlying fabrication technology used to

manufacture ICs. This is also called Radiation Hardening by Process (RHBP) where process

such as Silicon on Insulator (SOI) or Silicon on Sapphire (SOS) etc has been used. This solution

is viable at the expense of additional process complexity, slow process, yield loss and substrate

cost.



3.1.2 Circuit-level

This technique relies on changes in the circuit design to reduce soft error sensitivity. It involves

designing the circuit in such a way that it can combat the radiation effects. This is achieved by

adding redundancy at transistor level or circuit level.

3.1.3 Architectural and System-level

This technique deal with soft errors at the system architecture level. These solutions may be

more effective than circuit level techniques as the definition of what constitutes an error typi-

cally lies in the architecture (e.g., a strike on a Inter Stage Buffer does not result in an error in

a microprocessor). The use of error detection and correction (EDAC) is by far the most effec-

tive method of dealing with soft errors in memory component. Hence, the soft-error mitigation

techniques based on architectural and system level are mainly applied on processor-based sys-

tems.

In the following section, we will illustrate a detailed overview of proposed schemes at archi-

tectural and system level aiming to mitigate soft and hard errors in a processor-based systems.

3.2 Proposed Fault Mitigation Techniques for 32 bit In Or-

der RISC-V Processor

The processor-based electronic systems include two basic parts: memory arrays and combina-

tional logic. Due to the fact that soft error rate may exceed the FIT specifications in various

application domains, we have come up with the mitigation techniques that hence, in such ap-

plications, soft-error mitigation schemes should be employed for memories and eventually for

combinational logic.

1. Single bit error correction and double bit error detection (SECDED) has been provided
for Instruction Memory (IMEM), Data Memory (DMEM), Architectural Register File
(ARF) & Program Counter register (PC).

2. Instruction, Data, Registerfile data & program counter flows through the pipeline stages
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alongwith their checkbits, therefore SEU at Inter Stage buffers (ISB) also been taken
care.

3. The most important component of processor i.e. the execution unit is made completely
fault tolerant against transient error and permanent faults. The execution unit comprises
the ALU in Dual Redundant configuration with fault detection and isolation (FDI) of
faulty unit using recomputing methods (discussed in detail later).

3.3 Soft and Hard Error Mitigation Techniques for Memo-

ries and Registers

Memories represent the largest parts of modern designs. In addition, they are more sensitive

to ionizing particles than logic, since they are designed to reach the highest possible density.

As a matter of fact, the SER of modern designs is dominated by the SER of their memories.

To reduce the SER of a processor design, protecting memories is the first priority, therefore in

our design instruction memory, data memory, registerfile, inter stage buffer & program counter

register are considered for EDAC.

The simplest solution for error detection is to add parity bit (even or odd) for each data word.

Whenever data are retrieved, a check is run comparing the parity of the stored data to its parity

bit. If a single error has occurred, the check will reveal that the parity of the data does not match

the parity bit. Thus, the parity system allows for the detection of a soft error for a minimal cost

in terms of circuit complexity and memory width (only a single bit is added to each word). But

here the disadvantage is that it can only detect and cannot correct the error. For processor based

system, we need correction so that processor keeps on executing the instruction in case of SEE

therefore EDAC or ECC is employed in our design.

In general, the single error correction double error detection (SEC-DED) schemes are consid-

ered sufficient as most of the soft errors events are single bit errors. Error correction is achieved

by adding extra bits to each data vector encoding the data so that the hamming distance between

any two possible data vectors is, at least, three for Single Error Correction (SEC) i.e dmin = 3.

The minimum hamming distance required for SEC-DED is 4 (i.e. dmin = 4).The general

equation followed for k-parity bits required for n-bit data words for SEC is n + k ≤ 2k − 1.

Therefore, for n = 32, k = 6 or n = 64, k = 7.
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S.No No. of Data
Words

No. of parity
bits for SEC

No. of par-
ity bits for SEC-
DED

Area Penalty for
SEC-DED

1 8 4 5 62.5%

2 16 5 6 37.5%

3 32 6 7 21.8%

4 64 7 8 12.5%

Table 3.1: Parity Bits for SEC-DED

From the above discussion, we observe that, single error correcting codes are very conve-

nient for modern designs using large data widths, since their cost for large word widths becomes

moderate. EDAC or ECC protection will provide a significant reduction in soft failure rates but

at a higher cost in terms of design complexity, the additional memory required, and the inherent

latency introduced during access, parity generation and correction.

3.3.1 Implementation

In our design, SEC-DED modules are placed in the design after ISB and before the com-

binational logic at appropriate pipeline stages so that any single bit error before feeding to

combinational logic shall be corrected. Similarly after getting result from combinational logic,

checkbits have been generated for data and this will flow to the next level of pipeline. In this

way, SEE on the pipeline registers or ISB is also covered. The conceptual diagram is shown in

Figure 3.1. As discussed above for 32-bit data words, we need 7 parity bits for SEC-DED. In

our design, we took 8 parity bits for checkbits for 32-bit dataword keeping last checkbit always

0. This is just done for simplification in understanding as lower 8 bits are checkbits and upper

32 bits are information bits in 40 bit data. The length of each word in instruction memory,

data memory, register file and program counter register are 40 bits where upper 32 bits are

instruction or data and lower 8 bits are checkbits.
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Figure 3.1: Placement of SEC-DED Logic in the pipeline

3.3.2 Error Correcting Code Logic

This module used the reference from the application note provided by Xilinx [10], which de-

scribes the implementation of an Error Correction Control (ECC) module in a Virtex-II Pro,

VirtexTM-II, Virtex-4, or Virtex-5 devices. The design detects and corrects all single bit errors

(in a codeword consisting of 32-bit data and 7 parity bits), and it detects double bit errors in the

data (SEC-DED). This design utilizes Hamming code, a simple but powerful method for ECC

operations. As a result, this design offers exceptional performance and resource utilization.

The participating data bits for the computation of check-bits are as follows:

chkbit[0] = d[0]⊕ d[1]⊕ d[3]⊕ d[4]⊕ d[6]⊕ d[8]⊕ d[10]⊕ d[11]⊕ d[13]⊕ d[15]

⊕d[17]⊕ d[19]⊕ d[21]⊕ d[23]⊕ d[25]⊕ d[26]⊕ d[28]⊕ d[30]

chkbit[1] = d[0]⊕ d[2]⊕ d[3]⊕ d[5]⊕ d[6]⊕ d[9]⊕ d[10]⊕ d[12]⊕ d[13]⊕ d[16]

⊕d[17]⊕ d[20]⊕ d[21]⊕ d[24]⊕ d[25]⊕ d[27]⊕ d[28]⊕ d[31];

chkbit[2] = d[1]⊕ d[2]⊕ d[3]⊕ d[7]⊕ d[8]⊕ d[9]⊕ d[10]⊕ d[14]⊕ d[15]⊕ d[16]

⊕d[17]⊕ d[22]⊕ d[23]⊕ d[24]⊕ d[25]⊕ d[29]⊕ d[30]⊕ d[31];
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chkbit[3] = d[4]⊕ d[5]⊕ d[6]⊕ d[7]⊕ d[8]⊕ d[9]⊕ d[10]⊕ d[18]

⊕d[19]⊕ d[20]⊕ d[21]⊕ d[22]⊕ d[23]⊕ d[24]⊕ d[25];

chkbit[4] = d[11]⊕ d[12]⊕ d[13]⊕ d[14]⊕ d[15]⊕ d[16]⊕ d[17]⊕ d[18]

⊕d[19]⊕ d[20]⊕ d[21]⊕ d[22]⊕ d[23]⊕ d[24]⊕ d[25];

chkbit[5] = d[26]⊕ d[27]⊕ d[28]⊕ d[29]⊕ d[30]⊕ d[31];

chkbit[6] = d[0]⊕ d[1]⊕ d[2]⊕ d[3]⊕ d[4]⊕ d[5]⊕ d[6]⊕ d[7]⊕ d[8]⊕ d[9]⊕ d[10]⊕ d[11]⊕ d[12]

⊕d[13]⊕ d[14]⊕ d[15]⊕ d[16]⊕ d[17]⊕ d[18]⊕ d[19]⊕ d[20]⊕ d[21]⊕ d[22]

⊕d[23]⊕ d[24]⊕ d[25]⊕ d[26]⊕ d[27]⊕ d[28]⊕ d[29]⊕ d[30]⊕ d[31];

chkbit[7] = 0;

Syndrome Pattern = Checkbit in⊕Recomputed Checkbits

Data of IMEM, DMEM, ARF and PC register are stored along-with their check-bits. While

reading the data, SEC-DED logic recomputes the check-bits and compared with check-bits

bundled with data. Syndrome pattern is generated from the comparison of recomputed check-

bits and stored check-bits. By decoding the syndrome pattern, the erroneous bit shall be traced

and corrected accordingly. The flag such as singleerr, checkbiterr & doublebiterr are raised

on error. If singlebiterr = 1, means there is single bit error happened in the data and has been

corrected. If doublebiterr = 1, means there are double bit or multiple bit errors happened and

shall be detected only. If checkbiterr = 1, means there is single bit error happened at check-bit

positions. While writing the new data in DMEM, ARF & PC register, check-bits are generated

and bundled with data for subsequent data flow in the pipeline.
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3.3.3 Summary

• Instructions are stored with corresponding check-bits in instruction memory (IMEM).
Instructions are read in fetch, decode and execute stage therefore, passed through SEC-
DED logic in these stages.

• Data with check-bits are stored in Data Memory (DMEM). Data of DMEM is passed
through SEC-DED logic in MEM stage.

• Check-bits are generated for the ALU result (i.e. RAW data), ALU results with check-
bits are then used for operand forwarding, storing the data, writing of registerfile etc.

• Program Counter register is also updated with corresponding check-bits and it has been
corrected before its usage in fetch stage & execution stage.

• Data flows along with check-bits throughout the pipelines stages. Therefore, soft errors
in the ISBs are also tolerated.
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3.4 Soft and Hard Error Mitigation Techniques for Execu-

tion Unit

Single event upsets (SEU) that are caused by cosmic particle strikes to combinational logic

have been studies by several researchers. These upset can occur when the particle strikes at

particular node and deposit the charges. This leads to voltage disturbance on that node. If the

voltage disturbance happens near the clock edge then the wrong value may be latched, causing

the store data to be incorrect. SEU on the combinational nodes do not pose the problem if

the clock period is high compared to the duration of SEU (nanoseconds vs picoseconds). As

the clock frequency increases the probability of such upsets also increases. At high clock fre-

quency (i.e Ghz range) the contribution of upsets from combinational logic may even exceed

that of memory elements. The SEE can cause the permanent failure also where particular node

value becomes permanent ‘0’ (short to Gnd) or ‘1’ (short to Vdd). Deep sub micron technology

further increases the SEE rates.

The execution unit or the ALU is considered as largest combinational logic in the processor

design and typically occupy 40%-50% of chip area. Our design of execution unit can toler-

ate transient failures as well as 1 permanent failure per functional unit (FUs are adder,

multiplier, shifter, comparator and logical unit).

3.4.1 Implementation

There are basically 5 types of FUs namely adder, multiplier, shifter, comparator and logical

unit in the fault tolerant ALU (ft alu) design. Each type of FU is in DMR configuration with

fault handling logic called fault tolerant FU as shown in Figure 3.2. The FU-1 and FU-2

are prime and redundant functional units respectively. Faulty FU shall be isolated using time

redundancy technique. The proposed scheme can tolerate one FU failure/type i.e. failure of

one adder circuitry, one multiplier circuitry, one shifter circuitry, one comparator circuitry and

one logical circuitry can be tolerated. The 5 types of fault tolerant FUs in our design are named

ft adder, ft multiplier, ft shifter, ft comparator and ft logical and can perform the computation

in single cycle. It should be noted that separate ft adder has been used for effective address
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Figure 3.2: Block Diagram of Fault Tolerant FU

calculation in case of branch/jump and memory related instruction. The instructions handled

in these fault tolerant FUs of ALU are shown in Table 3.2.

3.4.2 Fault Handling Logic

Definitions and Assumptions:

No error (NE): Match between the outputs of FU-1 and FU-2 is considered as No Error.

Transient Error (TE): Mismatch between the outputs of FU-1 and FU-2 is considered as Tran-

sient Error.

Permanent Error (PE): If transient error persists for 5 consecutive clock cycles, then we con-

sider a permanent fault condition. Our assumption is that PE finally leads to bit stuck at fault

at the output of faulty FU.
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Fault Tolerant FUs Instructions handled Remarks

ft add sub LUI,AUIPC,ADDI,ADD,SUB Addition or Subtraction related in-
structions

ft adder Jump, Branch, Load & Store related
instructions

Used only for addition for Effective
Address Calculation (EAC)

ft comparator SLT,SLTI,SLTU,SLTIU Comparator related instructions

ft multiplier MUL,MULH,MULHSU,MULHU Multiplication related instructions

ft shifter SLLI,SRLI,SRAI,SLL,SRL,SRA Shift related instructions

ft logical XORI,ORI,ANDI,XOR,OR,AND Bitwise operation related instruc-
tions

Table 3.2: Instruction Handling in Fault Tolerant FUs

Any error in the execution will be detected by comparing the outputs of FU-1 and FU-2. If the

results of both FU matches then the result will be posted to the next stage of pipeline otherwise

it will be considered as transient error. In case of transient error, no data will be posted and will

lead to stall in the 5- stage rigid pipeline. If transient error persists for 5 consecutive cycles,

we will be considering a permanent failure of one or both FU. To identify the faulty FU, time

redundancy technique has been used which involves different recomputing methodology for

different FUs in other words recomputation with different coding schemes for addition or sub-

traction, multiplication, shift operation,comparator related operations and logical operations.

In the 6th cycle, Recomputation will be done and faulty FU will be isolated. Here onwards al-

ways post from one available FU. The fault handling implementation is describes in Table 3.3

and 3.4

The output of fault tolerant unit is Data, Destination Register, Health Flag, Valid Bit.

Data: It is desired result obtained as per the execution of instruction.

Destination Register: The identity of register where the data will be written in writeback stage.

Health Flag bits: The 4-bit Composite health flag information also available along with posted

data in Execute Stage which tells about type of error in the FUs executing the current instruc-

tion. {Bit3 = 1/0: Permanent/No failure }, {Bit2 = 1/0: Transient/No Error},{Bit1 = 1/0: FU-2

faulty/Not faulty},{Bit0 = 1/0:FU-1 faulty/Not faulty}

Valid Bit: This bit is passed to decide whether to deque the ID EX-ISB. If valid is false then
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Cycle Equality Check Error
Type

Action Taken

1 Match NE Post data from FU-1

2 Mismatch TE No posting (Redo the operation)

3 Mismatch TE No posting (Redo the operation)

4 Mismatch TE No posting (Redo the operation)

5 Mismatch TE No posting (Redo the operation)

6 Mismatch TE No posting (Redo the operation)

7 Not done as re-
computing cycle

PE Recomputation to identify faulty FU. Update
the PE flag to decide data selection and post-
ing. Here onwards post the data according to
PE flag table (Table 3.4)

Table 3.3: Fault Handling

PE Flag of FU-1 PE Flag of FU-2 Conclusion/Action Taken

0 0 Not able to detect faulty FU, Post data as 0.
Interrupt Service Routine (ISR) to decide next
course of action.

0 1 FU-2 faulty. Isolate FU-2 and Post data from
FU-1 here onwards.

1 0 FU-1 faulty. Isolate FU-1 and Post data from
FU-2 here onwards.

1 1 Both FU-1 and FU-2 are faulty. Post data as 0.
Interrupt Service Routine (ISR) to decide next
course of action

Table 3.4: PE FLAG
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Figure 3.3: Recomputing Methodology (Figure taken from [1])

ISB is not dequeued lead to stall in the pipeline. In case of both units failure or not able to iden-

tify failed unit, we are assigning valid bit true so that processor will not stalled permanently

in such cases using the health Flag , Interrupt Service Routine (ISR) shall decide action to be

performed.

3.4.3 Recomputing Techniques and Fault Detection Capability

In this section, we will discuss about the recomputing method used for different functional units

(FUs) and their fault detection capability. Recomputing uses the principle of time redundancy

in detecting the errors as shown in Figure 3.3. Here C and D are called coding & decoding

functions. If C and D are properly chosen then fault in Unit f will affect f(x) and f(c(x))

differently therefore the output of first step (Normal Computation) and second step (Recompu-

tation) will not match leads to error. Different recomputing techniques have been implemented

for different FUs in the ALU design as discussed in detail in following sections.

3.4.3.1 Adder Functional Unit

Addition and subtraction related instructions are handled by this FU. As sum and carry are self

dual functions, in normal computation, first operand (OP1) and second operand (OP2) are
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given to the adder circuitry which computes output as

Fn = OP1±OP2 (Carryin = 0)

In recomputation step, operands in complement form will be given to the adder circuitry i.e.

Recomp(OP1) = OP1 + 1 (1 is added here to absorb Carryin = 1) and Recomp(OP2) =

OP2. The output of recomputation step will be

Fr = (OP1 + 1)± (OP2)

The conceptual block diagram of fault tolerant adder is shown in Figure 3.4.

No Fault Condition: The inputs to adders are OP1 (i.e.First Operand) & OP2 (i.e.Second

Operand). As there are no faults in adder1 and adder2 circuitry, the output of both adders will

match and data of adder1 is posted. The health flag should be “0000”.

Transient Fault Condition: If the outputs of adder1 and adder2 circuitry are not matches in

current cycle then error count becomes ‘1’ and fault handling logic will not post the output.

This leads to stall in the pipeline. The outputs will again be matched in next clock cycle if it

matches then error count will reset to 0 and output be posted else error count will increment

and no output will be posted (Pipeline stalls continues).The health flag should be “0100”.

Permanent Fault Condition: If the transient fault persists for 5 consecutive clock cycles in

other words, if error count becomes ‘5 then we are considering that fault in adder circuitry will

not be recovered and declare permanent fault condition. To identity the faulty adder, in the

6th clock cycle the recomputation step will be activated and the inputs to the adders will be

{(Complement of OP1) + 1} i.e. First Operand and {Complement of OP2} i.e. Second

Operand. The fault handling logic will check the correctness of the output of the recomputation

step. The output of recomputation step should be the complement of the output of normal step,

therefore the current output of adder1 and the data1 (stored in register1, previous cycle data)

will be check for complement relationship similarly the current output of adder2 and the data2

(stored in register2, previous cycle data) will be check for complement relationship. If there

any stuck at faults exist in adder circuitry due SEE effects it will be known.

The faulty adder will be permanently isolated and subsequently output will be posted from one
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Figure 3.4: Block Diagram of Fault Tolerant Adder

available adder module. The health flag should be any one of them: {1100, 1101, 1110, 1111}.

Fault Detection Capability: As Fn and Fr are complementary, single or multiple stuck at

faults will be known.

3.4.3.2 Comparator Functional Unit

Our aim here is to make fault tolerant comparator (ft slt) so that set less than (SLT) related

instructions shall be taken care. For comparison, we can do subtraction of 2 operands and

check for the sign bit of their result in other words, if the result of OP1 − OP2 is positive

than OP2 < OP1 else OP1 < OP2. Subtraction operation shall be performed using fault

tolerant adder by using second operand in 2’s complement form. Therefore the basic unit of

fault tolerant comparator is nothing but fault tolerant adder. Subtraction operation using adder

by using second operand in 2′s complement form is applicable only for signed numbers or
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unsigned numbers where OP1 > OP2. SLT and SLTI instructions deal with signed numbers

whereas SLTU and SLTIU instruction deal with unsigned numbers. To resolve this problem,

we made 32-unsigned number into signed number by keeping 33th bit as ‘0’. Therefore the

length of comparator becomes 33. The level of fault tolerance is same but we discussed above

in case of addition or subtraction.

3.4.3.3 Multiplier Functional Unit

Multiplication related instructions are handled by this FU. In normal computation, OP1 and

OP2 are given to the signed multiplier circuitry which computes output as

Fn = OP1 ∗OP2

In recomputation step, first operand will be 2′s complement of OP1 and second operand will

remain unchanged as OP2. The output of recomputation step will be

Fr = (2′s complement of OP1) ∗OP2

Therefore, we expect Fn = −Fr (i.e. (2′s complement of Fr = Fn), if no error exists in the

signed multiplier circuitry.

It should be noted that unsigned multiplication shall be done using signed multiplier circuitry

by zero extend the operands. The conceptual block diagram of fault tolerant multiplier is shown

in Figure 3.5

No Fault Condition: The inputs to multiplier are OP1 (i.e. First Operand) & OP2 (i.e.

Second Operand). As there are no faults in MUL1 and MUL2 circuitry, the output of both

multipliers will match and data of MUL1 is posted. The health flag should be “0000”.

Transient Fault Condition: If the outputs of MUL1 and MUL2 circuitry are not matches

in current cycle then error count becomes 1 and fault handling logic will not post the output.

This leads to stall in the pipeline. The outputs will again be matched in next clock cycle if it

matches then error count will reset to ‘0’ and output be posted else error count will increment

and no output will be posted (Pipeline stalls continues).The health flag should be “0100”.
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Figure 3.5: Block Diagram of Fault Tolerant Multiplier

Permanent Fault Condition: If the transient fault persists for 5 consecutive clock cycles in

other words if error count becomes ‘5’ then we are considering that fault in multiplier circuitry

will not be recovered and declare permanent fault condition. To identity the faulty multiplier, in

the 6th clock cycle the recomputation step will be activated and the inputs to the multiplier will

be {2′s Complement of OP1} i.e. First Operand and {OP2} i.e. Second Operand. The fault

handling logic will check the correctness of the output of the recomputation step. The output

of recomputation step should be 2′s complement of the output of normal step, therefore the

current output of MUL1 and the data1 (stored in register1, previous cycle data) will be check

for 2′s complement relationship similarly the current output of MUL2 and the data2 (stored in

register2, previous cycle data) will be check for 2s complement relationship. If there any stuck

at faults exist in MUL circuitry due SEE effects it will be known.

The faulty multiplier will be permanently isolated and subsequently output will be posted from
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one available multiplier module. The health flag should be any one of them: {1100, 1101,

1110, 1111}.

Fault Detection Capability:

1. No fault condition: Fn = −Fr = 2n − Fr

2. Let stuck at failure happens at particular bit position i : Result of normal computation
i.e. Rnormal = Fn±2i whereas result of recomputation step i.e. Rrecomp = Fr or Fr±2i.
Fault handling logic will do the equality check on Rnormal and 2′s complement of Rrecomp.
2′s complement of Rrecomp = 2n−Rrecomp = 2n−(Fr or Fr±2i) = (2n−Fr) or (2n−
Fr ∓ 2i) = Fn or Fn ∓ 2i.
As, 2′s complement of Rrecomp 6= Rnormal, error is detected.

3.4.3.4 Shifter Functional Unit

Shift related instructions are handled in this FU. RESO technique has been used here. In normal

computation, Operand is given to the shifter which computes output as Fn. In recomputation

step, shifted operand (left shifted by 2 bit positions) will be feed to the circuitry.

For n-bit input operand, the length of shifter is n + 2 bit. In our case, n = 32, therefore,

length of shifter is 34 bit. The output of recomputation step is readjusted and compared with

the output of normal step which is stored in the register. The mismatch indicates fault in the

shifter circuitry.The conceptual block diagram of fault tolerant shifter is shown in Figure 3.6.

No Fault Condition: The inputs to shifter are OP1 (i.e. First Operand) & OP2 (i.e. Second

Operand). As there are no faults in Shifter1 and Shifter2 circuitry, the output of both shifters

will match and data of Shifter1 is posted. The health flag should be “0000”.

Transient Fault Condition: If the outputs of Shifter1 and Shifter2 circuitry are not matches

in current cycle then error count becomes ‘1’ and fault handling logic will not post the output.

This leads to stall in the pipeline. The outputs will again be matched in next clock cycle if it

matches, then error count will reset to ‘0’ and output be posted else error count will increment

and no output will be posted (Pipeline stalls continues).The health flag should be “0100”.

Permanent Fault Condition: If the transient fault persists for 5 consecutive clock cycles

in other words if error count becomes ‘5’ then we are considering that fault in shifter circuitry

will not be recovered and declare permanent fault condition. To identity the faulty shifter, in
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Figure 3.6: Block Diagram of Fault Tolerant Shifter

the 6th clock cycle the recomputation step will be activated and the inputs to the shifter will

be {OP1 left shifted by 2} i.e. first Operand and the second operand remains unchanged

as {OP2} as it is the shift amount. The fault handling logic will check the correctness of the

output of the recomputation step. The right shifted output of recomputation step is compared

with the output of normal step, therefore the current output of Shifter1 and the data1 (stored in

register1, previous cycle data) will be compared similarly the current output of Shifter2 and the

data2 (stored in register2, previous cycle data) will be compared. If there any stuck at faults

exist in shifter circuitry due SEE effects, it will be known.

The faulty shifter will be permanently isolated and subsequently output will be posted from

one available shifter module. The health flag should be any one of them: {1100, 1101, 1110,

1111}.

30



Fault Detection Capability: Let the output of recomputation step is Fr.

1. No fault condition: Fn[n− 1 : 0] = Fr[n+ 1 : 2]

2. Let stuck at failure happens at particular bit position i, where i ∈ [n− 1, 0] : Result of
normal computation i.e. Rnormal[n − 1 : 0] = Fn ± 2i, whereas result of recomputation
step i.e. Rrecomp[n+ 1 : 2] = Fn or Fn ± 2i−2.
Fault handling logic will do the equality check on Rnormal[n−1 : 0] and Rrecomp[n+1 : 2].
As, the two results will not match,the error is detected.

3.4.3.5 Logical Functional Unit

logical instructions are handled in this FU. Recomputing with swapped operands technique

has been used here. In normal computation, OP1 and OP2 are given to the logical circuitry

which computes output as Fn. In recomputation step, the upper halves and lower halves of

operands are swapped. The output of recomputation step is readjusted and compared with the

output of normal step which is stored in the register. The mismatch indicates fault in the logical

circuitry.The conceptual block diagram of fault tolerant logical unit is shown in Figure 3.7.

No Fault Condition: The inputs to logical circuitry are OP1 (i.e. First Operand) & OP2

(i.e. Second Operand). As there are no faults in Logical 1 and Logical 2 circuitry, the output

of both logical units will match and data of logical unit1 is posted. The health flag should be

“0000”.

Transient Fault Condition: If the outputs of Logical 1 and Logical 2 circuitry are not

matches in current cycle then error count becomes ‘1’ and fault handling logic will not post

the output. This leads to stall in the pipeline. The outputs will again be matched in next clock

cycle if it matches, then error count will reset to ‘0’ and output be posted else error count will

increment and no output will be posted (Pipeline stalls continues).The health flag should be

“0100”.

Permanent Fault Condition: If the transient fault persists for 5 consecutive clock cycles

in other words if error count becomes ‘5’ then we are considering that fault in logical unit

circuitry will not be recovered and declare permanent fault condition. To identity the faulty

Logical Unit, in the 6th clock cycle the recomputation step will be activated and the inputs to

the Logical Unit will be OP1 and OP2 but with swapped lower halves and upper halves. The
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Figure 3.7: Block Diagram of Fault Tolerant Logical Unit

fault handling logic will check the correctness of the output of the recomputation step. The

swapped output of recomputation step is compared with the output of normal step, therefore,

the current output of Logical Unit1 and the data1 (stored in register1, previous cycle data) will

be compared similarly the current output of Logical Unit2 and the data2 (stored in register2,

previous cycle data) will be compared. If there any stuck at faults exist in logical circuitry due

SEE effects, it will be known.

The faulty logical unit will be permanently isolated and subsequently output will be posted

from one available logical module. The health flag should be any one of them: {1100, 1101,

1110, 1111}.
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Fault Detection Capability: Let the output of recomputation step is Fr.

1. No fault condition:Fn[
n
2
− 1 : 0] = Fr[n− 1 : n

2
] and Fn[n− 1 : n

2
] = Fr[

n
2
− 1 : 0]

2. Let stuck at failure happens at particular bit position i : Result of normal computation
i.e. Rnormal = Fn ± 2i whereas, result of recomputation step after readjusting i.e.

Rrecomp =

{
Fn or Fn ± 2(

n
2
+i) 0 ≤ i < n/2

Fn or Fn ± 2(i−
n
2 ) n/2 ≤ i < n

Fault handling logic will do the equality check on Rnormal and Rrecomp. As, the two
results will not match, the error is detected.
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3.5 Fault Tolerant Microarchitecture of 32-bit In-Order RISC-

V Processor

3.5.1 Description

We have discussed fault mitigation techniques for memories, registers and combinational logic.

Now, we will see where these SEC-DED blocks are placed in the overall architecture and

implementation of ALU in dual modular redundant (DMR) configuration. The simplified block

diagram of 32-bit fault tolerant processor is shown in Figure 3.8. whereas the detailed 5 stage

fault tolerant pipelined processor is shown in Figure 3.9. The instruction memory (IMEM) and

data memory (DMEM) are implemented as (32,8) where upper 32 bits are instruction and lower

8 bits are checkbits for corresponding instruction. The functioning of each stage is explained

below in brief.

1. Fetch Stage (IF): In this stage, program counter value has been read and passed through
SEC-DED module. In this way any error in PC shall be corrected and correct address
shall be generated for instruction fetch. The fetched instruction along with checkbits is
send to next stage of pipeline. The PC and prediction also moves to next stage.

2. Decode & Operand Fetch Stage (ID): In this stage, the instruction is first passed through
SEC-DED module for any correction. The corrected instruction is then decoded for
operand fetching and instruction type (i.e. ALU, MEM, Branch, Illegal). The register
identity i.e. RS1 and RS2 is passed to operand fetch logic. The value of RS1 and RS2
shall be Architectural Register File (ARF) value or the operand forwarding value from
EX or MEM or WB stage. In all cases the value of RS1 and RS2 is in (32,8) format where
upper 32 bit is actual data and lower 8 bits are checkbits for that data. This information
is then passed to next stage of pipeline through inter stage buffer (ISB).

3. Execution Stage (EX): This is the stage where much of the fault tolerant logic resides.
The instruction, operands and program counter are first corrected using SEC-DED mod-
ule then passed to either ft alu or ft memory or ft branch unit depending upon the in-
struction type.
The ft alu comprises ft add sub, ft multiplier, ft shifter, ft logical and ft comparator
units, all are in Dual Modular Redundant (DMR) configuration with fault detection and
isolation (FDI) logic. Depending upon the instruction, the operands are appropriately
diverted to respective units in the ALU, for e.g. ADD & SUB related instructions will
be handled in ft add sub unit. The detailed functioning of each unit is already explained.
ft memory and ft branch uses fault tolerant adder for effective address calculation. The
health flag bits are mapped to output pins. If the health flag bits indicate transient error
condition then the pipeline will be stalled. The operand forwarding path is available from
this stage.
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4. Memory Stage (MEM): In this stage, data memory (DMEM) is accessed for load and
store. In case of load, the data from DMEM is passed through SEC-DED logic for any
correction. Appropriate data with checkbits are then passed to next stage for writing to
the register file. In case of store, data is written in DMEM at the specified address. Store
is not doing anything in writeback stage. The operand forwarding path is available from
this stage.

5. Write Back Stage (WB): In this stage, architectural register file (ARF) will be updated.
The flush initiated in case of branch misprediction. The operand forwarding path is
available from this stage.

3.5.2 Advantages of Proposed Architecture

• Single bit error in the data of IMEM, DMEM, RegisterFile & PC shall be tolerated
throughout the pipeline stages.

• The proposed scheme is hybrid scheme where both time redundancy and spatial redun-
dancy are used.

• It can tolerate one FU failure per type in the ALU. In worst case, all together we can
tolerate one adder, one multiplier, one shifter, one comparator and one logical unit failure.

• Proposed DMR-ALU with fault isolation saves considerable hardware compare to TMR-
ALU and achieve the same level of fault tolerance with time penalty for doing recompu-
tation and fault handling.

• Overall reasonable fault tolerance with acceptable area and timing overhead as compare
to base version (no fault tolerance feature).

• Proposed scheme shall be adopted on superscalar class of processors where out of order
execution happens at the granularity of FUs in the ALU.
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Figure 3.8: Simplified View of Proposed Fault Tolerant Processor Architecture

Figure 3.9: Detailed View of Proposed Fault Tolerant Processor Architecture
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CHAPTER 4

VERIFICATION PLAN

Verification plays a pivotal role in the system design process. It is intended to check that a

product, service, or meets a set of design specifications. In the development phase, verification

procedures involve performing special tests to model or simulate a portion, or the entirety, of

a product, service or system, then performing a review or analysis of the modelling results. In

the post-development phase, verification procedures involve regularly repeating tests devised

specifically to ensure that the product, service, or system continues to meet the initial design

requirements, specifications and regulations as time progresses. It is a process that is used to

evaluate whether a product, service, or system complies with regulations, specifications or con-

ditions imposed at the start of a development phase. This chapter explains the way,we verified

our proposed design.

In our design of fault tolerant version of 32-bit RISC-V Processor, we need intensive and

comprehensive verification procedure so that design should able to tolerate faults and no loop-

hole exists .We approached 2 level of verification namely module level verification and system

level verification. Following sections we will discuss in details about our verification strategy.

4.1 Module Level Verification

The basic modules involved for regression testing are as follows:

1. Fault tolerant adder

2. Fault tolerant multiplier

3. Fault tolerant logical unit

4. Fault tolerant shifter

5. Fault tolerant comparator

6. Error Correction module (SEC-DED module)



Figure 4.1: Set-up for testing fault tolerant functional unit

4.1.1 Testing of Fault Tolerant FUs

The general setup used for module level testing of above mentioned first 5 modules is shown

in Figure 4.1.

Explanation: The FU-1 & FU-2 represents the functional unit in dual redundant config-

uration. The inputs to the functional unit i.e. operand1 and operand2 are feed through linear

feedback shift registers (LFSR). The output of LFSRs are random. Therefore the inputs to

functional units are random numbers. The fault injection module (FIM) is placed at the output

of FU-1 to simulate runtime errors. FIM is basically doing the ORING of output of FU-1 with

the data of LFSR3 for simulating stuck at 1 and for simulating stuck at 0 it is doing ANDING

operation. We can either simulate single or multiple bit errors depending upon the value of

LFSR3. The simulated error is maintained for 5 consecutive cycles (permanent fault condition)

and observes that fault handling logic is able isolate FU-1 and post the data from FU-2. The

testing is done in two modes:

1. Systematic testing: In this approach, we inject the single bit error systematically one by
one from least significant bit to most significant bit. The injected error at particular bit
position is maintained for 5 consecutive cycles and observes that fault handling logic is
able isolate FU-1 and post the data from FU-2 in all cases. This shows that our recom-
puting methods are able to detect faulty functional unit. First we simulated stuck at 1
fault at every bit position then we simulated stuck at 0 at every bit position. In all cases
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Figure 4.2: Set up for testing SEC-DED Logic

fault handling logic is able isolate FU-1 and post the data from FU-2. The simulation has
been carried out for 5000 clock cycles.

2. Random testing: In this approach, we inject multiple bit errors randomly at the output
of FU-1. The injected errors are maintained for 5 consecutive cycles and observe that
fault handling logic is able isolate FU-1 and post the data from FU-2 in all cases. First,
we simulated multiple stuck at 1 faults then we simulated multiple stuck at 0 faults. In
all cases fault handling logic is able isolate FU-1 and post the data from FU-2. The
simulation has been carried out for 5000 clock cycles.

The above testing shows that our recomputing methods are able to detect faulty functional

unit.

4.1.2 Testing of Error Correcting Code Logic

The set up of testing error correction module (i.e. SEC-DED module) is shown in Figure 4.2.

Explanation: The inputs to single error correction double error detection (i.e. SEC-DED)

block are 32-bit data with corresponding checkbits and enable signal. If enable signal = 1,

then SEC-DED logic is enable otherwise correction logic is disabled and pass the data as such

to the output. It is a feature added in case SECDED logic not required.

Fault Injection Module (FIM) is added to simulate runtime errors. FIM is basically doing the

XOR of received data bits with the data of LFSR3, therefore inverts the bit and simulate the bit

fault. Firstly, we inject the single bit error systematically in 40 bit data (32-bit databits + 8-bit
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checkbits). Observe that output of SECDED logic is corrected data with either single bit error

asserted or checkbit error asserted depending upon the location of error injection. Secondly,

we inject double bit error by setting LFSR and observe that double bit error signal is asserted

in all cases.

4.2 System Level Verification

System level verification involves the verification at the processor level. Aim here is to validate

the system under different fault rates. Only single bit fault is simulated as in real world situa-

tion, SEE effects cause mainly single bit errors.

We have considered the fault injection location as Inter Stage Buffer between decode and ex-

ecution stage (i.e. ISB-ID EX) and output of various functional unit like ft adder, ft mul etc.

used in the design. The ISB has chosen for error injection because everything flows through

ISB and injecting fault at ISB-ID EX may cover the fault of various components of processor

like instruction memory, data memory, register file, program counter register etc in the pipeline

flow.

4.2.1 Fault Injection at Inter Stage Buffer(ISB)

The fault injection is done on the data of the ID EX-ISB. This is achieved by placing Fault

Injection Module (FIM) just after the ID EX-ISB. The FIM is basically doing the XOR of the

ISB data and the LFSR value. The polynomial used for LFSR is such that it becomes circular

shift register with initial feed of 1. In this way we are simulating single bit fault at the ISB data.

There is one enable signal input to FIM, if enable = 1, then FIM simulates error, otherwise

FIM does not simulate error.

4.2.2 Fault Injection at the Fault Tolerant FUs

Both transient and permanent faults are simulated in the ALU. The faults are injected at the

output of prime functional unit (i.e. FU-1) and no faults are simulated at the output of redun-
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dant functional unit (i.e. FU-2) in dual redundant system. The fault injection module (FIM) is

placed at the output of prime functional unit to simulate runtime errors. FIM is basically doing

the XOR of output of FU-1 with the data of LFSR, therefore inverts the output bit. The polyno-

mial used for LFSR is such that it becomes circular shift register with initial feed of 1. In this

way we are simulating single bit fault though multiple bit errors can also be simulated. There

is one enable signal input to FIM, if enable = 1 then, FIM simulates error otherwise FIM does

not simulate error. The enable bit is taken as one of bit of 8-bit LFSR. If enable bit = 1, for

5 consecutive cycle then it simulates permanent fault condition otherwise it simulates transient

fault condition. In case of permanent fault, the logic will post from redundant functional unit

then onwards. This FIM is placed at the output of all prime functional units available in ALU.

Figure 4.3 depicts the fault injection at ISB and FUs.

Figure 4.3: Fault Injection at ISB and FU-1

So we have considered 7 fault injection locations in the processor design as mentioned

in Table 4.1. The 3 bit LFSR (i.e.lfsr sel) will randomly determine where to inject errors.

The clock to lfsr sel shall be divided clock (Clk/x), so that a selected location is under fault

injection for x clock cycles. One more LFSR (i.e. lfsr en) is used whose bit will decide whether

to inject error or not once a fault injection location is selected for x clock cycles. We can say
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that lfsr sel and lfsr en will control the enable input of LFSR used for FIM. This scenario can

simulate error for 1/2/3/4/5 consecutive clock cycles. If error persists for 5 consecutive clock

cycles, then permanent error flag will be raised and faulty module will be isolated.

S.No Selected Location Remarks

1 ISB-ID EX Simulating soft/hard error in memories, ARF, PC register

2 ft adder Simulating soft/hard error in the adder circuitry used in
ALU

3 ft multiplier Simulating soft/hard error in the multiplier circuitry

4 ft shifter Simulating soft/hard error in the shifter circuitry

5 ft logical Simulating soft/hard error in the logical circuitry

6 ft adder used in EAC for
branch related instructions

Simulating soft/hard error in the adder circuitry used in
branch module.

7 ft adder used in EAC for
memory related instruction

Simulating soft/hard error in the adder circuitry used in
memory module.

Table 4.1: Fault Injection Locations

4.3 Test Set up

The test set up is shown in Figure 4.4. The stimulus is basically the 10, 000 instructions gener-

ated using Automatic Test Pattern Generator (ATPG). The selected instruction profile is having

Arithmetic instruction- 50%, Multiplication instruction-10%, Branch instruction- 20%,Load

and Store instruction- 20%. The golden model (P1) is the reference model with no error in-

jection. The errors are injected for 5000 clock cycles randomly at 7 identified fault injection

locations in P2.

The data of 32-internal registers are basically dumped in a file named register dump file in

the writeback (WB) stage of pipelined processor, similarly the target address and data for

data memory (DMEM) corresponds to load and store instructions are also dumped in a file

named data memory dump file. These dumped files are used for verification. The comparator

is basically checking for any mismatch in the register dump files and data memory dump files

generated from P1 and P2.
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Figure 4.4: Testbench Set Up
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CHAPTER 5

IMPLEMENTATION

5.1 Design Flow Overview

The fault tolerant in-order pipelined processor is based on RISC-V ISA. It is completely open-

source ISA and suitable for direct native hardware implementation. The entire codes are written

in Bluespec System Verilog (BSV) language. The design is verified using bluespec simulator

(i.e. bluesim) and verilog simulator (i.e. modelsim). Both ASIC and FPGA implementation

have been done for the base processor and the fault tolerant variant, to infer the area, power and

timing overhead. The overall flow diagram is shown in Figure 5.1.

Figure 5.1: Design Flow



5.2 FPGA Synthesis

The design is synthesized to Xilinx Artix family FPGA-XC7A200t-1-FBG676 for area and

timing information. The Table 5.1 summarizes the gate utilization and speed of the base pro-

cessor and fault tolerant one. The reduction in clock frequency in FT processor design is due

to the ECC operation on data before feeding to ALU. The combinational delay of SEC-DED

logic is 8.74ns.

Processor Ver-
sion

Slice Registers Slice LUTs Max Frequency

Base 2098 4231 55 MHz

Fault tolerant 3047 (+45.2%) 6575 (+55.4%) 36MHz (-34.5%)

Table 5.1: Overhead of the Fault Tolerant Processor (FPGA Synthesis)

5.3 ASIC Implementation

The ASIC implementation of base processor and fault tolerant variant of the processor has been

carried out. The designs are targeted for 55 nm technology with 12 track height standard cell

and using Low Voltage Threshold (LVT) class of cells. The process,voltage and temperature

(PVT) conditions for corner cases are as follows:

Worst Corner Condition (PVT): Slow, 1.08V, 125◦C.

Best Corner Condition (PVT): Fast, 1.32V,−40◦C.

We have used Cadence RTL compiler for synthesis and Cadence Encounter for auto place and

route implementation. Table 5.2 summarizes the instance count, power, area, and timing of

the base processor and fault tolerant one. The critical path in the base processor is the single

cycle multiplier in the EX stage of the pipeline whereas the critical path in the fault tolerant

variant is in the EX stage of the pipeline : SEC-DED logic → Multiplier→ Fault handling

logic → Checkbits Generator. The standard cell area overhead is approximately 69%. The

ASIC implementation of base processor and fault tolerant processor is shown in Figure 5.2.
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Processor
Version

Total Instance Count Power(mW) Standard
Cell Area
(mm2)

Min.
Clock
Period
(ns)

Comb. Seq. Total Static Dynamic Total
Base 22542 2634 25176 0.58 20.97 21.55 0.13 2.4
Fault
Tolerant

28259 3507 31766 1.16 9.19 10.35 0.2 3.7

Overhead +25.36% +33.14% +26.17% +100% -56.17% -51.97% +53.8% +54.17%

Table 5.2: Overhead of the Fault Tolerant Processor (ASIC Implementation)

Figure 5.2: ASIC Implementation of Processors

5.4 Performance

The execution time or performance of fault tolerant processor depends upon the error rates,

type of error and the location of error. The Table 5.3 provides information about the clock

cycle penalty or stall in pipeline due to transient or permanent faults in the system. If the single

bit error exists in data of IMEM, DMEM, ARF and PC then it will be corrected online without
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any clock cycle penalty and does not pose any stall in the pipeline. Faults in ALU leads to

stall in pipeline. If the error in FUs are transient in nature then penalty is depend upon the

duration of transient error (TE). If the errors in FUs are permanent in nature then penalty of 5

clock cycles exists. The penalty is high because our assumption for PE condition (i.e.TE per-

sists for 5 consecutive clock cycles). This shall be reduced depending upon the implementation.

Error Type Logic Involved for Correc-
tive Action

Clock Cycle Penalty

TE/PE in memories or
registers

SEC-DED Logic 0 (No stall)

TE in FUs Fault handling logic in FUs 1/2/3/4

PE in FUs Fault handling logic in FUs 5

Table 5.3: Clock Cycle Penalty

5.5 Performance Improvement

As, we infer from the Table 5.2 that the standard cell area overhead is 53.8% but the timing

penalty is considerable that i.e 54.16%. Our aim to reduce the timing overhead. The following

sections discussed the methodologies adopted or to be adopted for performance improvement.

5.5.1 Multi Cycle Execution Stage

The critical path in the fault tolerant processor variant is in the EX stage of the pipeline :

SEC-DED logic→ Multiplier→ Fault handling logic→ Checkbits Generator. Therefore, the

execution stage is split into 2 stages i.e. EX1 & EX2. In EX1 stage, the SEC-DED has been

performed and rest of the thing is carried in EX2 stage. Here the data flowing through the ISB

between EX1 & EX2 are vulnerable to soft errors. In other places, the soft error in ISB is

tolerated as data flows alongwith checkbits. Therefore, the ISB between EX1 & EX2 should

be the hardened against soft errors. The simplified view of improved fault tolerant architecture
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Figure 5.3: Simplified View of Improved Fault Tolerant Architecture

is shown in Figure 5.3. Table 5.4 summarizes the instance count, power, area, and timing of

the base processor and improved fault tolerant one.

Processor
Version

Total Instance Count Power(mW) Standard
Cell Area
(mm2)

Min.
Clock
Period
(ns)

Comb. Seq. Total Static Dynamic Total
Base 22542 2634 25176 0.58 20.97 21.55 0.13 2.4
Improved
Fault
Tolerant

26458 3638 30096 1.04 10.7 11.74 0.2 3

Overhead +17.37% +38.11% +19.54% +79.3% -48.97% -45.52% +53.8% +25%

Table 5.4: Overhead of the Improved Fault Tolerant Processor (ASIC Implementation)

5.5.2 Out of Order Execution

The performance shall be improved by out of order execution where out of order execution

happens at the granularity of FUs in the ALU design as shown in Figure 5.4. For e.g. if

error exists in multiplier circuitry then non multiplier instruction which are not dependent on

previous multiplier instruction shall be executed, meanwhile the corrective action will be taken

in the ft multiplier module. In this way clock cycle penalty shall be reduced. This fault tolerant

48



ALU shall be easily adopted for superscalar class of processor design (i.e. in-house I-class

shakti processor).

Figure 5.4: Out of Order Execution
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

As CMOS technology moves deep in nanometer range, reliability poses a serious concern in

the system design. The probability of soft and hard errors increases, even for ground based

system. The processor which needs to work reliably in space or in harsh environment should

have techniques to tolerate or mitigate the faults.

This thesis proposed a fault tolerant approach for a 5 stage pipelined processor. The proposed

technique was developed with the intention of offering a reasonable fault tolerance with mini-

mal area and power penalty. First we have discussed about the soft and hard errors. The effects

of SEUs in memory and combinational logic have been explored. Later the fault avoidance

and fault tolerance techniques have been explained. Chapter 3 is the backbone of thesis, where

we explained our approach to tolerate soft and hard errors in processor system. Mainly mem-

ories,specific registers and ALU have been considered for fault tolerance. The ECC technique

used for memories and registers has been explained. The fault tolerant ALU is in DMR con-

figuration where combinational of space and time redundancy techniques have been used to

achieve almost same level of fault tolerance as of TMR-ALU therefore reduces hardware and

power. Recomputation techniques for FUs have been discussed in detail with their fault detec-

tion capability. The verification plan is discussed in chapter 4. Module level and system level

verification were discussed. Our results show that we are able to detect and correct single bit

errors.

FPGA synthesis and ASIC implementation (55nm technology) of fault tolerant and base ver-

sion of in-order RISC-V processor have been carried out. Results show that penalty paid in

terms of standard cell area overhead is around 60% but on the positive side we achieved a quite

reasonable fault tolerance for the system.



6.2 Future Work

Although the results of fault tolerant in-order RISC-V processor presented in this thesis are

promising, there are still some directions that can be further improved in future work.

The first direction may be to include DMR-Floating Point Unit in the design and devise a

recomputing technique to isolate faulty FPU. Secondly, though the data paths are secured using

ECC techniques, control paths are still susceptible to faults. Achieving fault tolerance in control

paths shall be looked. Our proposed fault tolerant techniques shall be applied to in-house I-class

shakti processor (i.e. superscalar class of processor) where out of order execution happens at

the granularity of FUs in the ALU design. This will improve the performance and throughput.
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