
Design of Multi Master Single Slave AXI4

Protocol for RISC-V Processor

A Project Report

submitted by

Segu Suresh

in partial fulfillment of the requirements

for the award of the degree of

Master of Technology

Under the guidance of

Dr. V. Kamakoti

Department of Electrical Engineering

Indian Institute of Technology Madras

May 2015

Department of Electrical Engineering

Indian Institute of Technology Madras

THESIS CERTIFICATE

This is to certify that the thesis titled Design of Multi Master

Single Slave AXI4 Protocol for RISC-V Processor, submitted

by Segu Suresh, to the Indian Institute of Technology, Madras, for the

award of the degree of Master of Technology, is a bona fide record

of the research work done by him under our supervision. The contents

of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Dr. V. Kamakoti

Project Guide

Associate Professor

Dept. of Computer Science and Engineering

IIT-Madras, 600 036

Place : Chennai

Date :

iii

ACKNOWLEDGEMENT

I Would like to express my deepest gratitude to my guide, Dr. V.

Kamakoti for his valuable guidance, encouragement and advice. His

immense motivation helped me in making firm commitment towards

my project work.

My special thanks to Mr. G.S. Madhusudan for his encourage-

ment and motivation through out the project. His valuable suggestions

and constructive feedback were very helpful in moving ahead in my

project work.

I would like to thank my faculty advisor Dr. Nagendra Krish-

napura who patiently listened, evaluated, and guided us through out

our course.

My special thanks to project team members Neel, Arjun , Rahul,

Anand, venkatesh, sukrat,Laxmeesha, naidhu,Sunnihith for their help

and support.

iv

Abstract

System-on-a-Chip (SoC) design has become more and more

complex because Intellectual Property (IP) core with different

functions are integrated within a single chip. Each IPs have

completed design and verification but the integration of all

IPs may not work together. The more common problem is

violation bus protocol or transaction error. The bus-based

architecture has become the major integration methodology

for implementing a SoC. The main issue is to ensure that the

IP works correctly after integrating to the corresponding bus

architecture.Advanced extensible interface 4 (AXI4) is an on

chip bus architecture introduced by ARM to interact with its

peripherals.

AXI4 bus architecture is an SoC communication protocol that

aims at high performance and low power consumption by par-

titioning based on the bandwidth with which the devices op-

erate, within the system.

This project thesis talks about the design of Advanced Exten-

sible Interface(AXI) 4.0 in a four master single slave system,

and implemented in Bluespec sysytem verilog. Which sup-

ports data burst of maximal length of 16 transfers, multiple

outstanding transactions and unaligned data transfers using

byte strobes.

Contents

1 Introduction 1

1.1 About AXI4 protocol 3

1.2 Channel Architecture 3

1.2.1 Channel definition 4

1.2.2 Interface and interconnect 6

1.2.3 Register slices 8

1.3 Basic transactions . 8

1.3.1 Read Burst . 8

1.3.2 Overlapping read burst 9

1.3.3 Write burst . 9

1.3.4 Transaction ordering 10

2 Signal Descriptions 12

2.1 Write address channel 12

2.2 Write data channel signals 12

2.3 Write Response channel signals 12

2.4 Read address channel signals 13

2.5 Read data channel signals 13

3 Channel Handshake 16

3.1 Handshake process . 16

vi

CONTENTS

3.1.1 Write address channel 17

3.1.2 Write data channel 18

3.1.3 Write response channel 19

3.1.4 Read address channel 19

3.1.5 Read data channel 19

3.2 Relationships between the channels 20

3.3 Dependencies between channel handshake signals . . . 20

4 Addressing Options 23

4.1 About addressing options 23

4.2 Burst length . 23

4.3 Burst size . 24

4.4 Burst type . 25

4.5 Burst address calculation 26

5 Transaction Ordering Model 27

5.1 About the Ordering model 27

5.2 Transfer ID fields . 28

5.3 Read ordering . 29

5.4 Write ordering . 29

6 Data Buses 30

6.1 About the data buses 30

6.2 Write and Read strobe 30

6.3 Narrow transfers . 31

7 Unaligned Transfers 33

7.1 About unaligned transfers 33

7.2 Examples . 33

vii

CONTENTS

8 Design and Implementation 35

8.1 Architecture . 35

8.1.1 Master interface 35

8.1.2 Interconnect . 36

8.1.3 Slave interface 42

8.2 Channel Handshake . 43

8.2.1 Write Address Channel (WA) 43

8.2.2 Write Data Channel (WD) 44

8.2.3 Write Response Channel (WR) 45

8.2.4 Read Address Channel (RA) 45

8.2.5 Read Data Channel (RD) 46

8.3 Synthesis Evaluation 47

9 CONCLUSION AND FUTURE SCOPE 48

9.1 Conclusion . 48

9.2 Future scope . 49

viii

List of Figures

1.1 Different channels of AXI bus 2

1.2 Channel architecture of read 4

1.3 Channel architecture of write 5

1.4 Interface and interconnect 7

1.5 Read burst . 8

1.6 Overlapping read burst 9

1.7 Write burst . 10

3.1 VALID before READY handshake 17

3.2 READY before VALID handshake 17

3.3 VALID with READY handshake 18

3.4 Read transaction handshake dependencies 21

3.5 Write transaction handshake dependencies 21

6.1 Byte lane mapping . 31

6.2 Narrow transfer example with 8-bit transfers 32

7.1 Aligned and unaligned word transfers on a 32-bit bus . 34

8.1 Block diagram of multi master single slave AXI protocol 36

8.2 Master interface . 37

8.3 AXI Interconnect WA, WD and RA channels 38

ix

LIST OF FIGURES

8.4 AXI Interconnect RD and WS channels 39

8.5 Slave interface . 40

8.6 Block diagram of FIFO 41

x

List of Tables

2.1 AXI write address channel signals 13

2.2 AXI write data channel signals 14

2.3 AXI write Response channel signals 14

2.4 Read address channel signals 15

2.5 AXI read data channel signals 15

4.1 Burst length encoding 24

4.2 Burst size encoding . 24

4.3 Burst type encoding 25

5.1 Transaction IDs . 28

6.1 Strobe signals . 32

8.1 Signals and Description 36

8.2 Write address align module operation 41

8.3 Read address align module operation 42

xi

Chapter 1

Introduction

To speed up SoC integration and promote IP reuse, several bus-based communication

architecture standards have emerged over the past several years. Since the early

1990s, several on-chip bus-based communication architecture standards have been

proposed to handle the communication needs of emerging SoC design. Some of the

popular standards include ARM Microcontroller Bus Architecture (AMBA) versions

2.0 and 3.0.

ARM introduced the Advanced Michocontroller Bus Architecture (AMBA) 4.0

specifications in March 2010, which includes Advanced eXtensiable Interface (AXI)

4.0. AMBA bus protocol has become the de facto standard SoC bus. That means

more and more existing IPs must be able to communicate with AMBA 4.0 bus.

The AXI specifications describe an interface between a single AXI master and a

single AXI slave, representing IP cores that exchange information with each other.

Memory mapped AXI masters and slaves can be connected together using a structure

called an Interconnect block. The simple block diagram of AXI bus having single

master and slave is shown figure 1.1.

The main components are:

AXI Master: AXI master initiates transfer on the bus, and receives data.

AXI Slave: AXI slave responds to the transaction initiated by the master. Fully

configured wait states and slave error response. Storing ability as internal memory

and supplying data on the demand.

1

Figure 1.1: Different channels of AXI bus

AXI Interconnect/Arbiter: AXI interconnect can take multiple masters at a

time and arbitrates for the bus using configurable priority scheme.

It consist of five different channels:

• Read Address Channel

• Write Address Channel

• Read Data Channel

• Write Data Channel

• Write Response Channel

Read and write channels are independent, so data can move in both directions

between the master and slave simultaneously, and data transfer sizes can vary. The

limit in AXI4 is a burst transaction of up to 256 data transfers. Each transaction is

burst-based which has address and control information on the address channel that

describes the nature of the data to be transferred. The data is transferred between

master and slave using a write data channel to the slave or a read data channel to

the master.

2

1.1 About AXI4 protocol

1.1 About AXI4 protocol

The AMBA AXI4 protocol is aimed towards high-frequency system designs and in-

cludes a number of features that make it suitable for a high speed sub -micron inter-

connect.

The key features of the AXI4 protocol are:

• Separate address/control and data phases

• Support for unaligned data transfers using byte strobes

• Burst-based transactions with only start address issued, so it can reduces the

utilization of address channel

• separate read and write data channels to enable low-cost Direct Memory Access

(DMA)

• Ability to issue multiple outstanding addresses

• out-of-order transaction completion

• easy addition of register stages to provide timing closure

The AXI4 protocol supports the following mechanisms:

• variable-length bursts, from 1 to 16 data transfers per burst

• bursts with a transfer size of 8,16,32,64.128,256 and 1024 bits

• wrapping, incrementing, and non-incrementing bursts

• atomic operations, using exclusive or locked accesses

• system-level caching and buffering control

1.2 Channel Architecture

The AXI protocol supports burst-based transactions. Every transaction

has address and control information on the write and read address channel that

describes the nature of the data to be transferred between master and slave.

3

1.2 Channel Architecture

In read transactions of the AXI protocol, the master drives address and

control information on Read address channel to the slave and slave drives the data

and read response signal to the master on Read data channel. Figure 1-2 shows how

a read transaction uses the read address and read data channels.

Figure 1.2: Channel architecture of read

In write transactions of the AXI protocol, all the data flows from the

master to the slave, and it has an additional write response channel to allow the slave

to acknowledge the master about the completion of the write transaction. Figure 1-3

shows how a write transaction uses the write address, write data, and write response

channels.

The AXI protocol enables:

• address information to be issued ahead of the actual data transfer

• support for multiple outstanding transactions

• support for out-of-order completion of transactions.

1.2.1 Channel definition

4

1.2 Channel Architecture

Figure 1.3: Channel architecture of write

AXI protocol five channel are independent to each other, consists of a set

of information signals and uses a two-way VALID and READY handshake mechanism.

The information source uses the VALID signal to show when valid address

and control information or data is available on the channels. The destination uses

the READY signal to show when it can accept the data. Both the read data channel

and the write data channel also include a LAST signal to indicate when the transfer

of the final data item within a transaction takes place.

Read and write address channels

In AXI protocol Read and write transactions have their own address

channel. The address channels carries the address and control information for a

transaction. The address is nothing but the starting address of transaction and

control information tells what is the length, size and type of transaction.

5

1.2 Channel Architecture

Read data channel

The read data channel conveys both the read data and read response

information from the slave back to the master. The read data channel :

• data bus can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide

• read response indicating the completion status of the read transaction.

Write data channel

The write data channel conveys the write data and strobe signal from

the master to the slave and includes:

• the data bus, that can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide

• one byte lane strobe for every eight data bits, indicating which bytes of the

data bus are valid.

Write data channel information is buffered, so that the master can send another

write transactions without slave acknowledgement of previous write transactions.

Write response channel

The write response channel provides a way for the slave to respond to

write transactions. All write transactions use completion signaling. The completion

signal occurs once for each burst, not for each individual data transfer within the

burst.

1.2.2 Interface and interconnect

Any system may consists of a number of master and slave devices. They

connected together through some form of interconnect. This project have four masters

and single slave connected through interconnect as shown in Figure 1-4.

The AXI protocol provides a single interface definition for describing interfaces:

• between a master and the interconnect in multi master and multi slave, or multi

master and single slave systems.

6

1.2 Channel Architecture

Figure 1.4: Interface and interconnect

• between a slave and the interconnect in multi master and multi slave, or multi

master and single slave systems.

• between a master and a slave in single master and slave system.

The interface definition enables a variety of different interconnect implementa-

tions between masters and slaves. The interconnect between devices is equivalent to

another device with symmetrical master and slave ports to which real master and

slave devices can be connected.

Most systems use one of the following three interconnect approaches:

• shared address and data buses, in a systems where address and data channel

bandwidth requirement is less.

• shared address buses and multiple data buses, in a systems where address chan-

nel bandwidth requirement is less than data channel.

• multilayer, with multiple address and data buses, in a systems where address

and data channel bandwidth requirement is high.

7

1.3 Basic transactions

1.2.3 Register slices

All channel in AXI protocol transfers information in only one direction, so

there is no need for fixed relationship between various channels. This enables the

insertion of register slices in any channel and maximize the operating frequency, at

the cost of additional cycle latency.

It is also possible to use register slices at almost any point within a given

interconnect. It can be advantageous to use a direct, fast connection between a

processor and high-performance memory, but to use simple register slices to isolate

a longer path to less performance-critical peripherals.*

1.3 Basic transactions

This section explains basic transaction of AXI protocol. All transactions

uses a two-way VALID and READY handshake mechanism. The transfer of address

information or data occur when both VALID and READY handshake signals are

HIGH between master and interconnect or interconnect and slave.

1.3.1 Read Burst

Figure 1-5 shows a read burst transaction with four transfers. As show in

figure the master drives the address and slave accepts it after one cycle. The master

also drives control information, but it not shown on figure for clarity.

Figure 1.5: Read burst

8

1.3 Basic transactions

After address appear at slave, slave reads the data from memory and

assert the VALID signal, then transfers the data on read data channel. The slave

keeps the VALID signal LOW until the read data is available. At the final data

transfer of the burst transaction, the slave asserts the RLAST signal to show that

the last data item is being transferred.

1.3.2 Overlapping read burst

Figure 1.6: Overlapping read burst

As shown in fig 1-6 master is driving another burst address before slave

accepting the first address. The slave can process data for second burst in parallel

with the completion of the first burst.

1.3.3 Write burst

Write transaction is show in fig 1-7. It starts when the master sends

an address and control information on the write address channel. The master then

sends each item of write data over the write data channel. When the master sends

the last data item, the WLAST signal goes HIGH. When the slave accepted all the

data items, it drives a write response back to the master to indicate that the write

transaction is complete.

9

1.3 Basic transactions

Figure 1.7: Write burst

1.3.4 Transaction ordering

The AXI protocol enables out-of-order transaction completion. It gives an ID

tag to every transaction across the interface. The protocol requires that transactions

with the same ID tag are completed in order, but transactions with different ID tags

can be completed out of order.

Out-of-order transactions can improve system performance in two ways:

• The interconnect can enable transactions with fast-responding slaves to com-

plete in advance of earlier transactions with slower slaves.

• Complex slaves can return read data out of order. For example, a data item

for a later access might be available from an internal buffer before the data for

an earlier access is available.

If a master requires that transactions are completed in the same order

that they are issued, then they must all have the same ID tag. If, however, a master

does not require in-order transaction completion, it can supply the transactions with

different ID tags, enabling them to be completed in any order.

10

1.3 Basic transactions

In a multi master system, the interconnect is responsible for appending

additional information to the ID tag to ensure that ID tags from all masters are

unique. The ID tag is similar to a master number, but with the extension that each

master can implement multiple virtual masters within the same port by supplying an

ID tag to indicate the virtual master number.

Although complex devices can make use of the out-of-order facility, simple

devices are not required to use it. Simple masters can issue every transaction with the

same ID tag, and simple slaves can respond to every transaction in order, irrespective

of the ID tag

11

Chapter 2

Signal Descriptions

This chapter defines the AXI signals. Although bus width and transaction

ID width are implementation-specific, the tables in this chapter show a 32-bit data

bus, a four-bit write data strobe, and four-bit ID fields.

2.1 Write address channel

The write address channel signals and description of each signal is shown in figure

2.1

2.2 Write data channel signals

The write data channel signals and description of each signal is shown in figure 2.2

2.3 Write Response channel signals

The write Response channel signals and description of each signal is shown in figure

2.3

12

2.4 Read address channel signals

Table 2.1: AXI write address channel signals

Signal Source Description

AWID[3:0] Master This id tag signal. It tells which master is driving ad-

dress and control information on write address channel.

AWADDR[31:0] Master This is Write address signal. It gives the address of the

first transfer in a write burst transaction.

AWLEN[3:0] Master Burst length. It gives the exact number of transfers in

a burst

AWSIZE[2:0] Master Burst size. This signal indicates the size of each transfer

in the burst

AWBURST[1:0] Master Burst type. This tells how the address for each transfer

within the the burst is calculated

AWVALID Master Write address valid. This signal indicates whether the

valid write address and control information are available

or not

AWREADY Slave Write address ready. This signal indicates whether the

slave is ready to accept an address and control informa-

tion or not

2.4 Read address channel signals

The Read address channel signals and description of each signal is shown in figure

2.4

2.5 Read data channel signals

The Read data channel signals and description of each signal is shown in figure 2.5

13

2.5 Read data channel signals

Table 2.2: AXI write data channel signals

Signal Source Description

WID[3:0] Master This id tag signal. It tells which master is driving the data

on write data channel.

WDATA[31:0] Master This is Write data signal. The write data bus can be 8, 16,

32, 64, 128, 256, 512,or 1024 bits wide.

WSTRB[3:0] Master Write strobes. This signal indicates which byte lanes to up-

date in memory. There is one write strobe for each eight bits

of the write data bus.

WLAST Master Write last. This signal indicates the last transfer in a write

burst.

WVALID Master Write data valid. This signal indicates whether the valid data

is available or not.

WREADY Slave Write address ready. This signal indicates whether the slave

is ready to accept data or not.

Table 2.3: AXI write Response channel signals

Signal Source Description

BID[3:0] Slave Write Response ID. It tells to which master, slave driving the

Write Response signal. The BID value must match the AWID

value of the write transaction to which the slave is responding.

BRESP[1:0] Slave Write response. This signal indicates the status of the write

transaction.

BVALID Slave Write Response valid. This signal indicates that a valid write

response is available: 1 = write response available 0 = write

response not available.

BREADY Master Write Response ready. This signal indicates whether the mas-

ter is ready to accept Write response signal or not

14

2.5 Read data channel signals

Table 2.4: Read address channel signals

Signal Source Description

ARID[3:0] Master This id tag signal. It tells which master is driving address and

control information on read address channel.

ARADDR[31:0] Master This is read address signal. It gives the address of the first

transfer in a write burst transaction.

ARLEN[3:0] Master Burst length. It gives the exact number of transfers in a burst.

ARSIZE[2:0] Master Burst size. This signal indicates the size of each transfer in

the burst.

ARBURST[1:0] Master Burst type. This tells how the address for each transfer within

the the burst is calculated.

ARVALID Master Read address valid. This signal indicates whether the valid

write address and control information are available or not

ARREADY Slave Read address ready. This signal indicates whether the slave

is ready to accept an address and control information or not

Table 2.5: AXI read data channel signals

Signal Source Description

RID[3:0] Slave This id tag signal. It tells to which master the slave driving

the data on read data channel.

RDATA[31:0] Slave This is Read data signal. The Read data bus can be 8, 16,

32, 64, 128, 256, 512, or 1024 bits wide.

RLAST Slave Read last. This signal indicates the last transfer in a read

burst.

RVALID Master Read data valid. This signal indicates whether the valid data

is available or not .

RREADY Master Read address ready. This signal indicates whether the master

is ready to accept data or not.

15

Chapter 3

Channel Handshake

This chapter describes the master to AXI interconnect and AXI slave

handshake process and outlines the relationships and default values of the READY

and VALID handshake signals

3.1 Handshake process

All five channels of AXI protocol use the same VALID/READY hand-

shake signals to transfer address and control information, or data. This two-way flow

control mechanism enables the master, interconnect and slave, to control the rate at

which the data and control information moves.

The source asserts the VALID signal when it’s driving the valid address

and control information or data on respective channels. The destination generates

the READY signal to indicate that it is accepts the address and control information

or data. Transfer occurs only when both the VALID and READY signals are HIGH.

Figure 3-1 to Figure 3-3 show examples of the handshake sequence. In

Figure 3-1, the source presents the data or control information and drives the VALID

signal HIGH. The data or control information from the source remains stable until

the destination drives the READY signal HIGH, indicating that it accepts the data

or control information. The arrow shows when the transfer occurs.

It is not permitted to wait until READY is asserted before asserting VALID.

Once VALID is asserted it must remain asserted until the handshake occurs.

16

3.1 Handshake process

Figure 3.1: VALID before READY handshake

Figure 3.2: READY before VALID handshake

In Figure 3-2, the destination drives READY HIGH before the data or

control information is valid. This indicates that the destination can accept the data

or control information in a single cycle as soon as it becomes valid. The arrow shows

when the transfer occurs.

It is permitted to wait for VALID to be asserted before the corresponding

READY is asserted. If READY is asserted, it is permitted to deassert READY before

VALID is asserted.

In Figure 3-3 shown, both the source and destination happen to indicate

in the same cycle that they can transfer the data or control information. In this case

the transfer occurs immediately. The arrow shows when the transfer occurs.

3.1.1 Write address channel

The master can assert the AWVALID signal when it drives valid address

and control information on write address channel between master to interconnect.

17

3.1 Handshake process

Figure 3.3: VALID with READY handshake

It must remain asserted until the Interconnect accepts the address and control in-

formation. When interconnect free, accepts the address and control information by

asserting the associated AWREADY signal.

Similarly when interconnect has valid address and control information,

assert the AWVALID signal high on write address channel between interconnect to

slave. When slave free, accepts the address and control information by asserting the

associated AWREADY signal high.

The recommended default value AWREADY and AWVALID signal are

HIGH and LOW. A default value of LOW is possible but not recommended for

AWREADY signal, because the transfer takes at least two cycles, one to assert AW-

VALID and another to assert AWREADY.

3.1.2 Write data channel

During a write burst transaction, the master asserts the WVALID signal

when it drives valid write data on Write data channel between master to interconnect.

When interconnect free, accepts the data information by asserting the associated

AWREADY signal.

Similarly the Interconnect asserts the WVALID signal when it drives valid

write data on Write data channel between interconnect to slave. When slave free,

accepts the address and control information by asserting the associated AWREADY

signal high.

18

3.1 Handshake process

The recommended default value WREADY and WVALID signal are HIGH

and LOW. When WVALID is LOW, the WSTRB [3:0] signals can take any default

value.

3.1.3 Write response channel

The slave asserts the BVALID signal and write response signal only when

it receives last data in burst. BVALID must remain asserted until the master accepts

the write response and asserts BREADY. The default value of BREADY can be

HIGH.

3.1.4 Read address channel

The master asserts the ARVALID signal only when it drives valid address

and control information on read address channel between master and interconnect.

It must remain asserted until the Interconnect accepts the address and control infor-

mation. When interconnect free, it asserts the associated ARREADY signal, then

address and control information transfer.

Similarly the address and control information transfer from Interconnect

to Slave when both AREADY and ARVALID signal are asserted.

The recommended default value ARREADY and ARVALID signal are

HIGH and LOW. A default value of LOW is possible but not recommended for

ARREADY, because the transfer takes at least two cycles, one to assert AWVALID

and another to assert AWREADY.

3.1.5 Read data channel

The slave asserts the RVALID signal only when it drives valid read data

on read data channel between slave and interconnect. RVALID must remain asserted

until the interconnect accepts the data and asserts the RREADY signal. Even if a

slave has only one source of read data, it must assert the RVALID signal only in

response to a request for the data.

19

3.2 Relationships between the channels

The interconnect uses the RREADY signal to indicate that it accepts the

data. The default value of RREADY can be HIGH. The slave asserts the RLAST

signal when it drives the final read transfer in the burst.

3.2 Relationships between the channels

The relationship between the address, read, write, and write response

channels is flexible.

For example, the write data can appear at an interface before or after or

in the same cycle as write address that relates to it. The data appear before the

write address when the write address channel contains more register stages than the

write data channel, and after when the when the write data channel contains more

register stages than the write address channel .

The interconnect realign the write address and write data, and sends to

slave when it is ready. With the help of register slices and ID tag interconnect realigns

the write address and write data, we can see this in block diagram on page.

Two relationships that must be maintained are:

• read data must always follow the address to which the data relates.

• a write response must always follow the last write transfer in the write trans-

action to which the write response relates.

3.3 Dependencies between channel handshake sig-

nals

To prevent a deadlock situation, you must observe the dependencies that

exist between the handshake signals.

One example of deadlock situation is, during a write transaction, a mas-

ter must not wait for AWREADY to be asserted before driving WVALID. This

could cause a deadlock condition if the slave is waiting for WVALID before asserting

AWREADY.

20

3.3 Dependencies between channel handshake signals

In any transaction:

• the VALID signal of one AXI component must not be dependent on the READY

signal of the other component in the transaction

• the READY signal can wait for assertion of the VALID signal.

Figure 3-4 and Figure 3-5 show the handshake signal dependencies of

read and write address channel. The single-headed arrows point to signals that can

be asserted before or after the previous signal is asserted. Double-headed arrows

point to signals that must be asserted only after assertion of the previous signal.

Figure 3.4: Read transaction handshake dependencies

Figure 3.5: Write transaction handshake dependencies

The figure 3-4 shows that, in a read transaction:

• the slave can wait for ARVALID to be asserted before it asserts ARREADY

• the slave must wait for both ARVALID and ARREADY to be asserted before

it starts to return read data by asserting RVALID.

21

3.3 Dependencies between channel handshake signals

The figure 3-5 shows that, in a write transaction:

• the master must not wait for the slave to assert AWREADY or WREADY

before asserting AWVALID or WVALID

• the slave can wait for AWVALID or WVALID, or both, before asserting AWREADY

• the slave can wait for AWVALID or WVALID, or both, before asserting WREADY

• the slave must wait for both WVALID and WREADY to be asserted before

asserting BVALID.

22

Chapter 4

Addressing Options

This chapter describes AXI burst types and how to calculate addresses

and byte lanes for transfers within a burst.

4.1 About addressing options

The AXI protocol is burst-based, and the master begins each burst by

driving transfer control information and the address of the first byte in the transfer.

As the burst transaction progresses, it is the responsibility of the slave to calculate

the addresses of subsequent transfers in the burst.

4.2 Burst length

Table 4-1 shows how AWLEN or ARLEN signal specifies the number of

data transfers that occur within each burst. Every transaction must have the number

of transfers specified by ARLEN or AWLEN. No component can terminate a burst

early to reduce the number of data transfers. During a write burst, the master can

disable further writing by deasserting all the write strobes, but it must complete the

remaining transfers in the burst. During a read burst, the master can discard further

read data, but it must complete the remaining transfers in the burst.

23

4.3 Burst size

Table 4.1: Burst length encoding

ARLEN[3:0], AWLEN[3:0] Number of data transfers

b’0000 1

b’0001 2

b’0010 3

b’0011 4

......

b’1101 14

b’1110 15

b’1111 16

Table 4.2: Burst size encoding

ARSIZE[2:0], AWSIZE[2:0] Bytes in transfer

b’000 1

b’001 2

b’010 4

b’011 8

b’100 16

b’101 32

b’110 64

b’111 128

4.3 Burst size

Table 4-2 shows how the ARSIZE or AWSIZE signal specifies the maximum

number of data bytes to transfer in each beat, or data transfer, within a burst. The

AXI determines from the transfer address which byte lanes of the data bus to use for

each transfer in a read data transaction. The size of any transfer must not exceed

the data bus width of the components in the transaction.

24

4.4 Burst type

4.4 Burst type

• Fixed burst.

• Incrementing Burst.

• Wrapping Burst.

Table 4.3: Burst type encoding

ARBURST[1:0]

AWBURST[1:0]

Burst

type

Description Access

b’00 Fixed Fixed-address burst FIFO-type

b’01 INCR Incrementing-address burst Normal sequential

memory

b’10 WRAP Incrementing-address burst

that wraps to a lower ad-

dress at the wrap boundary

Cache line

b’11 Reserved

Fixed burst

In a fixed burst, the address remains the same for every transfer in the

burst. This burst type is for repeated accesses to the same location such as when

loading or emptying a peripheral FIFO.

Incrementing burst

In an incrementing burst, the address for each transfer in the burst is an

increment of the previous transfer address. The increment value depends on the size

of the transfer. For example, the address for each transfer in a burst with a size of

four bytes is the previous address plus four.

Wrapping burst

A wrapping burst is similar to an incrementing burst, in that the address

for each transfer in the burst is an increment of the previous transfer address. How-

ever, in a wrapping burst the address wraps around to a lower address when a wrap

25

4.5 Burst address calculation

boundary is reached. The wrap boundary is the size of each transfer in the burst

multiplied by the total number of transfers in the burst.

Two restrictions apply to wrapping bursts:

• the start address must be aligned to the size of the transfer

• the length of the burst must be 2, 4, 8, or 16.

4.5 Burst address calculation

Use these equations to determine addresses of transfers within a burst:

• Start Address = ADDR

• Number Bytes = 2SIZE

• Burst Length = LEN + 1

• Aligned Address = (INT(Start Address / Number Bytes)) x Number Bytes

Use this equation to determine the address of any transfer after the first transfer

in a burst:

• AddressN = Aligned Address + (N 1) x Number Bytes.

The variables in formulas are

Start Address The start address issued by the master.

Number Bytes The maximum number of bytes in each data transfer.

Data Bus Bytes The number of byte lanes in the data bus.

Aligned Address The aligned version of the start address.

Burst Length The total number of data transfers within a burst.

AddressN The address of transfer N within a burst.

N is an integer from 1-16.

26

Chapter 5

Transaction Ordering Model

This chapter describes how the AXI protocol uses transaction ID tags to

enable the issuing of multiple outstanding addresses

5.1 About the Ordering model

The AXI protocol enables out-of-order transaction completion and the is-

suing of multiple outstanding addresses. These features enable the implementation of

a high-performance interconnect, maximizing data throughput and system efficiency.

The ID signals support out-of-order transactions by enabling each port to

act as multiple ordered ports. All transactions with a given ID must be ordered, but

there is no restriction on the ordering of transactions with different IDs. The five

transaction IDs are:

The ability to complete transactions out of order means that transactions

to faster memory regions can complete without waiting for earlier transactions to

slower memory regions. This feature can also improve system performance because

it reduces the effect of transaction latency.

In this project i am doing transactions between four masters and single

slave, so i am not implementing out of order feature of AXI protocol.

27

5.2 Transfer ID fields

Table 5.1: Transaction IDs

ID Description

AWID The ID tag for the write address group of signals.

WID The write ID tag for a write transaction. Along with the write data, the master

transfers a WID to match the AWID of the corresponding address.

BID The ID tag for the write response. The slave transfers a BID to match the

AWID and WID of the transaction to which it is responding.

ARID The ID tag for the read address group of signals.

RID The read ID tag for a read transaction. The slave transfers an RID to match

the ARID of the transaction to which it is responding.

5.2 Transfer ID fields

The AXI protocol provides an ID field to enable a master to issue a number

of separate transactions, each of which must be returned in order.

A master can use the ARID or AWID field of a transaction to provide

additional information about the ordering requirements of the master. The rules

governing the ordering of transactions are as follows:

• Transactions from different masters have no ordering restrictions. They can

complete in any order. Here i am surviving transactions in Round robin fashion.

• Transactions from the same master, but with different ID values, have no or-

dering restrictions. They can complete in any order. Here i am using different

ID values, because of single slave.

• The data for a sequence of write transactions with the same AWID value must

complete in the same order that the master issued the addresses in.

• The data for a sequence of read transactions with the same ARID value must

be returned in order that:

– when reads with the same ARID are from the same master then the slave

must ensure that the read data returns in the same order that the addresses

are received.

28

5.3 Read ordering

– when reads with the same ARID are from master, the interconnect must

ensure that the read data returns in the same order that the master issued

the addresses in. This rule is for multi master and multi slave system.

• There are no ordering restrictions between read and write transactions

5.3 Read ordering

At a master interface, read data from read transactions with the same

ARID value must arrive in the same order in which the master issued the addresses.

Data from read transactions with different ARID values can return in any order and

it is also acceptable to interleave the read data of transactions with different ARID

fields.

A slave must return read data from a sequence of read transactions with

the same ARID value in the same order in which it received the addresses. In a

sequence of read transactions with different ARID values, the slave can return the

read data in a different order than that in which the transactions arrived.

The slave must ensure that the RID value of any returned read data

matches the ARID value of the address to which it is responding.

The interconnect must ensure that a sequence of read transactions with

the same ARID value from different slaves complete in order.

5.4 Write ordering

If a slave does not support write data interleaving, the master must issue

the data of write transactions in the same order in which it issues the transaction

addresses.

Most slave designs do not support write data interleaving and consequently these

types of slave design must receive write data in the same order that they receive the

addresses. If the interconnect combines write transactions from different masters to

one slave, it must ensure that it combines the write data in address order.

29

Chapter 6

Data Buses

This chapter describes how varying sizes of data transfers on AXI read

and write data bus and how slave interface uses byte-invariant endianness to handle

mixed-endian transfers.

6.1 About the data buses

The AXI protocol has two independent data buses, one for read data and

one for write data. Because these data buses have their own individual handshake

signals, it is possible for data transfers to occur on both buses at the same time.

Every transfer generated by a master must be the same width as or nar-

rower than the data bus for the transfer.

6.2 Write and Read strobe

The write and read strobe signals, WSTRB, RSTRB enables align and

unaligned data transfer data transfer on the write data bus and read data bus. Each

strobe signal corresponds to one byte of the data bus. When asserted, strobe signal

indicates that the corresponding byte lane of the data bus contains valid information

to be updated in memory or read from memory.

30

6.3 Narrow transfers

In read transaction of AXI bus, the slave generates the strobe signals

from starting address, burst length and burst size information. In appendix i give

bluespec logic for strobe signal implementation.

In write transaction of AXI bus, the master interface send the write strobe

signal along with the write data to slave interface. I already shown strobe signals in

table 3.2.

In figure 6.1, 64 bit data bus is shown and corresponding write strobe signal

WSTRB[n] is WDATA[(8 n) + 7: (8 n)], and read strobe signal RSTRB[n]

is RDATA[(8 n) + 7: (8 n)].

Figure 6.1: Byte lane mapping

6.3 Narrow transfers

When a master generates a transfer that is narrower than its data bus,

the address and control information determine which byte lanes the transfer uses. In

incrementing or wrapping bursts, different byte lanes transfer the data on each beat

of the burst. In a fixed burst, the address and byte lanes remains constant. Narrow

data transfer in read data transaction is explained below with example.

Example the master sent following information to slave

• starting address is 0

• burst length or number of transfers is 5

• burst size is 8 bits

• data bus size is 32 bits

The strobe signals generated by slave is shown in table 6.1, and corresponding

valid data on data bus is shown in figure 6.2.

31

6.3 Narrow transfers

Table 6.1: Strobe signals

Transfer Strobe signals

1st b’0001

2nd b’0010

3rd b’0100

4th b’1000

5th b’0001

Figure 6.2: Narrow transfer example with 8-bit transfers

32

Chapter 7

Unaligned Transfers

7.1 About unaligned transfers

The AXI protocol uses burst-based addressing, which means that each

transaction consists of a number of data transfers. Typically, each data transfer is

aligned to the size of the transfer. For example, a 32-bit wide transfer is usually

aligned to four-byte boundaries. However, there are times when it is desirable to

begin a burst at an unaligned address.

For any burst that is made up of data transfers wider than one byte, it is

possible that the first bytes that have to be accessed do not align with the natural

data width boundary. For example, a 32-bit (four-byte) data packet that starts at a

byte address of 0x1002 is not aligned to a 32-bit boundary.

The AXI protocol does not require the slave to take special action based

on any alignment information from the master. The master can also simply provide

an aligned address and, in a write transaction, rely on the byte lane strobes to provide

the information about which byte lanes the data is using.

7.2 Examples

Figure 10-1 show examples of aligned and unaligned transfers on buses with different

widths. Each row in the figures represents a transfer. The shaded cells indicate bytes

that are not transferred, based on the address and control information.

33

7.2 Examples

Figure 7.1: Aligned and unaligned word transfers on a 32-bit bus

34

Chapter 8

Design and Implementation

This chapter describes the design of four masters and single slave AXI4

protocol, how each block works, and how each channel uses the same VALID/READY

handshake mechanism to transfer control and data information.

This project is not have all signals present of AXI4 protocol, this is also

shown in chapter2 Signal Descriptions. Here i am not implementing the all features

of AXI4 protocol. It has the AXI4 protocol signals, which provides burst based trans-

action, align and unaligned data transactions, and multiple outstanding transactions.

It does not have the signal to provide protection and error support.

8.1 Architecture

The block diagram of complete system is shown in fig 8.1, it having four

master and single slave connecting through AXI interconnect. Internal diagram of

each component is in figure 8.2 to 8.5, each signal description given the table 8.1.

Funtionality of each module explained below

8.1.1 Master interface

AXI Master interface block diagram is shown in figure 8.2. The master

is driving information on write address, write data and read address channels, and

receiving information on read data and write response channel. The signal description

of each channel is given in chapter2.

35

8.1 Architecture

Figure 8.1: Block diagram of multi master single slave AXI protocol

Table 8.1: Signals and Description

Signal Description

WA It has all Write address channel signals, except READY signal

WD It has all Write data channel signals, except READY signal

RA It has all Read address channel , except READY and signal

RD It has all Read data channel, except READY signal

WR It has all Write response channel signal, except READY signal

WAREADY,WAVALID READY and VALID signals on write address channel

RAREADY,RAVALID READY and VALID signals on read address channel

WDREADY,WDVALID READY and VALID signals on write data channel

RAREADY,RAVALID READY and VALID signals on read address channel

NF,NE NOT EMPTY and NOT FULL signal of FIFO

8.1.2 Interconnect

Interconnect internal block diagram is shown in figure 8.3 and 8.4. The

modules and their function is explained below.

FIFO

36

8.1 Architecture

Figure 8.2: Master interface

The block diagram of First-in first-out memory is shown in figure 8.6. It

has input and output, and two status signal outputs, which tells whether FIFO is

EMPTY or FULL. In figures from 8.2 to 8.5, the number besides FIFO word tells

FIFO number and the number in closed bracket tells size of FIFO.

Because of FIFOs in Interconnect

• master interface can send information on write address channel before or after

or in the same cycle as of write data channel

37

8.1 Architecture

Figure 8.3: AXI Interconnect WA, WD and RA channels

• master can send next write address request, write data and read address before

completion of previous request

• slave can send read data before previous data reaching master

• slave can send write response information before previous information reaching

master

From above statement we can say that FIFOs are helping us to implement multiple

outstanding transaction feature of AXI4 protocol.

38

8.1 Architecture

Figure 8.4: AXI Interconnect RD and WS channels

39

8.1 Architecture

Figure 8.5: Slave interface

Write address align module

It checks the status of write address channel FIFOs and corresponding

write data channel FIFOs in every cycle, and sends write address channel requests

to FIFO13 in a Round Robin fashion, if both write address channel FIFO and corre-

sponding data channel FIFO are NOT EMPTY. This is explaining with the example

in table 8.2. In this table NO means no information is coming.

Write data selector

This module takes ID field on write address channel as input, based on ID

field, it read data from corresponding FIFO, and sends to slave interface.

Read address align module

40

8.1 Architecture

Figure 8.6: Block diagram of FIFO

Table 8.2: Write address align module operation

cycle Masters sending write

address request

Masters sending

write data

which master re-

quest going to

FIFO13

1 master1,master2,master3 No No

2 No No No

3 master4 No No

4 No master4 No

5 No master2,master3 master4

6 No master1 master2

7 No No master3

8 NO No master1

This module checks the status of read address channel FIFOs in every cycle,

and sends write address channel requests to FIFO13 in a Round Robin fashion. This

is explaining with the example in table 8.3. In this table NO means no information

is coming.

Demultiplexer1

Based on ID tag field of Read data channel, it sends read data to corre-

sponding master FIFO.

Demultiplexer2

Based on ID tag field of Read data channel, it sends read data to corre-

sponding master FIFO.

41

8.1 Architecture

Table 8.3: Read address align module operation

cycle Masters sending read

address request

which master re-

quest going to

FIFO13

1 Master1,Master2,Master4 No

2 No Master1

3 master3 Master2

4 No Master3

5 No master4

8.1.3 Slave interface

Slave interface internal block diagram is shown in figure 8.5. The modules

and their function is explained below.

Write and Read align address generator

This modules take starting address of burst and control information on

WA and WR channel, and calculates the next address of each transfer in burst. The

equation used is shown in section 4.5. The control information are burst length, burst

size and burst type.

The address output of this modules called align address as shown in figure

8.5. This align address goes to the memory, and data read or write into corresponding

location based read or write transaction. As shown in figure 8.5 when not full signal

of FIFO24 false, it stop working and restore the present values.

Strobe signal generator

This module take starting address of burst and control information, and

calculates the stobe signals for each transfer in burst. This signal tell which byte

lines of data bus has valid data. About strobe signals explained in section 6.2.

Read data decoder

This module inputs are strobe signals and 32 bit data from memory. Based

strobe signals it send valid data as output.

42

8.2 Channel Handshake

In read transaction, strobe signal generator and read data decoder mod-

ules are helping to implement narrow and unaligned data transfer features of AXI4

protocol. With example narrow transfers is explained in section 6.3, and unaligned

data transfer is explained in section 7.2.

Write data decoder

This module send valid data to memory based on strobe signal. From

section 2.2, we can know that strobe signals and data are available on write data

channel, so no need to generate strobe signal at slave interface in write transaction.

Write Response Generator

It sends response signal on write response channel to interconnect, when

it receives last data on write data channel.

8.2 Channel Handshake

From chapter 3, we know that each channel uses the same VALID/READY

handshake to transfer control and data information. This two way flow control mech-

anism enables both the master and slave to control the rate at which the data and

control information moves. The source generates the VALID signal to indicate when

the data or control information is available. The destination generates the READY

signal to indicate that it accepts the data or control information. Transfer occurs

only when both the VALID and READY signals are HIGH. There must be no combi-

natorial paths between input and output signals on both master and slave interfaces.

In below explaining how this handshake mechanism is implemented on each AXI

channel.

8.2.1 Write Address Channel (WA)

The AXI Master interface drives the signal AWID,AWADDR, AWBURST,

AWLEN, AWSIZE, with AWVALID as HIGH indicating that the driven signals

are valid. It does not drive the AWVALID signal as LOW, until it receives the

AWREADY signal, which is driven by the AXI Interconnect, indicating that, it has

received the address write command signals. If AWREADY is LOW, then AXI Mas-

43

8.2 Channel Handshake

ter retains the same values. Figure 3.5 shows the state diagram for write transaction.

Between master interface and interconnect on WA channel, FIFOs 1,2,3,4

drives READY signals to corresponding master and masters drives VALID signals.

NF(not full) signal of FIFOs act as READY signal, and default value is TRUE.

Once masters has valid information, they asserts VALID signal TRUE, send WA to

corresponding FIFO. FIFOs deassert READY signals when get FULL.

Between interconnect and slave interface on WA channel, write align ad-

dress generator drives READY signal and FIFO13 drives VALID signal. The default

value of READY signal from write align address generator is TRUE. NE(not empty)

signal of FIFO13 act as VALID signal, and default value is FALSE, once it get WA,

it assert VALID signal, send WA to write align address generator, once it receives

WA, it deassert the READY signal until present request processing completed.

8.2.2 Write Data Channel (WD)

The AXI Master drives these Write Data signals, after sending the write

address command signals. AXI Master drives the WDATA signal with WVALID

as HIGH, it holds the same value until it receives the WREADY signal from AXI

Interconnect. If WREADY is HIGH, it drives the next WDATA.

Between master interface and interconnect on WD channel, FIFOs 5,6,7,8

drives READY signals to corresponding master and masters drives VALID signals.

NF(not full) signal of FIFOs act as READY signal, and default value is TRUE.

Once masters has valid information, they asserts VALID signal TRUE, send WA to

corresponding FIFO. FIFOs deassert READY signals when get FULL.

Between interconnect and slave interface on WD channel, FIFO23 drives

READY signal and write data selector module drives VALID signal. NF(not full)

signal of FIFO23 act as READY signal, and default value is TRUE. Once write data

selection module gets ID field from output of FIFO13, it assert VALID signal, send

WD to FIFO23, once it get full, it deassert the READY signal.

44

8.2 Channel Handshake

8.2.3 Write Response Channel (WR)

The AXI Slave waits for WLAST signal. After receiving the WLAST signal, it drives

the response signals, with BVALID as HIGH. It holds the same value until it receives

the BREADY signal from the AXI Interconnect; otherwise it retains the same value.

Between slave interface and interconnect on WR channel, FIFO26 drives

READY signal and write response generator drives VALID signal. NF(not full) signal

of FIFO26 act as READY signal, and default value is TRUE. Once write response

channel receives WLAST signal, asserts VALID signal and drives WR to interconnect.

Between interconnect and master interface on WR channel, FIFOs 19,20,21,22

drives VALID signals to corresponding master and masters drives READY signals.

NE(not full) signal of FIFOs act as VALID signal, and default value is FALSE. Once

masters are free, they asserts READY signal TRUE, receives WR from FIFO. FIFOs

deasserts VALID signal when get EMPTY.

8.2.4 Read Address Channel (RA)

The address read command signals driven by the AXI Master are - ARID,

ARADDR, ARBURST, ARLEN, ARSIZE, with ARVALID as HIGH indicating that

the driven signals are valid. The AXI Master does not drive the ARVALID signal as

LOW, until it receives the ARREADY signal from AXI interconnect. If ARREADY

is LOW, then AXI Master retains the same values.

Between master interface and interconnect on RA channel, FIFOs 9,10,11,12

drives READY signals to corresponding master and masters drives VALID signals.

NF(not full) signal of FIFOs act as READY signal, and default value is TRUE.

Once masters has valid information, they asserts VALID signal TRUE, send RA to

corresponding FIFO. FIFOs deasserts READY signal when get FULL.

Between interconnect and slave interface on RA channel, read align address

generator drives READY signal and FIFO14 drives VALID signal. The default value

of READY signal from read align address generator is TRUE. NE(not empty) signal

of FIFO14 act as VALID signal, and default value is FALSE, once it get RA, it assert

VALID signal, send WA to write align address generator, once it receives WA , it

45

8.2 Channel Handshake

deasserts the READY signal untill present request processing completed.

8.2.5 Read Data Channel (RD)

The AXI slave drives the RDATA signal with RVALID as HIGH, after

receiving read command. It holds the same value until it receives the RREADY signal

from AXI Interconnect. If RREADY is HIGH, it drives the next RDATA.

Between slave interface and interconnect on RD channel, FIFO25 drives

READY signal and FIFO24 drives VALID signal. NF(not full) signal of FIFO25 act

as READY signal, and default value is TRUE. NE(not empty) signal of FIFO24 act

as VALID signal, and default value is FALSE.

Between interconnect and master interface on RD channel, FIFOs 15,16,17,18

drives VALID signals to corresponding master and masters drives READY signals.

NE(not full) signal of FIFOs act as VALID signal, and default value is FALSE. Once

masters are free, they asserts READY signal TRUE, receives WD from FIFO. FIFOs

deasserts VALID signal when get EMPTY.

46

8.3 Synthesis Evaluation

8.3 Synthesis Evaluation

The design has been synthesized using Xilinx ISE for Virtex 5 xc5vlx110t-1-ff1136.

The synthesis report for write operation is shown below

Number of Slice Registers used : 232

Number of Slice LUTs used : 696

Number of LUT Flip Flop Pairs used : 696

Number of Block RAMs used : 4

Max Frequency of operation : 224 MHz

The synthesis report for read operation is shown below

Number of Slice Registers used : 130

Number of Slice LUTs used : 429

Number of LUT Flip Flop Pairs used : 432

Number of Block RAMs used : 2

Max Frequency of operation : 360 MHz

47

Chapter 9

CONCLUSION AND FUTURE

SCOPE

9.1 Conclusion

AMBA AXI4 is a plug and play IP protocol released by ARM, defines both bus spec-

ification and a technology independent methodology for designing, and implementing

high-integration embedded interfaces. The data to be read or written to the slave

is assumed to be given by the master and is read or written to a particular address

location of slave through decoder.

The read transaction takes minimum five cycles when read request is not waiting

for previous requests to complete. The write transaction on the other hand also takes

minimum five cycles, when write address and write data coming at same cycle and

the write request is not waiting for previous request to complete. The design takes

one cycle between each transaction for both write as well as read operations. As per

synthesis results, the maximum freqency of operation for read operation is 224 MHz,

and for write opeartion, it is 360MHz.

48

9.2 Future scope

9.2 Future scope

The AMBA AXI4 has limitations with respect to the burst data and beats of infor-

mation to be transferred. The burst must not cross the 4k boundary. Bursts longer

than 16 beats are only supported for the INCR burst type. Both WRAP and FIXED

burst types remain constrained to a maximum burst length of 16 beats. These are

the drawbacks of AMBA AXI4 system which need to be overcome.

49

Bibliography

[1] ARM, AMBA. ”AXI Protocol Specification (Rev 2.0).” Availableat http://www.

arm. com (2010).

[2] Bluespec Inc, Bluespec SystemVerilog Reference Guide Revision: 30 January

2012.

50

