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ABSTRACT

The physical limitations in the performance of magnetic media such as Hard Disk

Drives has propelled a performance gap between the processor and the disk based

storage units. The storage media performance has been the bottleneck of progress for

quite a time. The performance gap has worsen since the introduction of multi-core pro-

cessors.This is where Solid State Drive(SSD) comes into picture. Although SSDs are

slightly costlier and provide lesser storage than HDDs, they provide a greater perfor-

mance improvement as it eliminates the mechanical limitations of HDDs.

NAND Flash Memory is being adopted in SSDs. In the initial days, certain features

of NAND Flash were vendor-dependent. This made it very difficult for configuration

and booting. Also, command sequences were specific to the device, making develop-

ment of state machines more difficult. Standardization was clearly needed, and the first

industry accepted standard was ONFi 1.0 and the latest being ONFi 4.0.

In order to completely utilize the performance of SSDs, a Non Volatile Memory

Subsystem was designed(based on the NVM Express Specification) along with a NAND

Flash Controller(based on the ONFi specification). The communication to NVMe sub-

system is through PCI Express interface and the command set is based on NVMe Spec-

ification. The communication to NAND Flash Memory is through NAND Flash Con-

troller and the command set is based on ONFi Specification. The present project deals

with the design and implementation of NAND Flash Controller using the ONFi 4.0

standard.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In the past the main aspect expressed about the storage media was the capacity of stor-

age and the performance of a system was attributed to the CPU’s parameters. However

with the rapid advancement in the processor systems, especially with parallel computing

and other services that offer immediate access to large amounts of data, the traditional

hard drive hits its limits. Due to this the speed of storage media becomes a major bot-

tleneck in system design. Hence Non Volatile Memory(NVM) based storage devices

were introduced. One such kind of memory is the Flash based Solid State Drives(SSD).

These drives offer a significantly higher capacity for their price. But as storage media

became faster, the focus needs to be pointed to the communication, too. The traditional

protocols, such as SATA, are developed and optimized for mechanical hard-drives and

not for high speed Solid-State Disk. As a result, interfaces such as PCI Express have to

be introduced for storage-media communication and other appropriate standards have

to be introduced.

A NAND flash memory brings advantages in terms of size, weight, reliability, and

energy use when compared to the hard disk drives. But it is not easy to extract the max-

imum performance from a NAND flash memory due to its unique operational charac-

teristics. In NAND flash memory, the write operation requires a relatively long latency

compared to the read operation. In addition, the previous data should be erased first in

order to write another data in the same physical area. The worse problem is that the

erase operation cannot be performed on the particular data selectively, but on the larger

unit containing the original data with much longer latency. The MLC (Multi-Level

Cell) technology, which is recently introduced to multiply the capacity of a NAND

flash memory chip, further decreases the operation speed. Thus, developing a high-

performance NAND flash-based storage system remains a technically challenging area.

In order to alleviate the computer system I/O bottlenecks, we need high-bandwidth flash

array architectures.



The present developed Multi-Channel Non Volatile Memory Sub-system consists

of a PCIe controller, NVMe Controller and Nand Flash Controller to access the NAND

Flash Chips[3]. The Sub-system is shown in the figure 1.1

Figure 1.1: SSD Memory Subsystem[3]

1.2 Scope of Work

The importance of NAND Flash memory is growing in everything from mobile phones

to industrial systems. But intitally there was no standard, and thus no simple way to

introduce new NAND Flash components into existing designs.The lack of a standard

caused serious design problems. The host systems had to accommodate differences be-

tween vendors devices and adapt to generational changes in parts from a single vendor.

All of this made incorporating new or updated NAND Flash components extremely

costly.ONFi works to solve all these issues by standardizing the NAND Flash inter-

face reducing vendor and generational incompatibilities and accelerating the adoption

of new NAND products.The Open NAND Flash Interface (ONFi) is an industry work-

group made up of more than 100 companies that build, design-in, or enable NAND

Flash memory.The newest Open NAND Flash Interface (ONFi 4.0) standard offers

many benefits for high-performance NAND Flash applications.

The first phase of the work included examining fundamentals of the ONFi specfi-

cations ,Nand Flash Controller ,Memory architecture of Nand Flash Memory through

available literature. Additionally knowledge on Bluespec System Verilog(BSV) had

2



to be acquired since the design was to be implemented using BSV as the hardware-

description language.

In the next phase the ONFi 4.0 specifiation was studied and the design concept

was developed for the Nand Flash Controller. The concept was to be designed for

modularity and low latency. In the next step a model was developed for the Nand Flash

Memory using Bluespec System Verilog and it was verified for various cases through

BSV. The NFC was implemented using Bluespec System Verilog language. Finally, test

scenarios for verification of the Nand Flash Controller along with the developed Nand

Flash Memory model are to be developed and executed and the hardware design has to

be examined in synthesis. Additionally the Nand Flash Controller was integrated with

a Micron Bus functional model of the nand flash memory and verified.

1.3 Overview of content

Chapter-2 describes the background of Flash memories and BSV.

Chapter-3 discusses the background of ONFi 4.0 standard and the description of NAND

flash architecture and design.

Chapter-4 explains technique to interleave commands to exploit parallelism.

Chapter-5 includes the design and implementation of NAND flash controller and veri-

fication of the design.

Chapter-6 concludes with a short description of the future work.
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CHAPTER 2

Background

In this chapter we discuss the some of the fundamentals that are needed to understand

the following chapters. We start with a basic Nand Flash memory storage unit at the

transistor level and discuss the whole memory as a unit. Then a small introduction is

given into the Bluespec System Verilog language.

2.1 Flash Memory

Flash memory is widely used for code and data storage of consumer electronics prod-

ucts due to its versatile features such as non-volatility, solid-state reliability, low power

consumption. Flash memory based SSDs(Solid State Drives) have 100x greater through-

put and instantaneous access times for quicker boot ups, faster file transfers, and overall

better performance than hard drives. The most popular flash memory types are NOR

and NAND.

2.2 Nand Flash Vs Nor Flash

The real benefits of NAND Flash are faster PROGRAM and ERASE times, as NAND

Flash delivers sustained WRITE performance exceeding 7 MB/s. Block erase times

are an impressive 500s for NAND Flash compared with 1 second for NOR Flash.The

hardware pin requirements for NAND Flash and NOR Flash interfaces differ markedly.

NOR Flash requires approximately 44 I/O pins for a 16-bit device, while NAND Flash

requires only 24 pins for a comparable interface. Clearly, NAND Flash offers several

compelling advantages. The one challenge is that it is not well-suited for direct random

access[8].

The transistor level schematic and layout of the cells that build a Nand Flash Mem-

ory is shown in figure 2.1 and that of a Nor Flash Memory is shown in figure 2.2.



Figure 2.1: Nand Flash cell structure[3]

Figure 2.2: Nor Flash cell structure[3]
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As shown in figure 2.1 the cell resembles a Nand gate NMOS structure for a Nand

Flash and that of a Nor gate NMOS structure for a Nor Flash as seen n figure 2.2.

In both the Nand cell and Nor cell the Drain/Source between adjacent transistors are

shared. However every alternate connection has a ground potential in Nor cell. Hence

an extra ground line has to be passed on in the layout compared to that of Nand cell.

Hence very high level of integration can be achieved with the Nand Flash Memory.

However, Nand Flash memories are not randomly accessible and thus have to be pro-

grammed and read in larger sectors, called pages. These pages usually have a size of

four to eight kilobytes. As erase operations are realized by connecting the whole well

of a block to the erase-voltage, erase operations always delete the whole block [10].

2.3 Types of NAND Flash

Each Flash cell consists of a single transistor, with an additional "floating" gate that can

store charges.The amount of charge on the floating gate affects the threshold voltage of

the cell Vt. Based on this we have two types of Nand Flash.

2.3.1 SINGLE LEVEL CELL (SLC) Nand Flash

A SLC Flash stores one bit value per cell, which basically is a voltage level. The bit

value is interpreted as a "0" or a "1"[11]. Since there are only two states, it represents

only one bit value. A "0" or "1" is determined by the threshold voltage Vt of the cell.

The threshold voltage can be manipulated by the amount of charge put on the floating

gate of the Flash cell. Placing charge on the floating gate will increase the threshold

voltage of the cell. When the threshold voltage is high enough, the cell will be read as

programmed. No charge, will cause the cell to be sensed as erased.

2.3.2 MULTI LEVEL CELL (MLC) Nand Flash

As the name suggests, there are multiple values that an MLC cell can represent. The val-

ues can be interpreted as four distinct states: "00", "01", "10", or "11"[11]. These four

states yield two bits of information. Since the change in threshold between each level

6



has decreased, the sensitivity between each level increased. Thus, more rigidly con-

trolled programming is needed to manipulate a more precise amount of charge stored

on the floating gate.

2.4 Bluespec System Verilog language

BlueSpec System Verilog is a Hardware centric language based on industry standard

SystemVerilog and Verilog. Using Bluespec language leads to shorter, more abstract,

and verifiable source code, as well as type-checked numeric code. BSV provides sig-

nificantly higher level of abstraction than Verilog, SystemVerilog and VHDL.

2.4.1 Constructs in Bluespec System Verilog[1]

Interfaces: Interfaces provide a means to group wires into bundles with specified uses,

described by methods. An interface is a reminiscent of a struct, where each member is

a method. Interfaces can also contain other interfaces.

Methods: Signals and buses are driven in and out of modules with methods. These

methods are grouped together into interfaces. There are three kinds of methods:

• Value Methods: Take 0 or more arguments and return a value.

• Action Methods: Take 0 or more arguments and perform an action(side-effect)

inside the module.

• ActionValue Methods: Take 0 or more arguments, perform an action, and re-turn

a result.

Modules: A module consists of three things: state, rules that operate on that state, and

an interface to the outside world (surrounding hierarchy). A module definition specifies

a scheme that can be instantiated multiple times.

Rules: Rules are used to describe how data is moved from one state to another, in-

stead of the Verilog method of using always blocks. Rules have two components:

7



• Rule conditions: Boolean expressions which determine when the rule is enabled.

• Rule body: a set of actions which describe state transitions.

Functions : Functions are simply parameterized combinational circuits. Function

application simply connects a parameterized combinational circuit to actual inputs.

2.4.2 Overview of the BSV build process[2]

The following are the steps involved in building a BSV design:

1. A designer writes a BSV program. It may optionally include Verilog compo-

nents.

2. The BSV program is compiled into a Verilog or Bluesim specification. This step

has two stages:

• Pre-elaboration - parsing and type checking.

• Post-elaboration - code generation.

3. The compilation output is either linked into a simulation environment or pro-

cessed by a synthesis tool.

Once the Verilog or Bluesim implementation is generated, the workstation provides the

following tools to help analyze the design:

• Interface with an external waveform viewer with additional Bluespec provided

annotations, including structure and type definitions.

• Schedule Analysis viewer providing multiple perspectives of a modules schedule.

• Scheduling graphs displaying schedules, conflicts, and dependencies among rules

and methods.
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CHAPTER 3

Nand Flash and ONFi Description

NAND Flash devices include two data interfaces synchronous interface and an asyn-

chronous interface. These devices use a highly multiplexed 8-bit bus to transfer com-

mands, addresses, and data. Current implementation will target the asynchronous inter-

face.There are five control signals that are used to implement the NAND Flash protocol.

Additional signals control hardware write protection and monitor device status. This

hardware interface creates a low-pin-count device with a standard pin-out that is the

same from one density to another, allowing future upgrades to higher densities without

board redesign[4].These signal pins are listed in table 3.1 along with their operation

for the asynchronous interface. A logical unit (LUN), is the minimum unit that can

independently execute commands and report status.

Table 3.1: Table of signal definitions.

Symbol Type Description

ALE Input
Address latch enable: Loads an address from DQ[7:0] into
the address register.

CE Input
Chip enable: An asynchronous-only signal that enables or dis-
ables one or more logical units.

CLE Input
Command latch enable: Loads a command from DQ[7:0] into
the command register.

DQ[7:0] Inout
Data inputs/outputs: The bidirectional I/Os transfer address,
data, and command information.

RE Input
Read enable: Transfers serial data from the NAND Flash to
the host system.

WE Input
Write enable: Transfers commands, addresses, and serial data
from the host system.

R/B Output Ready/Busy: Indicates if all LUNS are busy.

WP Input
Write protect:Enables or disables array program and erase op-
erations.



3.1 Nand Flash Architecture

The LUN functional block diagram is shown in figure 3.1. The data, commands and

addresses are multiplexed onto the same pins and received by I/O control circuits. This

provides a memory device with a low pin count. The commands received at the I/O

control circuits are latched by a command register and are transferred to control logic

circuits for generating internal signals to control device operations. The addresses are

latched by an address register and sent to a row decoder to select a row address or to a

column decoder to select a column address.

Figure 3.1: Nand Flash LUN functional block diagram[4]

The data are transferred to or from the NAND Flash memory array, byte by byte,

through a data register and a cache register. The cache register is closest to I/O con-

trol circuits and acts as a data buffer for the I/O data; the data register is closest to the

memory array and acts as a data buffer for NAND Flash memory array operation. The

NAND Flash memory array is programmed and read using page-based operations and

is erased using block-based operations. During normal page operations, the data and

cache registers act as a single register. During cache operations the data and cache reg-

isters operate independently to increase data throughput. The status register reports the

status of LUN operation.
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3.1.1 Memory Organisation

Figure 3.2 shows an example of a Target memory organization. In this case, there are

two logical units where each logical unit has two planes. A device contains one or more

targets. A target is controlled by one CE signal. A target is organized into two logical

units(LUNS)[5]

.

Figure 3.2: Memory organization[5]

Specifically, separate LUNs may operate on arbitrary command sequences in par-

allel. For example, it is permissible to start a Page Program operation on LUN 0 and

then prior to the operation’s completion to start a Read command on LUN 1.A LUN

contains at least one page register and a Flash array. The number of page registers is
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dependent on the number of multi-plane operations supported for that LUN. The Flash

array contains a number of blocks.A block is the smallest erasable unit of data within

the Flash array of a LUN. There is no restriction on the number of blocks within the

LUN. A block contains a number of pages.A page is the smallest addressable unit for

read and program operations. A page consists of a number of bytes or words. The

number of user data bytes per page, not including the spare data area, shall be a power

of two. The number of pages per block shall be a multiple of 32.There are two mecha-

nisms to achieve parallelism within this architecture. There may be multiple commands

outstanding to different LUNs at the same time. To get further parallelism within a

LUN, multi-plane operations may be used to execute additional dependent operations

in parallel.

3.1.2 Array Organisation

An example for a 16Gb array organization per LUN is represented in figure 3.3. A

LUN consists of 2 planes, an odd plane and an even plane. Each plane has 2048 blocks

and each block has 128 pages.Each page has 4314B where 218B are spare columns

used for ECC and other software functions. Hence a total of 17,248Mb of memory[6].

Figure 3.3: Array organization per LUN for 16Gb[6]
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3.1.3 Device Organization

The device organization that is targeted is as shown in figure 3.4. The target has 2

LUNS and 2 chips,to be controlled by a single Nand Flash Controller[4].

Figure 3.4: Device organization[4]

The asynchronous nature and the block memory structure of NAND Flash devices

support combining NAND Flash devices across chip enables in a relatively straightfor-

ward process.

Shorting CE’s together is a common practice when combining NAND Flash blocks.

By not shorting CE’s together, as shown in figure 3.5 the design retains the flexibility

to communicate with only one NAND device at a time[7].
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Figure 3.5: Nand Flash blocks combined across CE’s[7]

3.1.4 Page storage methods

The two common methods for storing data and spare information in the same page are

shown in Figure 3.6. The first method in figure shows a data area of 512 bytes plus the

16-byte spare area directly adjacent to it; 528 bytes for the combined areas. A 2112-

byte page can contain four of these 528-byte elements. The second implementation as

in figure involves storing the data and spare information separately. The four 512-byte

data areas are stored first,and their corresponding 16-byte spare areas follow, in order,

at the end of the page. The ECC data is obtained for every 512B of data. This ECC data

is to be then stored in the page. If the first method is used the ECC obtained at the end

of every 512B is written continuously in the spare area.On the other hand if the second

method is employed the column address has to changed after every 512B to store ECC

data or a separate register be kept for the ECC data to be written at the end of complete

page write[8].
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Figure 3.6: Page storage methods[8].

3.2 Addressing

There are two address types used: the column address and the row address. The column

address is used to access bytes or words within a page, i.e. the column address is the

byte/word offset into the page.The row address is used to address pages, blocks, and

LUNs.

When both the column and row addresses are required to be issued, the column

address is always issued first in one or more 8-bit address cycles. The row addresses

follow in one or more 8-bit address cycles. There are some functions that may require

only row addresses, like Block Erase. In this case the column addresses are not issued.

For both column and row addresses the first address cycle always contains the least

significant address bits and the last address cycle always contains the most significant

address bits[5]. If there are bits in the most significant cycles of the column and row

addresses that are not used then they are required to be cleared to zero.The row address

layout is shown in figure 3.7.
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Figure 3.7: Row address layout[5].

3.2.1 Multi Plane Addressing

The multi-plane address comprises the lowest order bits of the block address as shown

in figure 3.8.

Figure 3.8: Plane Address bits location[5].

The following restrictions apply to the multi-plane address when executing a multi-

plane command sequence on a particular LUN[5]:

• The plane address bit(s) shall be distinct from any other multi-plane operation in

the multi-plane command sequence.

• The page address shall be the same as any other multi-plane operations in the

multi-plane command sequence.

There are also plane memory block address restrictions. The specific cases of this are:

• There is no restriction if all the block address bits are different between two plane

addresses.

• There is complete restriction if all the block address bits (other than the plane ad-

dress bits) are the same between two plane addresses. As an example, this means

there can be no multi plane operation between block 0 of plane 0 and block 0 of

plane 1.
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3.2.2 Array Addressing

Addressing is carried out in 5 address cycles through the Data(x8) bus. Some com-

mands require less than 5 address cycles. When an address is being sent, the ALE and

WE is to be enabled. The address break up is shown in figure 3.9. The first two cy-

cles are dedicated for the Column Address(CA) and the remaining three cycles for row

address. The row address includes Page Address(PA) , Block Address(BA) and LUN

Address(LA) bits. As observed in figure 3.8 the plane address in encapsulated in the

LSB of the Block Address bits.

Figure 3.9: Address cycle break up[4].

3.3 ONFi command descriptions

The command sets of ONFi 4.0 standard that are used in the design of the Nand Flash

Controller, are given in table 3.2 along with the number of address cycles that each

command that needs and whether input data cycles exists or not[4]. For example to

execute the PROGRAM PAGE operation, a command of 80h needs to be sent first

followed by 5 address cycles as discussed previously. This is followed by the input data

that needs to be programmed into the Nand Flash memory. The command sequence is

ended by sending the command 10h. Each of the operations are discussed briefly in the

following section.
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Table 3.2: Table of command sets.

Command
Command

cycle1

Address

cycles

Data Input

cycles

Command

cycle2

RESET FFh 0 - -

SET FEATURES EFh 1 4 -

READ STATUS 70h 0 - -

SELECT LUN WITH

STATUS
78h 3 - -

SELECT CACHE REG-

ISTER
06h 5 - E0h

READ MODE 00h 0 - -

READ PAGE 00h 5 - 30h

READ PAGE MULTI-

PLANE
00h 5 - 32h

PROGRAM PAGE 80h 5 YES 10h

PROGRAM PAGE

MULTI-PLANE
80h 5 YES 11h

PROGRAM PAGE

CACHE
80h 5 YES 15h

ERASE BLOCK 60h 3 - D0h

ERASE BLOCK

MULTI-PLANE
60h 3 - D1h

3.3.1 RESET operation

The RESET (FFh) command is used to put a target into a known condition and to abort

command sequences in progress. This command is accepted by all LUNs, even when

they are busy.All pending single-plane and multi-plane operations are cancelled. If this

command is issued while a PROGRAM or ERASE operation is occurring on one or

more LUNs, the data may be partially programmed or erased and is invalid. The com-
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mand register is cleared and ready for the next command. The data register and cache

register contents are invalid.This command must be issued as the first command to each

target after power-up. The timing diagram is shown in figure 3.10.

Figure 3.10: RESET cycle[4].

3.3.2 STATUS operation

Each LUN provides its status independently of other LUNs on the same target through

its 8-bit status register. Once the READ STATUS (70h) or SELECT LUN WITH STA-

TUS (78h) command is issued, status register output is enabled. The contents of the

status register are returned on DQ[7:0] for each data output request.While monitoring

the status register to determine when a data transfer from the Flash array to the data

register is complete,the NFC must issue the READ MODE (00h) command to disable

the status register and enable data output.

The READ STATUS (70h) command returns the status of the most recently selected

LUN. To prevent data contention during or following a Multi-LUN operation, the host

must enable only one LUN for status output by using the SELECT LUN WITH STA-

TUS (78h) command.The status register definition is shown in figure 3.11.

The timing diagram for READ STATUS operation is shown in figure 3.12 and that

of SELECT LUN WITH STATUS command is shown in figure 3.13.
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Figure 3.11: Status register definition[4].

Figure 3.12: READ STATUS cycle[4].
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Figure 3.13: SELECT LUN WITH STATUS cycle[4].

3.3.3 SELECT CACHE REGISTER operation

The SELECT CACHE REGISTER command enables data output on the addressed

LUN and cache register at the specified column address. This command is accepted

by a LUN when it is ready. Following a multi-plane read page operation the SELECT

CACHE REGISTER command is used to select which cache register is enabled for data

output. After data output is complete on the selected plane it may be issued again to

begin data output on another plane.In devices with more than one LUN per target, the

SELECT CACHE REGISTER command may be used following a multi-LUN read op-

eration after all of the LUNs on the target are ready LUNs that are not addressed are

deselected to avoid bus contention.

3.3.4 READ MODE operation

The READ MODE command disables status output and enables data output for the last

selected LUN and cache register after a READ operation has been monitored with a

STATUS operation . This command is accepted by the LUN when it is ready. In devices

that have more than one LUN per target, during and following multi-LUN operations

the SELECT LUN WITH STATUS command must be used to select only one LUN

prior to the issue of the READ MODE command. This prevents bus contention. The

timing diagram for this operation is shown in figure 3.14.
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Figure 3.14: READ MODE cycle[4].

3.3.5 READ PAGE operation

The READ PAGE (00h-30h) command copies a page from the NAND Flash array to

its respective cache register and enables data output.This command is accepted by the

LUN when it is ready.To determine the progress of the data transfer, the host may mon-

itor the target through status operations.When the LUN is ready the host disables status

output and enables data output by issuing the READ MODE command.

The READ PAGE command is used as the final command of a multi-plane read opera-

tion. It is preceded by one or more READ PAGE MULTI-PLANE commands. Data is

transferred from the NAND Flash array for all of the addressed planes to their respective

cache registers.

3.3.6 READ PAGE MULTI PLANE operation

The READ PAGE MULTI-PLANE command queues a plane to transfer data from the

NAND array to its cache register. This command can be issued one or more times.

Each time a new plane address is specified that plane is also queued for data transfer.

To select the final plane and to begin the read operation for all previously queued planes,

issue the READ PAGE command. All queued planes will transfer data from the NAND

array to their cache registers.
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3.3.7 PROGRAM PAGE operation

The PROGRAM PAGE command allows the host to input data to a cache register and

moves the data from the cache register to the specified block and page address in the

array of the selected LUN.The PROGRAM PAGE command is used as the final com-

mand of a multi-plane program operation. It is preceded by one or more PROGRAM

PAGE MULTI-PLANE commands. Data is transferred from the cache registers for all

of the addressed planes to the NAND array. The host should check the status of the

operation by using the status operations.The timing diagram for this operation is shown

in figure 3.15.

Figure 3.15: PROGRAM PAGE cycle[4].

3.3.8 PROGRAM PAGE CACHE operation

The PROGRAM PAGE CACHE command allows the host to input data to a cache reg-

ister, copies the data from the cache register to the data register, and then moves the

data register contents to the specified block and page address in the array of the selected

LUN. After the data is copied to the data register the cache register is available for addi-

tional PROGRAM PAGE CACHE or PROGRAM PAGE commands.The PROGRAM

PAGE CACHE command is used as the final command of a multi-plane program cache

operation. It is preceded by one or more PROGRAM PAGE MULTI-PLANE com-

mands. Data is transferred from the cache registers for all of the addressed planes to
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the corresponding data registers and then moved to the NAND array. The host should

check the status of the operation by using the status operations.

3.3.9 PROGRAM PAGE MULTI-PLANE operation

The PROGRAM PAGE MULTI-PLANE command allows the host to input data to the

addressed plane’s cache register and queue the cache register to be moved to the NAND

array. This command can be issued one or more times. Each time a new plane address

is specified that plane is also queued for data transfer. To input data for the final plane

and to begin the program operation for all previously queued planes, issue either the

PROGRAM PAGE command or the PROGRAM PAGE CACHE command. All of the

queued planes will move the data to the NAND array.

3.3.10 ERASE BLOCK operation

The ERASE BLOCK command erases the specified block in the NAND array.The

ERASE BLOCK command is used as the final command of a multi-plane erase opera-

tion. It is preceded by one or more ERASE BLOCK MULTI-PLANE commands.The

timing diagram for this operation is shown in figure 3.16.

Figure 3.16: BLOCK ERASE cycle[4].
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3.3.11 ERASE BLOCK MULTI-PLANE operation

The ERASE BLOCK MULTI-PLANE command queues a block in the specified plane

to be erased in the NAND array. This command can be issued one or more times. Each

time a new plane address is specified that plane is also queued for a block to be erased.

To specify the final block to be erased and to begin the erase operation for all previously

queued planes, issue the ERASE BLOCK command .
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CHAPTER 4

Interleaving Commands

The most efficient approach for increasing NAND Flash READ, PROGRAM, and ERASE

performance with minimal effort is to implement the multi plane commands. Multi

plane commands can be used for interleaved die operations to further increase perfor-

mance in NAND Flash devices that support these commands[12].

4.1 MULTI-PLANE Interleaving

Consecutive page operations can be split between adjacent planes in the same LUN.

This ensures that the latency in the case of operations including more than pages will

be reduced. This means the pages inside a LUN needs to be scrambled so that adjacent

pages fall under unique blocks inside the LUN. As an example a write on 2 pages with

address 0 in a classical case implies PROGRAM operation on page 0 and page 1 of

block 0. In case of multi-plane operations this needs to be translated into a PROGRAM

command involving page 0 in block 0 and another page which falls in a block that is

present in different plane.

As discussed in section 3.2.1 there are certain restrictions when executing a multi-

plane command sequence. In particular two page operations cannot take place on two

adjacent blocks, i.e the block address bits other than the plane select bit must be differ-

ent. The next restriction being that the page address in the multi-plane operation must

be exactly the same. Taking this into consideration the above example of the multi-

plane command can now be restated as follows. A two page request on an address 0

can be split into operation on page 0 of block 0(plane 0) and page 0 of block 1(plane

1). Owing to this requirement a "Plane Superblock" is created by combining two flash

blocks from separate planes in a LUN as represented in figure 4.1.



Figure 4.1: Nand Flash Blocks Combined to create a Plane Superblock.

4.2 Interleaving across LUNs

Since two LUNs can operate independently, interleaving can be also be achieved across

LUNs in way similar to that of plane interleaving. Any operation that requires more than

2 pages can be efficiently handled by splitting the command into two 2-plane commands

and then executing the two commands in two different LUNs controlled by one CE pin.

Hence a "LUN Superblock" is created by combining two flash blocks across LUNs as

shown in figure 4.2.

4.3 Creating Mega Block

The "Plane Superblock" and "LUN Superblock" can be combined in a target with min-

imum 2 LUNs and 2 planes per LUN to obtain a "Mega Block". This block is helpful

in interleaving commands across planes and LUNs for efficient data transfer. The idea

of "Mega Block" is shown in figure 4.3. Hence four consecutive logical pages are now

being present as four consecutive pages in a Mega block. To achieve this, the address
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Figure 4.2: Nand Flash Blocks Combined to create a LUN Superblock.

needs to be scrambled in a particular fashion. So the logical address is mapped onto a

function to obtain the physical address on the target. This is further discussed in section

4.3.1.

4.3.1 Logical to Physical Address Mapping

To understand the logical to physical address mapping, in order to arrive at a Mega

Block we shall take a specific example. Consider a target Nand Flash with two LUNs,

two planes per LUN, four blocks per plane and four pages per block. So there are two

bits for page addressing, three bits for block addressing(along with one bit for plane

select) and one bit for LUN addressing. As seen in figure 3.2 the blocks are addressed

adjacently inside a LUN and the pages are addressed consecutively inside a block. The

"physical addressing" of such a Flash memory is shown in table 4.1.

As discussed in 4.3, to obtain a Mega Block we need to scramble the logical address

across LUNs. A simple way is to consider block "B" and block "B+3" in both LUNs

as constituting a Mega Block. Similarly block "B+1" and block "B+2" across LUNs as

constituting another Mega Block. This satisfies all the restrictions that are imposed in

multi-plane operations. The logical address table for this kind of addressing is shown

in table 4.2.
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Figure 4.3: Nand Flash Blocks Combined to create a Mega Block.

Table 4.1: Physical address table for a target with 2 LUNs, 2 planes per LUN, 4 blocks
per plane and 4 pages per block.

LUN 0 LUN 1
Plane 0 Plane 1 Plane 0 Plane 1
000000 000100 100000 100100
000001 000101 100001 100101
000010 000110 100010 100110
000011 000111 100011 100111
001000 001100 101000 101100
001001 001101 101001 101101
001010 001110 101010 101110
001011 001111 101011 101111
010000 010100 110000 110100
010001 010101 110001 110101
010010 010110 110010 110110
010011 010111 110011 110111
011000 011100 111000 111100
011001 011101 111001 111101
011010 011110 111010 111110
011011 011111 111011 111111
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Table 4.2: Logical address table for a target with 2 LUNs, 2 planes per LUN, 4 blocks
per plane and 4 pages per block.

LUN 0 LUN 1
Plane 0 Plane 1 Plane 0 Plane 1
000000 010001 000010 010011
000100 010101 000110 010111
001000 011001 001010 011011
001100 011101 001110 011111
010000 000001 010010 000011
010100 000101 010110 000111
011000 001001 011010 001011
011100 001101 011110 001111
100000 110001 100010 110011
100100 110101 100110 110111
101000 111001 101010 111011
101100 111101 101110 111111
110000 100001 110010 100011
110100 100101 110110 100111
111000 101001 111010 101011
111100 101101 111110 101111

The logical to physical address mapping is thus obtained from the table 4.1 and 4.2

as below.

• Page Address Map:

PhysicalAddr[0] = LogicalAddr[2]

PhysicalAddr[1] = LogicalAddr[3]

• Block Address Map:

PhysicalAddr[2] = LogicalAddr[0]

PhysicalAddr[3] = LogicalAddr[0]⊕ LogicalAddr[4]

PhysicalAddr[4] = LogicalAddr[5]

• LUN Address Map:

PhysicalAddr[5] = LogicalAddr[1]
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In general if PW represents the width of page address, BW represents width of block

address(along with plane select) and LW represents the width of LUN address then the

mapping is as follows:

• Page Address Map:

PhysicalAddr[PW − 1 : 0] = LogicalAddr[(PW + LW ) : (LW + 1)]

• Block Address Map:

PhysicalAddr[PW ] = LogicalAddr[0]

PhysicalAddr[PW + 1] = LogicalAddr[0]⊕ LogicalAddr[PW + LW + 1]

PhysicalAddr[(BW + PW − 1) : (PW + 2)] = LogicalAddr[(BW + PW ) :

(PW + LW + 2)]

• LUN Address Map:

PhysicalAddr[LW +BW + PW − 1] = LogicalAddr[1]

Each time an address is received for a particular operation , the address translation

is done based on this mapping function to perform operation on Mega Block. In the

preceding chapters we will discuss in detail about the various operations.
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CHAPTER 5

Design and Implementation

In this chapter we will discuss the design of the Nand Flash Controller and its im-

plementation in BSV along with the implementation of a Nand Flash Memory model

which is ONFi 4.0 compliant.

5.1 Conception and Design of Nand Flash Controller

The Nand Flash Controller that is developed has to follow the ONFi protocol as dis-

cussed in section 3. The Nand Flash Controller talks to the host through the NMVe

interface on one side and with the Nand Flash memory through the ONFi on the other.

The NVMe interface provides operation requests such as Read, Write and Erase which

needs to be translated into ONFi specific commands by the NFC. The data bus on the

NVMe side is parameterized for extensibility. The block diagram of the NFC is shown

in figure 5.1. It has a Read and Write buffer that takes data to/from the NVMe interface.

The Write buffer is needed since the data needs to be serialized to 8 bits at the Nand

Flash Memory end and the Read buffer is needed to de-serialise the data from 8 bits to

the required data width at the NMVe side. The control logic is a state machine which

receives the request from NVMe as input and completes the required operation.

The NVMe specifies the number of pages that needs to be read or written into in a

request through a length parameter. This length must then be used to pick the efficient

commands from the ONFi command set so as to utilize the concept of Mega Block.

For the Erase operation, a Mega block needs to be erased in place of a single block and

hence proper command set needs to be picked for this operation. Along with these basic

operations of Read , Write and Erase there are other power-on operations that needs to

be done by the NFC. The general data flow of the NFC in shown if figure 5.2.

On power-on the NFC needs to wait for the Nand Flash devices connected to be

free and once free it must issue the Reset command to the Nand Flash memory. No



Figure 5.1: Nand Flash Controller Block Diagram.

operation must be done without issuing a Reset command on power-on. Once the Reset

is issued the Nand Flash target is monitored till the operation finishes. Once the target is

free, certain features such as the operating timing mode of the Nand flash device needs

to be set using the SET FEATURE command. Then the Nand Flash memory has to

be scanned for bad blocks and a bad block table has to be created. This is discussed

in detail in section 5.1.1. Once the bad block table is ready, the controller then asserts

its ready/busy pin indicating the host/NVMe that it is free to take operations. Upon an

operation request which can be read, write or erase the NFC takes the request completes

it and notifies the NVMe.

5.1.1 Bad Block Information

The initial bad blocks that are marked by the flash vendor, could be inadvertently erased

and destroyed by a user. To prevent this from occurring, it is necessary to always know

where any bad blocks are located. Continually checking for bad block markers during

normal use would be very time consuming, so it is highly recommended to initially

locate all bad blocks and build a bad block table. This will prevent having the initial

bad block markers erased by an unexpected program or erase operation[13]. This can

be accomplished by scanning the spare area of all memory blocks and updating a bad

block table whenever bad block markers are found. For MLC devices, any block, where
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Figure 5.2: General data flow of the NFC.
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the 1st byte in the spare area of the last page, does not contain FFh is a bad block[9].

The bad block information must be read before any erase is attempted, because the

bad block information is erasable and cannot be recovered once erased. It is highly

recommended not to erase the original bad block information. To allow the host to

recognize the bad blocks based on the original information, it is recommended to im-

plement the bad block management algorithm shown in figure 5.3.

Figure 5.3: Bad Block Management Flow Chart.[9]

5.2 Implementation of Nand Flash Controller

In this section we will discuss the implementation of the Nand Flash Controller by

means of detailed state diagrams and code listings. The state machines are implemented

using BSV, which provides higher level of abstraction than verilog. A rule in BSV is an

atomic block and BSV introduces scheduling of the rules in a module. There must not

be any conflict between resources that are shared between rules. State machines are cre-

ated by combining rules and specifying when to fire a particular rule. Upon achieving
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no conflict between resource the BSV compiler generates a scheduling logic to obtain

the desired functionality.Connections are taken in and out of the module through in-

terfaces. Interfaces in-turn consist of methods. Finally a synthesizable verilog RTL is

generated which performs the required function. This RTL generated can be simulated

using Modelsim to check the functionality before synthesis. The following sections will

discuss the interface definitions that connect the Nand Flash Controller to the outside

world and the state machines comprised in the Nand Flash Controller.

5.2.1 Nand Flash Controller Interfaces

NVMe-NFC Interface

The NVMe-NFC interface defines the connection between the Nand Flash Con-

troller and the NVMe. The interface definition is listed in 5.1.

1 interface NandFlashInterface ;

2 method Action _request_data (UInt#(64) _address , UInt#(11) _length ) ;

3 method Action _request_erase (UInt#(64) _address) ;

4 method Bit#(‘WDC) _get_data_();

5 method Action _write(UInt#(64) _address , Bit #(‘WDC) _data, UInt#(11) _length ) ;

6 method Action _enable( bit _nand_ce_l);

7 method Action _query_bad_block(UInt#(64) _address) ;

8 method bit interrupt_ () ;

9 method bit busy_() ;

10 method bit write_success_ () ;

11 method bit write_fail_ () ;

12 method bit erase_success_ () ;

13 method bit erase_fail_ () ;

14 endinterface

Listing 5.1: NVMe-NFC Interface

The _enable method is used to select the channel or enable the NFC. The method

busy_ indicates whether the NFC is ready to receive any requests. The _request_data

method is used by the NVMe to send a read request. It provides the starting address

of the page to be read and the number of pages to be read (payload length) in the form

of _length. Once the read request is sent the NFC has to pulse the interrupt_ method
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to signal the NVMe that the data is available. The NVMe then calls the _get_data

method, which returns the data to the NVMe. The NVMe sends a write request through

the _write method. This passes on the address and the payload length along with the

data to the NFC. Once the NFC completes the write it acknowledges the NVMe by

either pulsing the write_success_ or write_fail_ method. A block erase request is

sent through the _request_erase method which sends the block address to the NFC.

Once erase is completed by NFC it acknowledges either through the erase_success_ or

erase_fail_ method. The bad block table is accessed by NVMe by sending a request

through _query_bad_block method. This will have an address and an offset being sent

to the NFC. The NFC pulses the interrupt_ to start sending the bad block table sec-

tion. The data is sent/received in chunks whose bit-width is set by the parameter WDC

(Width of Data Channel).

NFC-Nand Flash memory Interface

The NFC-Nand Flash memory interface must follow the ONFi standard pin configura-

tion. the listing of interface is shown in listing 5.2.

1 interface ONFiInterface;

2 method bit onfi_ce0_n_ () ;

3 method bit onfi_ce1_n_ () ;

4 method bit onfi_we_n_ () ;

5 method bit onfi_re_n_ () ;

6 method bit onfi_wp_n_ () ;

7 method bit onfi_cle_ () ;

8 method bit onfi_ale_ () ;

9 method Action _ready_busy0_n_m ( bit _ready_busy0_l ) ;

10 method Action _ready_busy1_n_m ( bit _ready_busy1_l ) ;

11 interface Inout#(Bit#(8)) dataio0 ;

12 interface Inout#(Bit#(8)) dataio1 ;

13 endinterface

Listing 5.2: NFC-Nand Flash Memory Interface

As shown in figure 3.5 the NFC will be controlling two chips. Hence the interface

has two methods onfi_ce0_n_ and onfi_ce1_n_. These two methods will enable the

target memory. The other methods can be compared directly with the signals in table
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3.1. The methods onfi_we_n_ and onfi_re_n_ are similar to the WE and RE signals

but an active low version. onfi_cle_ and onfi_ale_ are equivalent to signals CLE and

ALE. The two data I/O bus dataio0 and dataio1, which are defined as two sub inter-

faces are the DQ bus for each of the chip. Action methods _ready_busy0_n_m and

_ready_busy1_n_m are the R/B pin of the two target chips.

5.2.2 Nand Flash Controller State Machines

The Nand Flash Controller houses that control logic which has a data flow as shown

in figure 5.2. This data flow includes smaller state machines such as the RESET state

machine, Bad block scan state machine and the operation state machine. The operation

state machine has PROGRAM, READ and ERASE state diagrams. Each of these are

discussed in the preceding sections.

Before we concentrate on the operation state machines, each of these state machines

will be abstracted in way such that, the individual operations as listed in table 3.2 will

be shown as a single state. Hence we shall expand on these state machines first.

RESET state machine

The RESET state machine is shown in figure 5.4. Once the Nand Flash Memory is free,

the command FFh is sent to both the chips. Then the busy methods of the interface are

monitored until the two chips are free again. The state machine then proceeds to the

next state as in figure 5.2.

STATUS READ state machine

The status of a LUN can be read through the data I/O pins by issuing the status com-

mands. There are two status commands 78h and 70h. When the status is to be read,

the command is sent first , then the RE# is toggled from HIGH to LOW and the status

is read from the I/O bits[14]. The state diagram for read status using 78h command is

shown in figure 5.5.The address cycles will be absent in case of the 70h command.
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Figure 5.4: RESET state machine.
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Figure 5.5: READ STATUS state machine.
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PROGRAM PAGE series state machine

The operations PROGRAM, PROGRAM PAGE MULTI PLANE, PROGRAM PAGE

CACHE all have similar states except for the final command cycle, where each of the

operations have a unique command. A PROGRAM series of command can be se-

quenced first by sending the 80h command, followed by the 5 address cycles. Then

data is sent to the target till the column address has reached the final value in the page

that is to be programmed while toggling the write enable signal. In case of a full page

program, the data sent must be one full page size. In case of an offset, the data sent will

be less than a page size. Each page will be divided into sectors of 512B. After every

512B of actual data, the ECC data must be sent so as to store it in the spare area as

discussed in figure 3.6. The general state machine for PROGRAM series operation is

shown in figure 5.6.

Previous state

Send 
PROGRAM

cmd

Data = 80h

CLE = 1
WE = 0

To Target

Send ADDRESS
Cycle 1

Data = Addr1
ALE = 1

WE = 0

To Target

Send ADDRESS

Cycle 2

Data = Addr2
ALE = 1

WE = 0

To Target

Send ADDRESS
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Data = Addr3

ALE = 1
WE = 0

To Target

Send ADDRESS
Cycle 4

Data = Addr4
ALE = 1

WE = 0

To Target

Send ADDRESS
Cycle 5

Data = Addr5

ALE = 1
WE = 0

To Target

Send Data
WE = 0

To Target

Send 
Command

Data = 10h/11h/15h

CLE = 1
WE = 0

To Target

Next state

Col Addr != Max

Col Add = Max

Figure 5.6: PROGRAM PAGE series state machine.
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READ PAGE series state machine

The READ PAGE series commands are used to read a page from the target into the

corresponding plane registers. The READ PAGE and READ PAGE MULTI PLANE

command have similar states except for the final command.This series of command

starts with the command 00h followed by the 5 address cycles and ended with the com-

mand of 30h or 32h. After this the read enable is toggled and for every toggle a byte of

data is received. After every 512B of data , the ECC data is received (since this is how

it was programmed in the first place). Toggling read enable until maximum column

address will give valid data. The READ PAGE series state machine is shown in figure

5.7. The READ MODE command state machine is simple, in that the previous state

being a status read state and the present state being a 00h command issued and toggling

of read enable to read the data. The SELECT CACHE REGISTER command is similar

to READ MODE except that this need not be preceded by a status operation and can be

used to read the data from the cache register.

Previous state

Send 

READ PAGE
cmd

Data = 00h
CLE = 1

WE = 0

To Target

Send ADDRESS
Cycle 1

Data = Addr1

ALE = 1
WE = 0

To Target

Send ADDRESS

Cycle 2

Data = Addr2
ALE = 1

WE = 0

To Target

Send ADDRESS

Cycle 3

Data = Addr3

ALE = 1
WE = 0

To Target

Send ADDRESS

Cycle 3

Send ADDRESS

Cycle 4

Data = Addr4
ALE = 1
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Send ADDRESS
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ALE = 1
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WE = 0 (To Target)

Data From Target
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Data = 30h/32h

CLE = 1
WE = 0

To Target

Col Addr != Max

Col Add = Max

Next state

Figure 5.7: READ PAGE series state machine.
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ERASE BLOCK series state machine

The block erase operation needs only three address cycles since only the block address

needs to be specified. The ERASE BLOCK and ERASE BLOCK MULTI PLANE op-

erations are similar except for the final command. The state machine foe erase series

operations is shown in figure 5.8. This series starts with a command of 60h followed

by 3 address cycles and then ended with the D0h or the D1h command.

Previous state

Send 

ERASE BLOCK
cmd

Data = 60h
CLE = 1

WE = 0

To Target

Send ADDRESS
Cycle 1

Data = Addr1

ALE = 1
WE = 0

To Target

Send ADDRESS
Cycle 2

Data = Addr2

ALE = 1
WE = 0

To Target

Send ADDRESS
Cycle 3

Data = Addr3
ALE = 1

WE = 0

To Target

Send ADDRESS
Cycle 3

Send 

Data = D0h/D1h

CLE = 1
WE = 0

To Target

Send command

Next state

Figure 5.8: ERASE BLOCK series state machine.

The PROGRAM series, ERASE series and READ PAGE series state machines form

sub-state machine in larger state machine which is implemented for the write, erase and

read operations on the Mega Block. The succeeding sections discuss implementation

of each of these state machines in the form of the data flow.
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WRITE operation data flow

Program is the highest latency operation in flash memory wen compared to read. Hence

a lot of multi-plane and cache operated commands needs to be used. The write operation

starts with the write request from the NVMe which sends the start address and the

payload length (number of pages). The data will then be buffered by the NFC. The

buffer size is one-page size. The data flow from the write request till the completion of

request is shown in figure 5.9 and 5.10.

Before a write is done on any LUN its status must be checked for two things. Firstly

the LUN must be free and secondly the previous operation that had happened on that

LUN was a success or not. In the flow diagram every-time the controls enters node A,

the address is mapped so as to obtain the addressing as per Mega block architecture.

Once the data is buffered, the data width can be 32,64 or 128 which is parameterized.

To send the data to the flash, its has to be split into single bytes starting from the LSB.

This is achieved using shift registers. If the length is one, the address is obtained and

the status of that LUN is read. Once it is free the PROGRAM PAGE state machine

is executed as discussed previously. After this the operation is monitored using status

read using READ STATUS state machine. Upon completion, the status bit is checked

to see whether the operation was a success or fail. Accordingly the NMVe is sent an

acknowledgment in the form of an interrupt and the operation is completed. In case

of a two page write, there are two possibilities. Either the two pages fall on the same

LUN, in which case the starting address falls on the even plane or the two pages fall

on different LUNs, in which case the address of the first page is on the odd plane. In

case of even plane address, the status of that LUN is checked first, once it is available,

the buffered data is sent along with the PROGRAM PAGE MULTI PLANE command

set. Then the next page data is buffered and sent in in the form of a PROGRAM PAGE

command. The LUN is then monitored using status command and once complete both

the pages are checked for the operation status(whether failed or passed), if any one of

the page has failed to program, the fail acknowledgment is interrupted else a success is

interrupted, which completes the operation. In case of a three write page again there

are two possibilities. For a request if the first address falls on the even plane, then

the first two pages will be on one LUN and the next one page will be on the other.

Accordingly, the request is being split into two requests. Since the first 2 pages have

43



Get Addr,

Length

A

Length=1

Read Status

Present LUN

Actual 
Length>4

PROGRAM 
PAGE

PROGRAM 

PAGE CACHE

Length = 

Length - 1

Actual 
Length>1

Read Status

Present LUN

Interrupt 

NVMe

Length==0

A
Read Status

Previous LUN

Length=2

Even Plane

Read Status

Present LUN

PROGRAM 
PAGE MULTI

PLANE

Buffer Data

Buffer Data

Actual 
Length>4

PROGRAM 
PAGE

PROGRAM 
PAGE CACHE

B C

D

E

Length = 

Length - 2

Done B F

Write Request

T F

TF

T F

T

T

F

F

T F

TF

G

H

Figure 5.9: Write operation Data flow.
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Figure 5.10: Write operation Data flow contd.

to be written on the same LUN, in the even plane address, this is similar to a two page

write request on an even plane as discussed before. Once this is executed, the length

is now decremented by two since two page operations are done. The remaining one

page is then processed as a single page write request. Once this is executed the status

is read on the previous LUN, i.e the LUN on which two pages were written. Once

this completes, the operation validity is checked. If failed the interrupt is sent and the

operation ends, else the status is then read on the other LUN where the single page write

was executed. Finally the final status is sent in the form of interrupt. For a four page

write, the request may either fall on the even plane of any of the LUN, in which case

the first two pages will be on one LUN and the next two pages on the other or it may

fall on the odd plane, wherein the first page will be on one LUN, the next two on the

other LUN and the remaining one page on the first LUN (similar to wrapping around).

In the former case, the request is split into a two page write on one LUN followed by

two page write on the other LUN. Before sending the two requests the LUN status must

be checked. The first LUN must then be polled using status command and then the next

LUN and finally the NVMe must be interrupted. In the latter case, the request is split

into a single page write in one LUN and a two page write on the other. Once these
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two are executed, the first LUN is monitored using status command and then once it

completes and successful, another single page write request is given to the same LUN

and the status checking is switched to the LUN which was handling the two page write

request. Once this status is successful, the status is monitored for the other LUN till it

completes successfully and the NVMe is interrupted. At any point of time if the status

read indicates a failed operation, the operation stops and the fail interrupt is sent. For

any write request that is of length more than four, atleast one LUN is guaranteed to

have a consecutive page programs within a physical block(not Mega block). Hence

the PROGRAM PAGE CACHE command is used instead of the PROGRAM PAGE

command, for all writes of length greater than four. All other data flow remains the

same.

The observation from the discussion thus far would be in case of multi LUN write

operation, operation must be issued in alternate LUNs and then the status read must

switch back and forth between two LUNs. Also as seen in an odd page length four

write operation, the status read after the LUN switch may be followed by one more

program series operation in the same LUN and then the switch in status read might

take place. All these cases are taken care of in the data flow that is being shown. The

ready/busy pin of the NFC if indicates free, it takes a write request, takes in one page

data and asserts busy status till the data in the buffer is completely off-loaded. Hence in

case of multi page write requests, once the first page is sent, the host then has to wait

until the ready/busy pin becomes free to send in the next page data. Once the whole

operation is complete, the ready/busy will assert a ready status and the write status is

returned in the form of whether the operation was a success or fail.

READ operation data flow

In the read operation, the cache commands will not be used, since reading from the flash

plane into the respective cache register is not a high latent operation as the program

operation. Adding the cache command would only make the control logic critical but

does not offer anything on te bandwidth front, since pages have to be read out from the

cache registers before any other operation can be executed on the LUN. This time is

comparable to the read time from target plane to cache register. Once a read request

is placed on the NFC, the length and start address is registered and the new mapped

46



address is generated. All further operation will be based on the mapped address. The

data arrives from the flash in terms of bytes and the data to the NVMe is to be sent in

32,64 or 128 bits. Hence data is first packed with the help of shift registers and then

buffered before being sent to the NVMe. An interrupt is given to the NVMe at any

point data for a page is ready in the NFC. Once the buffer is empty the next page is

buffered(in case of payload length more than one) and then again interrupted. The data

flow for read operation in shown in figure 5.11 and 5.12.

Before sending the read commands, the LUNs must be checked if they are available

for the read operation. In case of a single page request the LUN status is checked

using status command and then the READ PAGE command is issued to the LUN. This

is monitored using status command. Once it is done, the READ MODE command is

issued to read data from the cache register, and the data is buffered. The interrupt is

provided and the data can be read by NVMe. For a two page operation, as in write

operation there are two cases. In case of an even page read request the pages are in

same LUN. Hence the status of that LUN is checked and once free, the READ PAGE

MULTI PLANE command followed by READ PAGE command foe next page is issued.

This LUN is then polled using the status command and once free, the READ MODE

command is issued to read the first page and the data is buffered and sent to the NVMe.

Once the data is read out, the SELECT CACHE REGISTER command is issued to read

out the remaining page, data is buffered and NVMe is interrupted. For the case where

the two page request has starting address in an odd plane, the request is split into two

single page read. The first single page read is executed on the first LUN after the status

shows its free, then the status is checked on the next LUN and one more single page

read is requested from other LUN. The status monitoring is then shifted back to the first

page request LUN and once complete the data is read out using READ MODE. Then

the status is checked for other LUN and once free, data is read out again through READ

MODE and once after the interrupt NVMe reads the data, the request is completely

processed. Now consider a three page read request. First let us consider the case where

the first page falls on an even plane in any of the LUN. This request is split into two

read requests, one of a two page read request and another of a single page read request.

The two requests are executed once the LUNs are checked for their status. After both

the requests are issued, the status is checked for the LUN where the two page read is

happening. Once this is done the data is read from the first cache register(first page
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data). Once the NVMe reads it out, the next cache register data from same LUN is read

out(using SELECT CACHE REGISTER) and the NVMe is interrupted. After this the

status is checked again for the LUN where single page request was happening, once free

the data is read out into the buffer. In the other case where the first page falls on odd

plane, the request is split into a single page read on one LUN and as a two page read in

the other LUN. The remaining data flow is similar to the case discussed just before this.

If a four page request is considered with the first page on an even plane, the request

is split into two two-page read requests in the two LUNs. The status is read out and the

LUNs are made sure to be free and the two page request is sent as discussed previously.

On the other hand if we consider the case where-in the first page is on an odd plane,

the request is split into three forms. A single page read request on one LUN, two page

read request on other LUN and once the first completes, a single page read request on

the same LUN. The status checking needs switching between LUNs. But the reading

out of data in the order of pages also needs switching between LUNs. Firstly, the one

page read request is executed on one of the LUN after the LUN is free. The other LUN
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status is checked and the two page read request is issued on the LUN. The status for

the previous LUN must now be checked and hence it is switched. Once this operation

is done, the data must be first read out of the cache register before issuing any more

commands on this LUN. hence the data is read out and buffered and then the single

page read request is commanded on the same LUN. Now the LUN is switched again to

read the status of the LUN that was handling the two page read. Once free, the data is

read out and buffered. After buffer becomes free the other cache register is read. After

this the LUN is again switched to the single page read LUN and the data is read out

from the cache register and buffered. Once the NVMe reads out this buffered data, the

requested is termed complete.

For any page more than 4 , the request is split based on even or odd plane into a

maximum of two page requests and switching between LUNs to read status and read

out the data in an ordered manner. The data flow for the read operation precisely shows

this. Once the read request request is obtained the ready/busy pin of the NFC goes

busy. At any point a page data is available in the buffer the interrupt is provided, but the

ready/busy will still be busy since the request is not yet completed. Only after the last

page is read out of the NFC, the ready/busy asserts itself free or ready. Once the ECC

decoder is integrated into this, a read status as to whether the read was successful or not

can be sent based on the decoder. If the number of errors on any page read is more than

the correctable errors a fail status can be sent.

ERASE operation data flow

The erase request has an associated block address with it. Firstly this block address

which is logical is mapped into the physical address. Since the Mega Block is now con-

stituted of four blocks, one each from a plane in a LUN; we need to obtain four block

addresses. Thereafter the status is read on LUN 0. Once free the BLOCK ERASE

MULTI PLANE command sequence is issued along with the first block address. Issu-

ing Block erase commands was discussed in the block erase state machine. Next the

BLOCK ERASE command is issued with he next block address. After this the next

LUN status is checked and the same commands are sent with the remaining two block

addresses. Then the operation is monitored through status and the status of all the four

blocks are read. if any one of the status indicated fail, a erase fail interrupt is sent else
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an erase success interrupt is sent. The data-flow is shown in figure 5.13.

Bad Block scan operation data flow

The bad block scan data flow is shown in an abstract manner in the figure 5.3. A

Mega block is constituted of four physical blocks. Hence the bad block table will have

bad block information w.r.t to the Mega block, since it is the Mega block that is the

abstraction outside of the NFC. Since each NFC can handle two chips, the number of

Mega blocks in two times the number of blocks present in a plane. A bit 1 is stored in

the table, in case of a bad Mega block(which is nothing but a bad physical block among

the four blocks) and bit 0 for a valid Mega block. Considering a MLC flash we need to

read the first spare byte of last page in every block. As shown in data flow, we start with

zero block address. We generate four addresses that correspond to single Mega block.

Then a READ PAGE MULTI PLANE and READ PAGE command sequence is issued

on both the LUNs. This operation is monitored by status read and once completed , the

first spare byte of the last page of each of the four blocks that constitute the Mega block

are compared with FF. If the data is not FF in any one of the block, then the bit 0 is

stored in the table corresponding to the Mega Block address. This read is done until all

the blocks are covered in both the chips. At the end of this a table is obtained with all

the Mega block address and corresponding bit-map indicating whether the Mega block

is bad or not.

The bad block request from NVMe has a Mega block address(logical address) along

with an offset, as to till what address the bit map is needed[15]. The request obtained

by the NFC packs the bit-map corresponding to the start block address upto the bit-map

plus offset in register. This bit map is to be sent through the data bus, hence the data is

packed with zero at the MSB end if the offset is not same as the data bus width. The

maximum offset is data bus width. The Interrupt is sent to the NVMe before placing

the bitmap on the bus.
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5.3 Implementation of Nand Flash Memory Model

The Nand flash memory target was developed with the memory organization as shown

in figure 3.2. This single target will then be instantiated twice to obtain the overall

device organization shown in figure 3.4. Hence the interface corresponding to the target

memory model is that of a sinlgle chip. The interface definition is listed in 5.3.

1 interface TargetInterface ;

2 method Bit#(8) _data_to_nfc_m () ;

3 method Action _data_from_nfc_m ( Bit#(8) _data_from_nfc ) ;

4 method Action _onfi_ce_n_m ( bit _onfi_ce_n ) ;

5 method Action _onfi_we_n_m ( bit _onfi_we_n ) ;

6 method Action _onfi_re_n_m ( bit _onfi_re_n ) ;

7 method Action _onfi_wp_n_m ( bit _onfi_wp_n ) ;

8 method Action _onfi_cle_m ( bit _onfi_cle ) ;

9 method Action _onfi_ale_m ( bit _onfi_ale ) ;

10 method bit t_ready_busy_n_ ;

11 endinterface

Listing 5.3: Nand Flash Target Memory Model Interface

Instead of an I/O interface for the data bus, two other methods _data_to_nfc_m

and _data_from_nfc_m are used. This will be replaced with the actual I/O data bus

when dealing with the real Nand Flash bus functional model. The other methods in the

interface perform the functionality as mentioned in table 3.1.

Block RAMs(BRAM) are used to form the pages of the target memory. A vector

of BRAMs is formed to obtain a single plane in the target memory. The vector size is

highly parametrized; where the page size, number of pages per block and number of

blocks per plane are parameterized. The number of planes per LUN is fixed to two and

the number of LUNs per target is also fixed to two. This single plane is then instantiated

four times to obtain the complete memory organizational except for the cache and data

register. Separately four more BRAMs are used for forming the cache register four each

plane and four more for the data register. LUN address bit along with the plane select

bit are used to address which of the planes needs to be selected for an operation and

also which cache and data register is selected. The remaining bits of the address are

used for addressing the BRAMs inside the single plane. This takes care of the memory
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organization and address decoding part. The functional block diagram of the model is

shown in figure 3.1.

The Nand Flash model supports the command sets that are mentioned in table 3.2.

Additionally READ ID, READ UNIQUE ID, GET FEATURES, READ PAGE CACHE

SEQUENTIAL, READ PAGE CACHE RANDOM, READ PAGE CACHE LAST com-

mands are also supported. Hence a command register is needed and a address register

to store the one/three/five address cycles. For multi plane commands queuing of opera-

tions are needed. Hence separate registers are used for queued operation addresses and

the operation itself. The timing information is not captured in this memory model. A

status register which updates its value every cycle is needed, since this forms the basis

for multi plane and multi LUN operations.

Any data present on the input bus is considered a command and put in the command

register, if the CLE is enabled. It will be considered an address if the ALE is high and

it is put in corresponding address register, since there are five of them. If both these

signals are disabled then it is considered as data. For every data intake to be considered

the WE must be activated and for every data out to happen the RE must be activated.

All these are taken care by the I/O control in the model. The data flow for various

operation ranging from program, read, erase, reset,status read and others as well as

queuing operations are handled by the control logic. For the verification of the NFC,

the parameters of the Nand Flash Model were set in a way such that, each page was of

16KB size. Each plane had 4 blocks and each block had 8 pages.

5.4 Verification

To verify the NFC with the modelled flash memory target, we need to first verify the

target memory model itself.

5.4.1 Verification of the Nand Flash Memory Model

The Design under verification, the Nand Flash Memory model, is connected to the

testbench by means of the ONFi interface. The verification setup is shown in figure

5.14. The Test cases are input to the DUV and the behaviour of the model is verified.
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The test cases involve feeding ONFi command sets along with data to verify the various

commands that are supported by the nand model. The various test cases that are targeted

are discussed further.

Figure 5.14: Verification setup for verifying the target memory model.

Reset

The Reset command is issued to the model and the pages are read and verified that they

are all FF. This verifies the reset operation in the model.

Write and Read one page in 2 LUNs

After RESET is done, PROGRAM PAGE command is issued once in LUN 0 and then

on LUN 1. The status is monitored using status commands. The READ PAGE com-

mand is then issued on the same two pages in both LUNs. The status is monitored using

the READ STATUS command. Once done the data is read out using READ MODE and

the data is compared with written data. This verifies the all the commands that are used

and also interleaving of operation between two LUNs in the model.

Write and Read using Multi-plane commands across LUNs

Once again after RESET is successful, PROGRAM PAGE MULTI PLANE and PRO-

GRAM PAGE commands are issued on LUN 0 for writing into two pages. The same
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is repeated on LUN 1. After the status is monitored successfully, the READ PAGE

MULTI PLANE and READ PAGE commands are issued on the pages that was earlier

written both in LUN 0 and LUN 1. The status is monitored again and upon completion,

the READ MODE and SELECT CACHE REGISTER operations are issued to read out

the data from both LUNs and the data is verified with the written data. This test ensures

that all multi plane commands and select cache register commands are operational also

verifies the multi-plane interleaving along with LUN interleaving.

Write and Read using CACHE operations

Upon completion of reset, the LUN 0 is issued a PROGRAM PAGE CACHE on a page

followed by same operation on the next page within the same block. Then the same

command is issued on LUN 1. The status is monitored and then the READ PAGE

command is issued on LUN 0 followed by READ PAGE CACHE on LUN 0. The same

sequence of read operations are then issued on LUN 1. The data from LUN 0 and

LUN 1 are read out and compared with the written data. Then the CACHE operation is

ended with the READ PAGE CACHE LAST command on both the LUNs and the data

is verified. This test case ensures the CACHE operations are verified across LUNs.

Write and Read using extended CACHE operations

In this test we concentrate only on one LUN to make sure an extended cache oper-

ation is functional. After the reset is successfully completed, the PROGRAM PAGE

CACHE is issued four times on a block in a LUN. This ensures four pages are writ-

ten back to back on the block. The status is monitored using status operations and

then upon completion, the READ PAGE is issued once and followed by READ PAGE

CACHE SEQUENTIAL command. Read out the first page data and compare. Then

issue READ PAGE RANDOM command on the third page, this will first put the data in

data register(second page data) into cache register then start reading third page into data

register. Second page data is read out and verified. The command sequence is ended

with the READ PAGE CACHE LAST command. The third page is read out and finally

after the status shows free, the last page is read and verified. This ensures the CACHE

series commands are functional in the model.

56



Write using Multi plane and CACHE operations, read using Multi plane operation

We need to verify whether cache and multi plane operation happen simultaneously as a

part of interleaving. After the reset, the PROGRAM PAGE MULTI PLANE command

is issued on a plane in a LUN. This is followed by PROGRAM PAGE CACHE on

the same LUN but different plane, once the array status is free again issue the same

operation on the consecutive pages in the same block. Wait until the status shows the

LUNs are free. Then the READ PAGE MULTI PLANE command followed by READ

PAGE is issued to the same addresses as the first write, the data is read out using READ

MODE and verified. Again the same read command are issued on the next addresses

and the data is read out and checked.

Multi plane and normal Erase operation

Write data other than FF into some pages in two or more pages in a LUN on different

plane using PROGRAM PAGE, PROGRAM PAGE CACHE and PROGRAM PAGE

MULTI PLANE commands. Once the LUN is free, issue BLOCK ERASE MULTI

PLANE and BLOCK ERASE on the blocks that was earlier written into. After the

operation is completed read out the same pages that were written into earlier using

READ PAGE MULTI PLANE and READ PAGE command. Ensure that the read out

data from these pages are FF and not the ones that were earlier written. This verifies the

block erase functionality in the model.

5.4.2 Verification of NFC with the Nand Flash Memory Model

The Nand Flash Model is integrated with the NFC for the verification. The test cases are

fed through the NVMe-NFC interface and the design is to be verified. The verification

setup for verifying the NFC is shown in figure 5.16. The vast majority of the failures are

a result of interaction between adjacent memory cells. Often writing a memory cell can

cause one of the adjacent cells to be written with the same data. An effective memory

test attempts to test for this condition. Therefore, an ideal strategy for testing memory

would be (a) write a cell with a zero (b) write all of the adjacent cells with a one (c)

check that the first cell still has a zero[16]. A close approximation of this test would

be to write consecutive rows in the memory with pattern "A" and "5". After read then
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write with pattern "5" and "A". Other than this a random pattern can be written in every

row followed by its complement and repeated. The read write test cases follow this

methodology. The different test cases that are covered are discussed further.

Figure 5.15: Verification setup for verifying NFC.

Bad block operation

To verify whether the bad block scan at power-on is functionally valid, we load some

of the BRAMs that form the pages of the block with data other than FF. The bad block

table should then have a bit map corresponding to this case. Then a bad block request

is sent from the NVMe interface and verified.

Write and Read operation

Write operation is done for various payload length with data pattern as discussed before.

For various payload lengths starting address can be in either odd and even plane. Hence

write operation with length 1 and lengths from 2 to 13 for even and odd plane is first

done in separate test cases. Then the read is done separately for the same payload

lengths and the data is compared with the written value.

Erase operation

After a write operation on a page, we send an erase operation through the NVMe. After

the erase is successful read the data and ensure it is FF and not the original data.
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5.4.3 Synthesis Evaluation

The Nand Flash Controller and the Nand Flash model with 4 pages per block and 4

blocks per plane is executed on xilinx Artix-7 FPGA and verified to be functionally

working. The NFC is then synthesized with a NVMe-NFC data bus width of 128 bits.

Below is the synthesis report(slice utilization and timing summary) for the same.

Number of Slice Registers used : 1131

Number of Slice LUTs used : 2214

Number of LUT Flip Flop Pairs used : 2262

Number of Block RAMs used : 4

Max Frequency of operation : 299 MHz

5.4.4 Verification of NFC with Micron class-K Bus Functional Model

The timing aspect of the NFC is not verified with the earlier verification wit the bluespec

nand flash target model. A micron class-K nand flash bus functional model with a page

size of 16KB is integrated with the NFC and all the test cases that were earlier discussed

are re-run on this setup. The simulation results for this are shown in the following

figures.

PROGRAM operation

Figure 5.16: Program operation (80h followed by data).
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Figure 5.17: PROGRAM PAGE end command sequence(10h after data).

Figure 5.18: PROGRAM PAGE MULTI PLANE end command sequence(11h after
data).

Figure 5.19: PROGRAM PAGE CACHE end command sequence(15h after data).
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READ operation

Figure 5.20: READ PAGE command sequence.

Figure 5.21: READ PAGE MULTI PLANE command sequence.

Figure 5.23: SELECT CACHE REGISTER command sequence.
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Figure 5.22: READ MODE command sequence(After status check).

STATUS operation

Figure 5.24: READ STATUS command sequence(70h).

Figure 5.25: SELET LUN WITH STATUS command sequence(78h).
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ERASE operation

Figure 5.26: ERASE BLOCK MULTI PLANE command sequence.

Figure 5.27: ERASE BLOCK command sequence.
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CHAPTER 6

Conclusion

6.1 Summary

The concept of Nand Flash Controller which is compliant with ONFi 4.0 standard has

been elaborated and implemented in this thesis. The NFC takes the NVMe compliant

signalling and translates it into an ONFi compliant signalling to talk to the NVMe and

the Nand Flash memory. Every request such as the read request, write request, erase

request are processed by means of state machine in the control logic of the NFC. Also

in the control logic are the power-on operations such as reset, set feature and bad block

scanning. More commands can be integrated into the control logic and can be verified

easily with the existing environment. The control logic can be extended by adding

more rules at the bluespec abstraction level. Along with the control logic, a verification

environment is also setup using bluespec which can be extended to capture more tests.

This test environment can be used to verify the NFC both in simulation as well as on

the hardware. Also simulation with the actual bus functional model is also covered in

the environment. The NFC thus implemented has been tested both through simulation

and on real hardware.

6.2 Future work

The NFC shares control signals which are ONFi compliant with the two target chips.

Currently the Mega block created has blocks shared across planes in a LUN and then

across LUNs. Since the signals are already shared, the Mega block can be extended to

add blocks across CE as well. This will add one more level of interleaving along with

plane and LUN interleaving.

The present implementation of the NFC concentrates on the asynchronous interface.

The design can be extended to also support synchronous interface.



More commands that are available in the ONFi 4.0 standard can be incorporated for

better control logic in the NFC. However this is possible only if the level of abstraction

at the NVMe-NFC end is increased. A better level of abstraction will allow addition of

copyback and other commands in the NFC.
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