
Design and Implementation of a 4 way

Out-Of-Order Processor based on ARMv7 ISA

A project Report

submitted by

Bhavana V

Sandeep G S P

in partial fulfillment of the requirements

for the award of the degree of

Master of Technology

Under the guidance of

Dr. Madhu Mutyam

Department of Electrical Engineering

Indian Institute of Technology Madras

May 2015

Thesis Certificate

This is to certify that the thesis titled Design and Implemen-

tation of a 4 way Out-Of-Order Processor based on ARMv7

ISA, submitted by Bhavana V and Sandeep G S P, to the Indian

Institute of Technology, Madras, for the award of the degree of Master

of Technology, is a bonafide record of the research work done by him

under our supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the

award of any degree or diploma.

Dr. Madhu Mutyam

Project Guide

Associate Professor

Dept. of Computer Science and Engineering

IIT-Madras, 600 036

Place : Chennai

Date :

ii

Acknowledgments

We wish to express our gratitude to everyone who contributed in mak-

ing this work a reality. We would like to thank Indian Institute of

Technology Madras for giving an opportunity to pursue post gradua-

tion. We are grateful to electrical engineering department for providing

the facilities for the same.

This work would not have been possible without the support and

guidance of our guide Dr. Madhu Mutyam, Associate Professor, Dept

of Computer Science and Engineering. We would like to express our

deepest gratitude to him for the guidance.

We extend our sincere gratitude to Dr. Nitin Chandrachoodan, As-

sociate Professor, Dept of Electrical Engineering for providing good

lab facilities, access to Xilinx license and FPGA boards needed for the

project.

We also express our sincere thanks to Dr.V.Kamakoti, Professor,

Dept of Computer Science and Engineering, Dr.C. Chandra Sekhar,

Professor, Dept of Computer Science and Engineering and all our Em-

bedded systems labmates for their profound support in our project

journey.

Finally, we are deeply grateful to our parents for their love and affec-

tion over years and thanks to all our well-wishers and friends for their

cheerful dispositions, which are vital for sustaining the effort required

for completing this project work.

iii

Abstract

Microprocessors have evolved greatly over the past few decades

from single cycle state machines, to pipelined architectures, to

wide issue superscalar processors to out of order execution im-

plementations. This project implements one such 4 way single

threaded out-of-order processor based on ARM v7 Instruction

Set Architecture (ISA) in Verilog HDL. The motivation be-

hind the project is the implementation of single cycle MIPS

processor design in VLSI Design Lab (EE5703). This micro-

processor was designed to exploit instruction level parallelism

as much as possible while still maintaining reasonable amount

of logic per clock cycle. Ultimately the design implemented is

capable of fetching, decoding, renaming, issuing, executing,

and retiring up to four instructions per clock cycle with spec-

ulative execution, with appropriate optimization performed

in each stage in order to improve the efficiency. Upon suc-

cessful implementation, the design is simulated using a series

of test benches and synthesized for Virtex 5 FPGA.

Contents

1 Introduction 1

1.1 Classification of Microarchitectures: 1

1.2 Importance of Instruction Set Architecture: 2

1.3 ARMv7 Instruction Set 2

1.4 ARM processor variants 3

2 Processor Micro-architecture 5

3 Instruction Fetch Stage 7

3.1 Program Counter . 8

3.2 Instruction Memory design 8

3.2.1 Instruction Fetch Alignment 8

4 Instruction Decode stage 9

4.1 Instruction Decode Stage-1 9

4.1.1 Branch Prediction Unit 10

4.2 Instruction Decode Stage-2 14

5 Dispatch Stage 16

5.1 Register file read ports bottleneck 16

5.2 Dispatch Stage - 1 . 18

v

CONTENTS

5.2.1 ROB Allocation 18

5.2.2 Intra-dependency 19

5.2.3 Unique Reads 21

5.2.4 Branch Buffer 22

5.3 Dispatch Stage - 2 . 24

5.3.1 The O(1) complexity problem 24

5.3.2 Register file design 25

5.3.3 Register Renaming 25

5.3.4 Register file data bus 27

5.3.5 Reservation slot Allocation 27

5.3.6 Dependency matrix 27

6 Reservation Station 28

6.1 Issue logic . 30

7 Execution Stage 31

7.1 Integer Unit . 32

7.2 Shifted Integer Unit . 33

7.3 MAC Unit . 35

7.4 Load and Store Unit 36

7.4.1 Data Memory design 36

7.4.2 Store Buffer . 37

7.5 Branch Unit . 38

7.6 Common Data Bus (CDB) 39

7.6.1 CDB Arbiter 40

7.7 Program Status Register (PSR) 40

8 The commit stage 41

vi

CONTENTS

8.1 Re-Order Buffer . 42

8.2 Write-back . 43

8.3 Exception handling . 43

9 Centralized Control Unit 44

10 Synthesis results 46

11 Conclusion and Future Work 52

Bibliography 54

A Assembler 57

B Matlab based RS and ROB simulator 58

C Instruction Set Architecture 62

D Processor Variants 67

D.1 ARM processor Variants 67

D.1.1 Single Cycle Design 67

D.1.2 Cannonical 5 Stage pipeline design 68

D.2 MIPS processor Implementations 69

D.2.1 Single and Multi-cycle design 71

D.2.2 Canonical 5 stage pipeline design 71

D.2.3 Two-Way In-order Super-scalar processor Design 72

vii

List of Figures

2.1 High level data-path of processor’s (a) front end and (b)

back end . 5

3.1 Instruction fetch block diagram 7

4.1 Block diagram of stage 1 of instruction decode 10

4.2 Performance of branch instruction routing module un-

der different scenarios (a) External stall before branch

routing (b) Flushing of unconditional branches in decode

stage and (c) External stall in between multicycle stall:

the branch routing begins all over again 11

4.3 State diagram of (a) two bit predictor and (b) modified

two bit counter . 12

4.4 Hybrid branch predictor architecture 12

4.5 Misprediction per 1000 branch instructions of branch

predictors across 40 benchmarks from championship branch

prediction framework 13

4.6 Block diagram of stage 2 of instruction decode 15

5.1 Block diagram of (a) stage 1 of instruction dispatch and

(2) stage 2 of instruction dispatch 17

5.2 Simulation of ROB allocation for the above cases . . . 18

viii

LIST OF FIGURES

5.3 Comparison algorithm among the instructions in a cluster 19

5.4 (a) Internal block diagram of intra-dependency checker

(IDC), (b) Internal block diagram of a comparator used

in IDC and (c) A three level architecture to perform

intra-dependency removal among the instruction cluster. 20

5.5 Example illustrating the functionality of unique reads

module . 21

5.6 Overview of interface of the branch buffer with other

stages in pipeline . 22

5.7 Internal architecture of the branch buffer describing the

different parts of the branch buffer and the limited access

rights to different stages 23

5.8 Register file divided in to regions 24

5.9 Register file read ports allocation 25

5.10 Register renaming mechanism through re-order buffer . 26

6.1 Simulations of a simple out-of-order issue logic imple-

mented in this design 30

7.1 Block diagram of execution unit containing all the func-

tional units and reservation stations 31

7.2 Block diagram of integer unit and program status regis-

ter organization . 32

7.3 (a) Block diagram of the 2 staged shifted integer unit

and (b) architecture of stage 2 of shifted integer unit . 33

7.4 (a) High level block diagram of the 3 stage MAC unit,

(b) partial products generation and level 1 CSA in stage 1 34

ix

LIST OF FIGURES

7.5 (a) block diagram of stage 2 of MAC indicating all levels

of CSA and (b) Load and store stage and its intercon-

nection with the store buffer 36

7.6 Example illustrating misalignment in data memory . . 37

7.7 Load forwarding cases (a) without exception and (b)

with exception . 38

8.1 Re-order buffer high level interface block diagram . . . 41

8.2 ROB port requirements 42

B.1 The matlab simulator 59

B.2 Simulation Results for the configuration 32-8-2-2-2-4 (a)

Reservation Station slots availability and overall reser-

vation station stall and (b) re-order buffer stall during

the course of simulation 60

x

List of Tables

4.1 Truth table for updating the selector table 13

5.1 Offset generation for ROB allocation for some conditions

of valid instructions in a cluster 18

6.1 Number of entries in each reservation station. 28

7.1 Number of carry save adders in each of the CSA level . 35

7.2 Conditional codes of ARMv7 for branch instructions . . 39

9.1 Priorities of stall signals in centralized control unit. Sig-

nals generated to different stages are indicated as stall/flush 45

10.1 Synthesis results of each stage 51

B.1 The delay ranges for dependency and execution unit for

different types of instructions 58

B.2 The reservation station and ROB stall percentages for

different combinations of sizes. The configuration is to

be read as ROB Size - IU RS size - SIU RS size - MAC

RS size - LS RS size - B RS size 59

D.1 Mini MIPS ISA . 70

xi

Abbreviations

ISA Instruction Set Architecture

ILP Instruction Level Parallelism

CPI Clocks Per Instruction

IPC Instructions Per Cycle

IF Instruction Fetch

PC Program Counter

ID Instruction Decode

BPU Branch Prediction Unit

BTB Branch Target Buffer

BTA Branch Target Address

FTA Follow Through Address

DI Dispatch Instruction

IDC Intradependency Checker

RF Register File

RS Reservation Station

ALU Arithmetic and Logical Unit

IU Integer Unit

SIU Shifted Integer Unit

MAC Multiply and ACcumulate

CSA Carry Save Adder

LSU Load and Store Unit

BU Branch Unit

RAW Read After Write

WAW Write After Write

CDB Common Data Bus

ROB Re- Order Buffer

NOP No OPeration

Chapter 1

Introduction

The processor microarchitecture has undergone a continuous evolution. This evo-

lution is fuelled by 2 types of factors namely technology scaling and workload evo-

lution. According to technology scaling, every generation provides transistors that

are smaller, faster and less energy consuming. On the other hand, each generation

resulted in an increasing number of architectural features in the processor to better

exploit the characteristics of user applications [23].

1.1 Classification of Microarchitectures:

Initially microprocessors used pipelining concept to overlap the execution of instruc-

tions and improve the performance. This potential overlap among instructions is

called instruction-level parallelism (ILP). Later a wide range of techniques have been

emerged for extending the basic pipelining concepts by increasing the amount of

parallelism that is exploited among instructions.

There are two largely separable approaches to exploit ILP: an approach that relies

on hardware to exploit the parallelism dynamically, and an approach that relies on

software technology to find parallelism, statically at compile time [25]. Processors

using the dynamic, hardware-based approach dominate in the market; whereas those

using the static approach, have more limited uses in scientific or application-specific

environments.

Over the past decade, superscalar microprocessors have become a source of tremen-

dous computing power. To satisfy the ever-growing need for higher levels of comput-

1

1.2 Importance of Instruction Set Architecture:

ing power, computer architects need to investigate techniques that continue improv-

ing the performance of superscalar microprocessors, while considering both changing

technology and applications. The maximum number of instructions processed in par-

allel, also known as the width of the microarchitecture, is typically four for the fastest

microprocessors available today.

There is an enormous need for investigating superscalar microarchitectures that

judiciously use hardware complexity for exploiting significant levels of instruction-

level parallelism, while permitting a fast clock. We call such microarchitectures

complexity-effective superscalar microarchitectures [3]. Specifically, the purpose of

choosing out-of-order processor architecture compared to in-order type is to increase

the amount of ILP by providing more freedom to hardware for choosing which in-

structions need to process in each cycle at the cost of complexity in hardware. This

is referred to as dynamic instruction scheduling

1.2 Importance of Instruction Set Architecture:

The question of ISA design and specifically RISC vs. CISC is an important concern,

when chip area and processor design complexity are the primary constraints. In the

past decade, the ARM ISA (RISC) has dominated mobile and low power embedded

computing domains and the x86 ISA (CISC) has dominated desktops and servers.

Rather than being exclusively desktops and servers, todays computing landscape

is significantly shaped by smartphones and tablets. While area and chip design

complexity were previously the primary constraints, energy and power constraints

predominantly dominate at present [1].

1.3 ARMv7 Instruction Set

The ARM architecture has evolved significantly since its introduction. There are eight

major versions with the latest one ARMv8 targeted at high performance processors for

current generation smartphones [2]. The architectural simplicity of ARM processors

leads to very small implementations, which means devices consume lower power.

The ARM architecture is a Reduced Instruction Set Computing (RISC) architec-

ture, as it incorporates these architectural features:

2

1.4 ARM processor variants

• A large uniform register file

• A load / store architecture, where data-processing operations only operate on

register contents, not directly on memory contents

• simple addressing modes, with all load/store addresses being determined from

register contents and instruction fields only.

In addition, the ARM architecture also provides:

• Instructions that combine a shift with an arithmetic or logical operation

• Auto increment and auto decrement addressing modes to optimize program

loops.

• Load and Store Multiple instructions to maximize data throughput.

• Conditional execution of many instructions to maximize execution throughput.

These enhancements to a basic RISC architecture leads to designs, that achieve a

good balance of high performance, small program size, low power consumption, and

small silicon area. All these factors and architectural support available lead us to use

ARMv7 ISA.

1.4 ARM processor variants

ARM released many processor architectures based on ARMv7 ISA. Some of the ap-

plication oriented architectures that impacted the smartphone and tablets market are

[27]:

• Cortex A5: This processor is the smallest, lowest cost and lowest power

ARMv7 application processor designed for smart devices like wearables, fea-

ture phones and low cost smart phones.

• Cortex A7: This processor powers sub-$100 entry-level smartphones, as well

as a number of high-end wearable devices. The processor led the multicore

revolution for entry-level and mid-range mobile smartphones. The Cortex-A7

processor is architecturally aligned with the high-performance Cortex-A17 and

Cortex-A15 processors.

3

1.4 ARM processor variants

• Cortex A8: This was the first ARMv7 based single core processor introduced

in the market for smartphones and printers. It is a 2-way in-order machine.

• Cortex A9: This processor design delivered exceptional capabilities while us-

ing considerably low power than high-performance computer platforms. It is

one of the first processor that implements the entire ARMv7 architecture. It

is a dual issue superscalar and out-of-order processor with a dynamic pipeline

length from 8 - 11 stages.

Cortex A15 and A17 are improved versions of cortex A7. The current flagship

processors A53,A57 and A72 are all based on ARMv8 which was designed for perfor-

mance.

4

Chapter 2

Processor Micro-architecture

The project is aimed at the design of a 4 way super-scalar out-of-order processor

based on ARMv7 instruction set architecture inspired from several standard designs

discussed in [3, 4, 5, 6]. As a 4 way processor, the design is capable of processing

4 instructions in each of its pipeline stage. Fig. 2.1 shows the high level data-path

(a) (b)

Figure 2.1: High level data-path of processor’s (a) front end and (b) back end

5

for the CPU’s front and back end. This processor follows a I2OI based design where

fetch, decode and write back stages are done in-order, where as execution happens

out of order.

Front end of the processor is responsible for fetching instructions, decoding the raw

instruction words. They are then renamed so that back-end can handle dependencies.

Speculative control flow is done in the front end to provide a constant stream of

instructions. Upon resolving a speculated flow direction, the re-order buffer (ROB)

can direct the front end to fetch in the correct direction in case of an exception. This

will ensure precise exception. The front end of the processor will be stalled if the

back end runs out of space to buffer instructions.

The back end of the CPU is responsible for taking the renamed instructions and

issuing them to be executed as their operands become available. The only dependency

that remains is the RAW dependency which is ultimately the limiting factor in how

fast the processor can execute the program. The out-of-order execution unit can

execute the other independent instructions while other dependent instructions wait

for source operands in the reservation station. The sequential ordering of the program

is maintained through the re-order buffer which commits instructions in order as

they complete execution. The major components of the back end are the reservation

stations, load-store queues, the reorder buffers. There are 6 functional units (2 Integer

units, 1 shifted-integer unit, 1 multiply and accumulate unit, 1 load & store unit and

1 branch unit) in the execution stage. As the results are computed by the execution

unit, they are forwarded to the reservation stations.

Each of the pipeline stage functionality is discussed in detail in its respective

chapter.

6

Chapter 3

Instruction Fetch Stage

The instruction fetch unit is responsible for feeding the processor with instructions

to execute and hence it is the first stage of the pipeline. The fetch stage mainly

comprises of instruction memory, logic needed to compute fetch address or the in-

struction memory address i.e. Program counter and logic for identifying alignment

issues. Since, the design is a 4 way, out-of order processor, the fetch unit has to

supply 4 instructions every cycle to the pipeline.

Conventional high performance processor design incorporates a branch prediction

unit as a part of the fetch stage so as to aid in computation of next fetch address

when a branch is encountered, but with the increase in the fetch width, the number of

ports needed to process all the instructions in parallel for the branch prediction unit

Figure 3.1: Instruction fetch block diagram

7

3.1 Program Counter

also increases. Owing to the increase in hardware complexity, the branch prediction

unit has been moved to decode stage. This incurs a compulsory 1 cycle loss whenever

a conditional branch is predicted taken.

3.1 Program Counter

The program counter (PC) is a register that acts as a pointer to the instruction

memory, in other words it is the fetch address. In the current design the PC is an

8 bit register. The program counter is updated every clock cycle by the centralized

control unit. In case of a stall, the program counter is not updated.

3.2 Instruction Memory design

The instruction memory holds instructions of the program. In this design the memory

is implemented using block memory IP core from xilinx. The memory is a dual ported

block ROM of depth 128 locations each of 64 bits wide (1KB). The memory has two

ports to read 4 instructions of a cluster. The two read ports are driven by PC and

(PC + 2). Instruction fetch alignment needs to be taken care in this type of design.

3.2.1 Instruction Fetch Alignment

Apart from the advantage of reducing the number of read ports by going for a wider

instruction memory, we have memory alignment issues that will reduce the perfor-

mance of the processor, for example in fig. 3.1 if the control based instruction points

the next fetch address to I5 instruction, then due to limitation of wide instruction

memory even I4 instruction is also fetched. This is flushed later by alignment monitor

in the instruction fetch stage, leading to a degradation of performance.

8

Chapter 4

Instruction Decode stage

The instruction decode stage understands the schematics of an instruction and de-

fines how it should be executed in the processor. This stage identifies the type of

instruction and the resources needed to execute the instruction. The input to this

stage is usually a stream of raw instruction bits from the instruction memory.

This decode functionality is implemented in two stages. The first stage of the

decode unit is responsible for resolving the branch instructions by predicting the

outcome of conditional branches and then second stage of the decode unit contains

four control units that can decode the instructions in parallel.

4.1 Instruction Decode Stage-1

The first stage of instruction decode is carefully modeled to resolve all branch in-

structions among the 4 instruction cluster (Fig.4.1). Conventional scalar pipeline

processor designs resolve branches in the fetch stage itself so that the new fetch ad-

dress is available in the same cycle. The latest processor design that exploits ILP by

issuing more than 1 instruction every cycle cannot afford to resolve for branch instruc-

tion during fetch stage, as we would be needing a heavily ported branch prediction

unit to accommodate all instructions.

This lead to, moving the branch resolving unit to decode stage, providing flex-

ibility to optimize the hardware, one such optimization is to have a single ported

branch resolution unit, as the percentage of branch instructions in program varies

between 10% to 20%. This means that we might have a maximum of 1 or 2 branches

9

4.1 Instruction Decode Stage-1

Figure 4.1: Block diagram of stage 1 of instruction decode

per instruction cluster. An instruction router is designed to route the leading branch

instruction, if present, in a cluster to the branch predictor and address calculation

unit. A structural hazard occurs based on the outcome of first branch (i.e., if not

taken) and there are more branches in the cluster. Figs. (4.2a, 4.2b, 4.2c) shows the

simulations of certain cases of structural hazard during branch routing.

The routed branch instruction is also sent to address calculation unit to determine

the next fetch address. This address is sent to the program counter based on the

prediction of the conditional branch. The next section deals with the hybrid branch

predictor.

4.1.1 Branch Prediction Unit

High performance processors have capacity to issue more than 1 instruction every cy-

cle. In order to achieve this level of instruction parallelism, we will have to compute

the next fetch address every cycle. However, fetch address from a conditional branch

cannot be determined until we execute the branch instruction which leads to degra-

dation of performance. Branch instruction becomes an intrinsic part in determining

the processor performance.

The branch performance was improved by predicting the outcome of the branch

at an early stage and later validating the prediction. There are two approaches in

10

4.1 Instruction Decode Stage-1

(a)

(b)

(c)

Figure 4.2: Performance of branch instruction routing module under different scenar-

ios (a) External stall before branch routing (b) Flushing of unconditional branches in

decode stage and (c) External stall in between multicycle stall: the branch routing

begins all over again

achieving better branch performance: First approach is to design a better branch

predictor with lower misprediction rate and second is to decrease the branch mis-

prediction penalty. Some well known branch predictors [8] are bimodal (two bit

predictor), global history based predictor, local history based predictor, correlating

branch predictor, gshare predictor, bi-mod predictor, g-skewed predictor, two level

11

4.1 Instruction Decode Stage-1

(a) (b)

Figure 4.3: State diagram of (a) two bit predictor and (b) modified two bit counter

adaptive branch predictor [6], tournament branch predictor [4] etc.

Farlang [7] introduced the concept of combining the branch predictors to achieve

better prediction accuracy. He investigated that the standard branch predictor has

distinct advantages on certain scenarios. Global branch predictors perform well when

the direction taken by sequentially executed branches are highly correlated and local

Figure 4.4: Hybrid branch predictor architecture

12

4.1 Instruction Decode Stage-1

Predictor 1 Predictor 2 Outcome

Incorrect Incorrect No Change

correct Incorrect Decrement

Incorrect correct Increment

correct correct No Change

Table 4.1: Truth table for updating the selector table

branch predictor works well when the branches have repetitive patterns. The current

design incorporates a branch predictor which is a hybrid of gshare and local history

based branch prediction. Fig. 4.4 shows the structure of the predictor. A selector

or choice predictor is used to dynamically select between the two predictions. The

selector predictor is an array of saturating 2 bit counters. Table 4.1 explains the

updation scheme of the selector. Gshare predictor reduces the warm up phase needed

for the branch predictor and local history based predictor takes time in training to

the type of patterns.

Figure 4.5: Misprediction per 1000 branch instructions of branch predictors across

40 benchmarks from championship branch prediction framework

13

4.2 Instruction Decode Stage-2

The gshare predictor has 32 entries, each containing a saturating 2 bit counter

(Fig. 4.3a). The table is indexed by branch address hashed with the global branch

history register. The local history based predictor on the other hand is a two level

prediction scheme that stores the history of each branch separately and then the local

branch history is used to index another table of three bit saturating counters (Fig.

4.3b). Both the local predictor tables have 32 entries. The overall hardware budget

of this branch predictor is 48 bytes.

The predictor is updated whenever the respective branch result is validated in

the branch unit of execution stage. This updation might not be done in order but

waiting for the branch instruction to update till the commit stage will mean that

several branches will use the old versions of history [10].

The performance of the predictor was evaluated on the championship branch

predictor framework [26] across 40 benchmarks. The benchmark contains all sorts

of branches - conditional, unconditional, call and returns. Fig. 4.5 illustrates the

performance difference between the gshare and hybrid predictor of similar sizes. The

hybrid predictor has an average misprediction rate of 16.46 mispredictions per 1000

branch instructions.

4.2 Instruction Decode Stage-2

The next stage of the pipeline deals with generating control signals and functional

unit allocated to all the valid instructions that enter this stage. As all the control

based instructions are resolved, we can perform decoding in parallel. The input to

this stage is also a stream of raw instruction word bits but each instruction has an

additional bit to indicate if it is valid or not. All NOP instructions are made invalid

in this stage so that they are not further processed. Fig. 4.6 gives a high level block

diagram of the instruction decode. This stage is capable of decoding 4 instructions in

parallel. Hence, it does not pose any structural hazard. The decoding unit consists of

a 3 level look-up table for generating the control signals. The decoding has become

simple because of the RISC based ISA of ARM. The efficiency of control logic is

determined by the number of bits that is needed to differentiate instructions, for

example if we have 100 instructions in the ISA, then we must use a maximum of only

7 bits. Higher efficiency can be obtained if we get to the root of how the instruction

set architecture is built. The information extracted from decoding the instruction

14

4.2 Instruction Decode Stage-2

Figure 4.6: Block diagram of stage 2 of instruction decode

includes the type of source registers, type of instruction and control signals that are

needed.

The decoder apart from generating control signals also decides which functional

unit or reservation station the instruction must be routed. This is important because

the out of order nature is introduced at the execution stage. The instruction can take

one of the many paths available to writeback based on the type of instruction. This

step is also known as allocation of reservation station.

The number of control signals needed for each instruction varies, as they can take

different paths before writeback. The architecture supports for maximum number

of control signals until reservation station, where they split in to different functional

units.

15

Chapter 5

Dispatch Stage

The next stage in the pipeline is the dispatch stage. The main functionality of this

stage is to allocate resources to instructions, reading operands from the register file,

removing false dependencies through register renaming and dispatching instructions

to execution unit. The allocation normally includes reserving some of the resources

that instructions will use in future, like entries in reservation station and re-order

buffer. If the resources are not available, then the instructions are stalled in that

stage. A standard ROB based register renaming is done, to get rid of the name

dependencies dynamically.

5.1 Register file read ports bottleneck

The bottle neck is with the number of read ports for a register file. [11, 12] have

discussed the complexities involved in register file designs as the fetch width increases.

Several techniques such as use of delayed write-back queues [13], use of bypass hint

[14], register file caching and register file banking for write-back [14, 15]. The current

design has two additional pre-processing techniques that play an important role in

reducing the load on register file read ports.

The 4 way design of a processor can fetch 4 instructions per cycle. ARMv7

instruction set architecture supports some instructions that require 3 operands per

cycle. This means that, per instruction cluster, a maximum of 12 operand reads need

to be performed per cycle. Some processor designs implement as many read ports

as needed, assuming the worst case scenario where the issue width is fully unitized

16

5.1 Register file read ports bottleneck

and all instructions read operands from the register file [4, 5]. The area, power

and access latency of the register file increases with the number of read ports [29].

This can be possible if we have 12 read ports, but designing 12 ports will incur a

lot of hardware requirement as we will also need to have 12 read ports for ROB for

renaming. Reducing the number of read ports would incur structural hazard. A

conventional register file supports up to 4 or 5 read ports.

In this unconventional design, we have a register file of 4 read ports, this means

that a maximum of 3 cycles are needed. It has been shown in the literature [29]

that most of the sources are read from the operand forwarding path rather than

the register file, exploiting this we propose two pre-processing techniques: intra-

dependency removal and unique reads that aid in reducing the load on the register

file each cycle. These techniques are dealt in detail in respective sections.

The dispatch functionality is divided across two stages, the block diagram of both

the stages are shown in fig. 5.1.

(a) (b)

Figure 5.1: Block diagram of (a) stage 1 of instruction dispatch and (2) stage 2 of

instruction dispatch

17

5.2 Dispatch Stage - 1

5.2 Dispatch Stage - 1

Stage 1 of the instruction dispatch stage is responsible for ROB entry allocation and

pre-processing for register file reading. This stage also does background work of writ-

ing the branch target address (BTA), follow through address (FTA) and prediction

in to the branch buffer which is addressed by ROB number of the instruction.

5.2.1 ROB Allocation

Once the instructions enter this stage, it is likely sure that they are going to be exe-

cuted unless there is an exception. The ROB allocation module reserves ROB entries

in sequential order so that during writeback, it can be done in program order ensuring

precise exception. The allocation needs to be done only for all valid instructions, it is

in this stage that all NOP’s and invalid instructions due to misalignment are flushed.

The available ROB slots are assigned to the instructions by generating offset to

be added to head pointer of ROB. These offsets are generated from a look-up table.

Table 5.1 lists down certain cases of offset generation in the allocation truth table.

Instruction Valid Bits Offset I0 Offset I1 Offset I2 Offset I3 Offset of Updated ROB

0101 00 00 00 01 010

1011 00 00 01 10 011

0111 00 00 01 10 011

1111 00 01 10 11 100

Table 5.1: Offset generation for ROB allocation for some conditions of valid instruc-

tions in a cluster

Figure 5.2: Simulation of ROB allocation for the above cases

18

5.2 Dispatch Stage - 1

The current design does not allocate slots to instruction cluster, if the ROB is full.

The design does not have provision for partial allocation. In case of an external

stall, care is taken not to allocate slots more than once. Fig. 5.2 shows the xilinx

simulation for the above cases. The circular buffer feature of the ROB is also taken

care here.

Once ROB entry allocation is done, conventional processors proceed for operand

fetch with register renaming, but in this design we perform two preprocessing steps to

reduce the load on the register file. They are Intra-dependency removal and unique

reads computation which are explained in the following sections.

5.2.2 Intra-dependency

Maximum level of instruction level parallelism is not being achieved because of data

and name dependencies between instructions. In an out of order processor where in-

structions can be executed in any order, these dependencies will limit the throughput.

These dependencies were resolved by dynamically renaming the registers.

The current design has register renaming based on ROB to remove the name

dependencies. Every operand needs to access the register file to check if the valid

data is present or not. If data is not present, the respective ROB number is returned.

We exploit this concept to reduce the structural hazard.

Fig. 5.3a lists the 4 instructions in a cluster along with the assigned ROB num-

ber as well as the source and destination operands. The idea is to remove the data

dependencies inside this cluster itself. As the ROB number of the instructions are

present, this can be accomplished by comparing the destination operand of In in-

struction with source operand of the I(n+1) instruction. If there is a match, then the

(a)

Figure 5.3: Comparison algorithm among the instructions in a cluster

19

5.2 Dispatch Stage - 1

(a) (b)

(c)

Figure 5.4: (a) Internal block diagram of intra-dependency checker (IDC), (b) Internal

block diagram of a comparator used in IDC and (c) A three level architecture to

perform intra-dependency removal among the instruction cluster.

operand is marked fetched.

The comparison needs to be done in-program order and hence requires 3 stages

of comparison as shown in Fig. 5.4c. The number of stages depends on the number

of instructions present in every cluster or the instruction fetch width. The internals

of intra dependency checker (IDC) and modified comparator design are shown in

Fig. 5.4a and Fig. 5.4b respectively. The comparator design needs to incorporate

20

5.2 Dispatch Stage - 1

parameters like In instruction must be valid and the destination operand must be

valid as well as validity of I(n+1) instruction and its source operands.

Intuitively this concept would work because ARM being a RISC ISA, almost all

instructions depend on register file values. So, while compiling the high level code,

the compiler uses registers to load data from memory or store results and immediately

uses them for further operations because we cannot have the register file storing the

data idle for long time, since the number of available register file slots are limited.

5.2.3 Unique Reads

The intra-dependency removal will get rid of all data dependencies present in the

cluster. Another optimization technique incorporated in the design is to perform

only unique reads, i.e., when there is a request of performing reads of the same

register, then read it only once. The output of this module will give a 15 bit value

containing at max 12 bits set in the register. The bits set indicate the requirement of

those register values from the register file, after both intra-dependency removal and

unique reads. This 15 bit register is sent to stage 2 of dispatch for operand read.

The module takes in to account if the instruction is valid and the respective

source operand is valid and not fetched. Fig. 5.5 illustrates an example of unique

read module functionality. In the above example, there are 7 operands that need to

be read after intra-dependency, if unique reads functionality was not implemented,

Figure 5.5: Example illustrating the functionality of unique reads module

21

5.2 Dispatch Stage - 1

it would need 2 cycles to read with 4 read ports. The unique reads technique would

accomplish it in 1 cycle.

5.2.4 Branch Buffer

Once ROB entries are allocated to valid instructions, they are subjected to the pre-

processing techniques described above. In parallel to the pre-processing techniques,

the valid branch instructions are routed to a branch buffer, which is addressed by

ROB number of the branch instruction to store its program counter, branch target

address, follow through address and prediction, which are calculated in stage 1 of

instruction decode.

The branch buffer designed is a two way associative 8 entry buffer. This buffer

is written by stage 1 of dispatch and read by branch unit and ROB. A high level

interface diagram is shown in Fig.5.6. When a write request is received from dispatch

stage, a slot is allotted based on the availability in a particular way. First priority

is given to way 0. Similarly, the slot is cleared after write-back of that particular

branch instruction. The entire branch buffer busy bits are cleared when an exception

occurs.

This design ensures that branch buffer contains entries of only inflight - backend

branch instructions, which will reduce the requirement of larger buffers to store data,

as they are addressed by the ROB numbers of the branch instructions which are

Figure 5.6: Overview of interface of the branch buffer with other stages in pipeline

22

5.2 Dispatch Stage - 1

Figure 5.7: Internal architecture of the branch buffer describing the different parts of

the branch buffer and the limited access rights to different stages

limited by the size of the ROB. The size of the branch buffer largely depends on the

number of stages post dispatch and also how long it takes to clear dependencies of

instructions.

The branch buffer is a single ported design, that leads to certain structural hazards

if there are multiple valid branch instructions in the cluster. A stall is generated in

stage 1 of dispatch, this case is similar to instruction decode stage 1 where the branch

predictor has only one port. Another possible stall would be the lack of availability

of slots in the branch buffer for writing, the instruction needs to be stalled because

overwriting is not allowed in the buffer.

23

5.3 Dispatch Stage - 2

5.3 Dispatch Stage - 2

The main functions in stage 2 of dispatch are operand read and dispatch of instruc-

tions to their respective reservation stations.

5.3.1 The O(1) complexity problem

Conventional processor designs directly route the register read requests to the read

ports. In the current design, that would lead to a structural hazard for three cy-

cles. The pre-processing techniques in stage 1 of instruction dispatch generate a 15

bit register value where bits are set to indicate the need for reading the respective

registers.

A 100% implementation would be to read only those registers which are needed,

but that poses a O(1) complexity problem to read 4 unique registers. The hardware

complexity would be to generate a 1015 size LUT or to have a cascade of 4 pairs of 15

bit priority encoder and decoder pairs. This would lose the purpose of optimization

performed in Dispatch stage 1.

A simplistic approach to solve this problem is that to fetch the register file in

regions as shown in Fig. 5.8. Stage 1 of the dispatch will provide the source operand

of the leading non-branch instruction. This instruction’s source operands by default

will not be fetched, as there is no information about earlier clusters. The region

in which this source operand is present is read. During the process of reading, the

register is updated and then checked if there are any more reads to be made. If there

are some set bits, then the region which is to be next fetched is computed. This is

repeated until all the required registers are read.

This technique requires way less hardware, but the only negative part is that

complete efficiency cannot be extracted using this. A worst case of 4 structural stalls

might occur using this technique.

Figure 5.8: Register file divided in to regions

24

5.3 Dispatch Stage - 2

5.3.2 Register file design

The register file has 15 general purpose registers and the 16th register is the program

counter. The RF follows the conventional design and has 4 read ports (Fig. 5.9 shows

the assignment of read ports) and 4 write ports. The register file has valid bits along

with a mapping table which addresses to ROB as a part of the renaming mechanism.

Figure 5.9: Register file read ports allocation

5.3.3 Register Renaming

In an out of order processor the instructions of a program execute in an order which is

different from the program order that is generated by the compiler. The instructions

are re-ordered to extract higher instruction level parallelism, but it is constrained

by the dependencies among instructions. A dependency between instructions will

25

5.3 Dispatch Stage - 2

Figure 5.10: Register renaming mechanism through re-order buffer

govern the order of instructions. Dependencies can be of two types: Data and name

dependencies, the former occurs when an instruction produces a data element that

is consumed by another instruction. This will require the producer instruction to

execute before consumer instruction.

Name dependencies are due to the shortage of registers in the register file. This

leads to reuse of the same register which causes name dependencies. These are dy-

namically resolved by register renaming technique. There are different techniques

proposed; renaming through ROB, renaming through physical register file and re-

naming through merged register file [24].

The current design implements an ROB based renaming technique. The ROB

ensures in-order write-back and also serves as a renaming mechanism. Fig. 5.10

illustrates the block diagram of the renaming mechanism. The register file holds

an additional tag called the map table that indicates for each architectural register

whether its latest definition is in the ROB or the architectural register file. The ROB

stores the results of all non-committed instructions, whereas architectural register file

26

5.3 Dispatch Stage - 2

stores the latest committed value for each architectural register. In order to facilitate

the access to operands in the ROB, the map table also contains an additional field

that indicates the location in the ROB where the operand is currently present.

When the instruction commits the data is written from ROB to register file. The

map table is updated when ever an instruction changes the value of a register and

also it is updated during write-back.

5.3.4 Register file data bus

This processor design has a register file data bus, and instructions in dispatch read

data from both the bus and operand forwarding path together. This is the ad-

ditional piece of hardware needed when compared to the conventional register file

reading mechanisms. This additional comparators bank is needed because of the pre-

processing techniques proposed that will lead to only unique reads and the register

file read will not have any relation to the instruction. This drawback also puts a

limitation on the number of read ports the design can support.

5.3.5 Reservation slot Allocation

This is the last step of allocation where the instructions are allocated an entry in

their respective reservation station. A stall is generated if the reservation stations are

full. This allocation is done based on the tag the instructions carry which indicates

to which functional unit the instruction must be routed. This tag is generated in

decode stage.

5.3.6 Dependency matrix

A dependency matrix is generated similar to dependency graphs for compilers. This

matrix has as many number of entries as the re-order buffer each 1 bit wide. These

bits are set if that result of the instruction, in that ROB entry is needed by a later

instruction. This matrix is used to decide which results to send in the operand

forwarding path when there is a bus contention, since we will have to first forward

the results that are most awaited in the reservation station. Another option would

be to send the values of operands whose instructions are close to the instructions

waiting for write-back.

27

Chapter 6

Reservation Station

The data-dependencies between instructions will lead to stalls in dispatch stage, if

there are no buffers where the instructions can wait. Reservation stations act as

virtual execution units, where the dispatch stage is given the freedom to dispatch

the instructions, even if the sources operands are not ready. The reservation stations

can be shared or private, based on the design requirement. The reservation station

is better utilized in-case of shared when compared to private as it depends on the

type of instructions in the program that determines its usage. The instructions wait

in the reservation station until they get the source operands from the common data

bus. The issuing logic in the reservation station will introduce out-of-order nature

in to the processor ([16, 17, 18]). The backend of the processor begins from the

Reservation Station Sizes/Slots

Shared Integer Unit 8

Shifter Unit 2

MAC Unit 2

Load/Store Unit 4

Branch Unit 2

Table 6.1: Number of entries in each reservation station.

28

reservation station.

The current design has separate reservation stations for each of its functional

units. There are two integer functional units that share the same reservation station,

the rest of the functional units have private reservation stations (Table 6.1). The

number of read ports for a reservation station depends on the number of functional

units connected to it and number of write-ports depend on the probability of that

type of instruction occurring in an instruction cluster. The number of entries in

each of the reservation station plays a crucial role in the overall performance of the

processor. The number of reservation station slots directly impacts:

• The number of comparators needed to snoop and read data from the common

data bus increases with increase in number of reservation station entries. The

number of comparators used in this design are:

1. Shared integer unit reservation station : (3 × 8 × 4 = 96), where 3 indi-

cates the number of dependent variables, 8 indicates the number of slots

and 4 indicates the number of operand forwarding buses.

2. Shifted integer unit reservation station : (4 × 2 × 4 = 32)

3. MAC unit reservation station : (3 × 2 × 4 = 24)

4. Load-store unit reservation station : (2 × 4 × 4 = 32)

5. Branch unit reservation station : (1 × 2 × 4 = 8)

A total of 192 5-bit comparators are needed for the reservation stations to snoop

data from the common data bus.

• The size of re-order buffer is also directly related to number of reservation

station entries because, re-order buffer must have the capacity to hold all the

in-flight instructions.

• With the increasing size of the reservation station, the complexity of issue logic

also increases.

The parameters that impact the sizes of the reservation station are probabilities of

different instructions in a program. More number of slots are provided for instructions

that occur most frequently because there must not be any stalls in the dispatch stage.

29

6.1 Issue logic

Upon theoretical calculations, the number of slots for each reservation station is listed

in table 6.1.

The dispatch stage will stall, if any of the reservation station is full and unable to

issue a new entry for an instruction or if there is a requirement more than the number

of write ports of that respective reservation station. The number of entries of ROB is

considered to be 32, based on the analysis of number of in-flight instructions. There

can be 4 instructions in the decode stage, 18 instructions in reservation stations,

9 instructions in all stages of the functional units. This totals upto 31 in-flight

instructions, hence the ROB size is fixed to be 32.

A matlab based back-end simulator was designed to determine the sizes of the

reservation stations and ROB (appendix B). The simulation results also show promis-

ing results for this configuration.

6.1 Issue logic

Issue logic introduces out-of-order feature in the design, allowing an independent

later instruction to execute before the dependent instruction. The issue logic decides

which instruction to be issued based on which instruction is ready. This is a fairly

simple implementation and fig. 6.1 shows the simulation of issue logic for an 8 entry

shared integer unit reservation station. There are many proposals that improve the

issue logic, like considering the age of the instruction using a counter or checking the

which ready instruction is close to the ROB tail pointer and issue them first. These

improvements would need a lot of hardware support but will provide better results.

Figure 6.1: Simulations of a simple out-of-order issue logic implemented in this design

30

Chapter 7

Execution Stage

Execution Stage plays a crucial role in computing the results of a given program.

There are several types of operations, an execution stage can perform in a given pro-

Figure 7.1: Block diagram of execution unit containing all the functional units and

reservation stations

31

7.1 Integer Unit

cessor architecture like arithmetic operations, logical operations, memory operations,

control flow operations (instructions that affect the PC)etc.

Naturally, due to the diversity in the operational complexities and latencies, they

are not usually implemented as a single block, rather implemented as several parallel

paths in the processor pipeline flow, that an instruction can follow when it reaches

the execution stage. All these paths are consolidated at the write-back stage, where

the results of these operations are written to general purpose register file.

The execution stage in this architecture comprises of 2 Integer units(IU1 and

IU2), 1 Shift Integer Unit(SIU), 1 MAC Unit(MU), 1 Load Store Unit(LSU) and 1

Branch Unit(BU) as shown in the fig. 7.1. The choice of number of functional units

is based on the percentage of that respective type of instruction in a program. That

will ensure if sufficient hardware is present for most probable instructions.

7.1 Integer Unit

There are two integer units sharing an 8 entry wide reservation station. Once the

operands are ready in one of the reservation slots, they are fed to this unit, along

Figure 7.2: Block diagram of integer unit and program status register organization

32

7.2 Shifted Integer Unit

with the appropriate control signals needed for the required operation.

The operations in this unit include Negation (NOT), Logical (AND, EOR, OR)

and Arithmetic (ADD, SUB) which are shown in fig 7.2. Additional features to

perform reverse subtract (RSUB), addition and subtraction with carry (ADC, SBC

- These instructions need the value of the latest carry flag) and Saturation addition

and subtraction (QADD, QSUB) are also provided. Depending on the control signal,

one among the above specified operations is performed and the result along with flags

are generated. This stage does not support any shift based instructions. This unit

completes its execution in 1 clock cycle, upon synthesis, results show a combinational

delay of 7.755 ns.

7.2 Shifted Integer Unit

In ARM V7 ISA, there are certain instructions, where one of the 2 operands needs

to be shifted by an amount, before performing the required operation. This unit

(a) (b)

Figure 7.3: (a) Block diagram of the 2 staged shifted integer unit and (b) architecture

of stage 2 of shifted integer unit

33

7.3 MAC Unit

is similar to integer unit, but has an additional shifter unit before the integer unit.

As a result, only 1 operand along with the shift value(either stored in a register

or an immediate value based on ShiftInputSel) is sent to ShiftedIntegerUnitStage1.

Depending on the control signals such as ShiftMuxSel and ShiftType, one among the

shift operations such as logical shift left(LSL), logical shift right(LSR), arithmetic

shift right(ASR), rotate right with extend(RRX) and rotate right(ROR) is performed

as in fig 7.3b.

Figure 7.3a shows that, in the second stage of shifted integer unit, the shifted result

and the third operand of the instruction are subjected to an arithmetic operation

based on the control signal. This stage architecture is replicated as in integer unit

and generates the required result depending on the control signals, along with the

flags. The only modification to this unit is that, there is no saturation unit support.

The combinational path delays of 2 stages are 10.642 ns and 9.335 ns.

(a) (b)

Figure 7.4: (a) High level block diagram of the 3 stage MAC unit, (b) partial products

generation and level 1 CSA in stage 1

34

7.3 MAC Unit

7.3 MAC Unit

Integer multiplication is the most complicated function in the current design.This

instruction is not supported by the ALU, because of its high complexity and area cost.

Also the probability of integer instructions is very high. So having a multiplication

unit in IU will degrade the performance of the processor. This led to a separate MAC

unit in the processor.

MAC unit is used by two instructions MUL and MLA which use 2 and 3 source

operands respectively. The complexity of the operation led to division of MAC Unit

in to 3 stages that can perform either multiplication or multiply and accumulate

operation depending on the control signal (Fig. 7.4a).

A three bit booth recoding technique is used to generate 16 partial products

(PP0, PP1 ... PP15) as shown in fig. 7.4b [19, 28]. The architecture follows wallace

tree approach to reduce time complexity. These partial products along with the

accumulator are added using stages of carry save adders(CSA) as shown in Fig. 7.5a.

This design is also called as tree based multiplier and the CSA are the 3-2 reducers.

Table 7.1 lists down the number of carry save adders used in each level of the tree

multiplier.

The stages are carefully spaced across the 3 stages to ensure cycle time. The

final two operands are added in carry look ahead fashion. Upon synthesis, each of

the MAC stage takes a combinational path delay of 7.266 ns, 7.020 ns and 7.104 ns

repectively.

CSA Level No. of summands No. of groups No. of remaining summands

1 17 5 2

2 12 4 0

3 8 2 2

4 6 2 0

5 4 1 1

6 3 1 0

Table 7.1: Number of carry save adders in each of the CSA level

35

7.4 Load and Store Unit

(a) (b)

Figure 7.5: (a) block diagram of stage 2 of MAC indicating all levels of CSA and (b)

Load and store stage and its interconnection with the store buffer

7.4 Load and Store Unit

This unit performs all data memory related operations (load and store). The ISA

supports variants of load store instructions such as load word, load half word, load

byte with either zero or sign extension, store word, store half word and store byte.

The design of the load and store unit is shown in fig. 7.5b. This design does not

employ a caching system rather has a direct memory.

7.4.1 Data Memory design

As the ISA supports different types of load and store instructions of different widths,

memory design becomes a crucial part. Distributed RAM IP from xilinx is used to

synthesize data memory. There are two design aspects:

• A byte addressed RAM: This memory would require 4 read ports or a

structural hazard of 4 cycles when reading a word. A structural hazard would

36

7.4 Load and Store Unit

Figure 7.6: Example illustrating misalignment in data memory

need lot of hardware to store bytes of data and also maintain the order.

• A word addressed RAM: This memory would require a single read port

and single write port. If a byte or half word needs to be read, then the entire

word is read. A control logic will select the correct data that needs to be sent.

The current architecture implements a word addressed RAM. There are certain

limitations to this design which have been overlooked.

Alignment Issues

Alignment is a huge limitation in this design, for simplicity it has been assumed that

the data request that is received from the processor is always aligned. In case of

a misalignment during read request, the design must support reading the memory

twice. This same problem holds during store operation. Fig.7.6 illustrates an example

of misalignment while reading a word from a non aligned location.

7.4.2 Store Buffer

To ensure inorder write back of instructions, separate store buffer is maintained to

store data, address along with write enable control (WE) before writing into data

memory. This is similar to ROB entry for other instructions, a separate buffer is

maintained because having so much space for all instructions in ROB will incur a

lot of area requirement. The store buffer is a direct ROB addressed cache structure.

Data is written from the store buffer to data memory when the respective instruction

comes for write-back.

37

7.5 Branch Unit

(a)

(b)

Figure 7.7: Load forwarding cases (a) without exception and (b) with exception

Load instructions forward data from the store buffer if there is an address match.

This is also known as load forwarding. This might also lead to exception (Fig. 7.7a

and 7.7b) during the write-back of load. Fig. 7.5b explains the integration of the

store buffer with the load-store unit.

7.5 Branch Unit

Branch unit is responsible to execute conditional branch instructions, as uncondi-

tional branch instructions are flushed in decode stage itself. Conditional branch

instructions are validated based on the current status of the program status register

and the condition on the branch instruction. Table 7.2 lists down all the conditional

branches available in ARMv7 ISA.

The only dependency on the inputs of branch instruction are the flags. Once the

actual outcome of the branch is computed, it needs to update the branch prediction

unit. This is done by accessing the branch buffer to get PC and it is routed to the

branch prediction unit. The branch unit does not write to the operand forwarding

path rather it directly updates the misprediction bit in the ROB.

38

7.6 Common Data Bus (CDB)

Condition Mnemonic + Meaning Conditional Flags

0000 EQ - Equal Z = 1

0001 NE - Not Equal Z = 0

0010 CS - Carry Select C = 1

0011 CC - Carry Clear C = 0

0100 MI - Minus and Negative N = 1

0101 PL - Plus or positive or zero N = 0

0110 VS - Overflow V = 1

0111 VC - No Overflow V = 0

1000 HI - Unsigned Higher C = 1 & Z = 0

1001 LS - Unsigned Lower or Equal C = 0 — Z = 1

1010 GE - Signed greater or equal N = V

1011 LT - Signed less than N != V

1100 GT - Signed greater than Z = 0 & N = V

1101 LE - Signed less than or equal Z = 1 — N != V

1110 Unconditional No Condition

Table 7.2: Conditional codes of ARMv7 for branch instructions

7.6 Common Data Bus (CDB)

In a deeply pipelined machine, to improve the performance, dependent instructions

are given provision to execute speculatively by reading the source operands from the

non-committed instructions through operand forwarding paths or common data bus.

The results are forwarded to reservation stations where the dependent instructions

wait for source operands.

The functional units write to the operand forwarding path synchronously as they

write in to Re-order buffer. The design incorporates a maximum of 4 writes to re-

order buffer and operand forwarding path from the functional units. The number of

forwarding paths directly affect the number of comparators needed at the reservation

stations affecting the cycle time.

39

7.7 Program Status Register (PSR)

7.6.1 CDB Arbiter

A common data bus arbiter decides which among the 6 functional units should write

to the CDB. The CDB arbiter assigns slots to functional units based on the done

signals generated from functional units and the dependency matrix. For example if

5 functional units complete their operation and only 4 of its outputs are needed by

the instructions waiting in the reservation station, then priority is given to those 4

units. CDB arbiter also differentiates between load and store instructions; as store

instructions write data only to the store buffer and updates the done bit in the ROB.

7.7 Program Status Register (PSR)

The program status register holds the copies of the arithmetic logic unit status flags.

This will determine whether conditional instructions are to be executed or not. The

ISA specifies it to be a 32 bit register with only 9 bits used as flags, the remaining

bits are reserved for future purposes. This architecture implements only 5 bits among

these:

• Negative Flag (N) : The MSB bit of the result is set as negative flag, if the

result is regarded as a signed integer.

• Zero Flag (Z) : This bit is set if the result is 0.

• Carry Flag (C) : Set to 1 if an instruction generates a carry.

• Overflow Flag (V) : Set to 1 if the instruction results in an overflow condition,

for example a signed overflow on an addition.

• Saturation Flag (Q) : Set to 1 to indicate overflow or saturation occurred in

case of saturation based instructions,

40

Chapter 8

The commit stage

The current day high performance processor designs execute instructions out-of order

to extract maximum instruction level parallelism. If the instructions directly write

to the architectural register file after execution then maintaining the validity of data

becomes extremely complex. The processors incorporate an additional stage called

commit where the instructions that are executed out-of order are ensured to write-

back in-order. A re-order buffer is implemented to ensure in-order write-back, this

also ensures precise exception.

Figure 8.1: Re-order buffer high level interface block diagram

41

8.1 Re-Order Buffer

8.1 Re-Order Buffer

A re-order buffer is a circular buffer that contains all the in-flight instructions. This

has multiple functionality in the design: used as free register file for register renaming

and also ensures sequential write-back. The buffer has two pointers; the head pointer

that points to the next free slot in the ROB and the tail pointer points to the leading

instruction that is waiting for write-back. The number of slots allocated in each cycle

depends on the allocation bandwidth of the dispatch stage and the number of slots

freed every cycle depends on the number of instructions that are ready for write-back

and the write-back bandwidth.

The size and the design of the re-order buffer plays a crucial role in the perfor-

mance of the processor. [20, 21] have proposed low complexity and low power designs

as ROB is a crucial part of any out-of-order processor that has an in-order commit.

The ROB must be able to hold all the in-flight instructions. In the current design, the

ROB size of 32 is chosen as the design can have 4 instructions in the dispatch stage,

18 instructions waiting in the reservation stations and 9 instructions in the execution

unit. This means a maximum of 31 in-flight instructions excluding the ones waiting

in the ROB for writeback, hence a ROB size of 32 is a decent option. A matlab based

back simulator was designed to understand the impact of varying reservation station

and ROB sizes. Appendix B deals with the details of the simulator and parameters

Figure 8.2: ROB port requirements

42

8.2 Write-back

considered for performance evaluation.

Fig.8.1 briefs the interface between ROB and different stages in the pipeline and

the various entries in the buffer. Separate store and branch buffers are used as re-

order buffers for store and branch instructions. ROB will reserve a slot for branch

and store instructions but the data will be stored in their respective buffers. Fig. 8.2

lists down the different read ports and their purposes in the design.

8.2 Write-back

Write back or commit [22] happens when the instruction pointed by ROB tail pointer

is ready for write-back in to architectural register file i.e., all the instructions prior

to this instruction are written back and the result for this instruction is ready. The

write-back bandwidth is governed by the number of write ports in a register file.

The write-back system should ensure that there is no WAW dependency and

the order of instructions write-back is maintained. The system must be capable of

checking the maximum write-backs that are possible within the writeback bandwidth.

8.3 Exception handling

Exceptions are usually handled at commit time. This is because, the commit stage

ensures in-order write-back, which means that all instructions before the instruction

that triggered the exception are written back. There are two possible exceptions, one

due to branch misprediction and the other due to load forwarding error.

When an exception is encountered, the entire pipeline is flushed and the front

end of the processor is redirected to start fetching instructions from the exception

handler. All the buffers are cleared including reservation stations and re-order buffer.

43

Chapter 9

Centralized Control Unit

The centralized control unit is the heart of the processor. It is responsible for the flow

of data through the entire pipeline. This unit monitors signals from all the stages

and assigns priority to situations based on the signals that it receives, for example if

there is stall in the dispatch stage due to non-availability of slots in the reservation

station and also if an exception arises from the write back stage due to a branch

misprediction, then the control unit gives priority to the exception. The control unit

generates the stall and flush signals based on the situation. Different type of stalls:

• Stage 1 of instruction decode : Multicycle stall due to routing of branch in-

struction

• Stage 1 of instruction dispatch : ROB allocation stall and multicycle stall due

to routing of branch instruction

• Stage 2 of instruction dispatch: Multicycle stall due to register file structural

hazard and reservation station stall

• Execution unit : Common data bus allocation stall

• Exception : Load forwarding and branch misprediction

The implementation aspect of the control unit is similar to priority encoder. Table

9.1 lists the priorities among different stalls. Another important role played by the

control unit is to select the next fetch address among the several options available.

The next fetch address is computed speculatively, one address comes from the decode

44

Stall Priority IF ID1 ID2 DI1 DI2 Execution

5 0/1 0/1 0/1 0/1 0/1 0/1

4 0/0 0/0 0/0 0/0 0/0 Respective 1/0

3 1/0 1/0 1/0 1/0 1/0 0/0

2 1/0 1/0 1/0 1/0 0/0 0/0

1 1/0 1/0 0/0 0/0 0/0 0/0

Table 9.1: Priorities of stall signals in centralized control unit. Signals generated to

different stages are indicated as stall/flush

stage in case of a taken branch instruction and another address comes from the branch

buffer in case of a branch misprediction.

45

Chapter 10

Synthesis results

The design has been synthesized using Xilinx ISE for Virtex 5 xc5vlx110t-1-ff1136.

All default settings were used. The design strategy was set to optimize the timing

performance with a high effort. Important points in synthesis results of each stage

are described below

Instruction Fetch Stage

Timing Summary:

Minimum period: No path found

Minimum input arrival time before clock: 2.498ns

Maximum output required time after clock: 5.007ns

Maximum combinational path delay: 3.918ns

Instruction Decode stage 1 : Branch Prediction

Global predictor has 64 bit register (32 × 2), Global history register is a 5 bit

register, Local level 1 history table has 160 flip flops (32 × 5) and level 2 local history

table has 96 registers (32 × 3). Selector table has 64 bit register (32 × 2). Therefore

overall flip-flops needed are 64 + 5 + 160 + 96 + 64 = 389.

HDL Synthesis report:

Adders/Subtractors : 2

5-bit adder : 2

46

Registers : 389

Flip-Flops : 389

Multiplexers : 16

1-bit 32-to-1 multiplexer : 10

2-bit 32-to-1 multiplexer : 4

3-bit 32-to-1 multiplexer : 2

Xors : 4

1-bit xor2 : 2

5-bit xor2 : 2

Control Signal

Delay: 5.296ns (Levels of Logic = 5)

BELS : 17

GND : 1

LUT2 : 3

LUT3 : 2

LUT4 : 1

LUT5 : 5

LUT6 : 5

Timing Summary:

Minimum period: 4.786ns (Maximum Frequency: 208.958MHz)

Minimum input arrival time before clock: 5.353ns

Maximum output required time after clock: 7.595ns

Maximum combinational path delay: 7.975ns

Instruction Decode stage 2

Stage 2 of an instruction decode is a look-up-table based implementation.

HDL Synthesis report:

ROMs : 4

4x1-bit ROM : 4

Multiplexers : 20

47

18-bit 16-to-1 multiplexer : 12

5-bit 16-to-1 multiplexer : 8

Maximum combinational path delay : 6.316ns

Stage 1 of Instruction Dispatch : ROB Allocation

A look-up table to hold the offsets for ROB number allocation based on the

instruction valid bits. Adders are to compute the exact address using the head

pointer of ROB and the offset.

HDL Synthesis report:

16x9-bit ROM : 1

5-bit adder : 5

Delay: 5.563ns (Levels of Logic = 5)

Stage 1 of Instruction Dispatch : Intradependency check between regis-

ters, Intradependency between flags and unique reads

HDL Synthesis report:

Maximum combinational path delay: 9.861ns

4-bit comparator equal : 18

Intra-dependency flags module

Maximum combinational path delay: 4.828ns

Unique Reads

16x15-bit ROM : 12

Maximum combinational path delay: 5.735ns

Stage 2 of instruction dispatch

The registers indicate the register file, map table and the valid bits field. Mul-

tiplexers are for the read ports, comparators are the most important aspect in this

design as we need 112 comparators to read data from both register file bus and the

operand forwarding bus. Priority encoders are used to give priority from which bus

to read.

48

HDL Synthesis report:

Macro Statistics

ROMs : 2

4x15-bit ROM : 1

4x16-bit ROM : 1

Adders/Subtractors : 12

1-bit adder : 12

Registers : 51

1-bit register : 17

15-bit register : 1

2-bit register : 1

32-bit register : 16

5-bit register : 16

Comparators : 112

4-bit comparator equal : 48

5-bit comparator equal : 64

Multiplexers : 12

1-bit 16-to-1 multiplexer : 4

32-bit 16-to-1 multiplexer : 4

5-bit 16-to-1 multiplexer : 4

Priority Encoders : 32

5-bit 1-of-9 priority encoder : 32

Timing Summary:

Minimum period: 2.956ns (Maximum Frequency: 338.278MHz)

Minimum input arrival time before clock: 4.009ns

Maximum output required time after clock: 5.971ns

Maximum combinational path delay: 6.551ns

Branch Buffer

72 registers needed for each slot in a way, requiring (72 × 8 × 2) 1152 registers.

The multiplexers indicate the different read ports for each way in the buffer.

49

HDL Synthesis report:

Macro Statistics

Registers : 1152

Flip-Flops : 1152

Comparators : 2

2-bit comparator equal : 2

Multiplexers : 10

1-bit 8-to-1 multiplexer : 6

5-bit 8-to-1 multiplexer : 2

65-bit 8-to-1 multiplexer : 2

Decoders : 2

1-of-8 decoder : 2

Timing Summary:

Minimum period: 2.584ns (Maximum Frequency: 387.028MHz)

Minimum input arrival time before clock: 3.222ns

Maximum output required time after clock: 6.180ns

Maximum combinational path delay: 6.859ns

Re-order Buffer There are 1401 registers of ROB which are divided among the

different type of registers. Multiplexers indicate the 8 read ports of the ROB.

HDL Synthesis report:

Macro Statistics

Registers : 141

1-bit register : 68

32-bit register : 36

4-bit register : 4

5-bit register : 33

Multiplexers : 21

1-bit 32-to-1 multiplexer : 9

32-bit 32-to-1 multiplexer : 8

50

5-bit 32-to-1 multiplexer : 4

Timing Summary:

Minimum period: 3.034ns (Maximum Frequency: 329.635MHz)

Minimum input arrival time before clock: 4.479ns

Maximum output required time after clock: 4.872ns

Maximum combinational path delay: 5.374ns

Table 10.1 lists down the synthesis results of each stage separately.

Pipeline

Stage
Stage Name Minimum

Period

(ns)

Maximum

operating fre-

quency (MHz)

Maximum

Combinational

path delay(ns)

IF Instruction Fetch - - 3.92

ID 1 Instruction Decode 1 5.16 193.56 10.70

ID 2 Instruction Decode 2 - - 6.32

DI 1 Dispatch Instruction 1 1.77 563.88 11.09

DI 2 Dispatch Instruction 2 2.96 338.28 6.55

RS Reservation Station 8.33

EX 1 Integer Unit - - 7.75

EX 2 Shifted Integer Unit 1 - - 10.64

EX 2 Shifted Integer Unit 2 - - 9.33

EX 3 MAC Unit 1 - - 7.27

EX 3 MAC Unit 2 - - 7.02

EX 3 MAC Unit 3 - - 7.10

EX 4 Load Store Unit 8.23

EX 5 Branch Unit - - 4.99

ROB Re-order Buffer 3.03 329.63 8.37

Overall minimum period (ns): 12.28 ns

Maximum operating frequency (MHz): 81.43

Table 10.1: Synthesis results of each stage

51

Chapter 11

Conclusion and Future Work

Conclusion

Processor micro-architecture evolution has been constantly aiming at improving

the instruction level parallelism (ILP). Super-scalar architecture provides high per-

formance by using hardware techniques to execute multiple instructions every cycle.

This project commenced with the selection of ARM V7 ISA by considering 90 in-

structions, after analysing all the prominent ISAs.

Initial implementation aimed at single cycle architecture followed by conventional

5 stage pipelined architecture including operand forwarding and branch prediction

techniques to avoid all the data and control hazards.

Then we started realizing single threaded superscalar out-of-order design, includ-

ing simulation of Branch prediction scheme, Reservation station (RS) slots, Re-order

buffer (ROB) slots. Implementation of different pipeline stages including fetch, de-

code, dispatch, issue, execute and write back was done. The maximum operating

frequencies of each of the stages are noted and appropriate optimization were done

for efficiency improvement, including pre-processing logic in dispatch stage, pipelining

the execution unit etc.

Finally, series of test benches were generated using a self developed assembler and

these architectures that were implemented, were run through them and performance

comparison was done. All these architectures were synthesized on Virtex 5 FPGA to

understand the hardware requirements and clock speeds.

52

Scope for future work

The complexities involved in processor design would need a lot of effort and time

in bringing out a robust design. Some of the features that we feel can be added to

the processor as a part of future work are:

1. Improving the performance of reading from a register file after pre-processing

steps. This will reduce the structural hazards at the read ports and will ensure

efficient use of the read ports. This would need to design an efficient solution

to solve the O(1) problem.

2. Upgrading the design to provide support for conditional instructions (non-

branch). This would need better renaming techniques and pre-processing tech-

niques.

3. Designing a software model for the current architecture, so that the design can

be evaluated against different benchmarks and provision for parameterization

can be made available.

4. A cache hierarchy structure instead of the direct block memory used for in-

struction and data memory. That would require design of caches and a cache

controller.

5. Improving the exception handling in the processor, like selective replay where

not all instructions are flushed.

6. Provide bus support for the processor, so that peripherals can be interfaced.

53

Bibliography

[1] Emily Blem, Jaikrishnan Menon and Karthekeyan Sankaralingam, A detailed

analysis of contemporary ARM and x86 architectures, 19th IEEE international

symposium on high performance computer architecture, 2013

[2] ARMv7 architecture reference manual, 2014 re-print.

[3] S. Palacharla, Complexity-Effective superscalar processors, PhD thesis, University

of Wisconsin-Madison, 1998

[4] E. J. Mclellan and D. A. Webb, The alpha 21264 microprocessor architecture,

Proceedings of the international conference on computer design, 1998

[5] Scott Thomas Bingham, A MIPS R10000 like out-of -order microprocessor imple-

mentation in verilog HDL, Thesis submitted to Cornell university, 2007

[6] V. Zyuban, Inherently lower power High performance superscalar architectures,

PhD thesis, university of Notre dame, Jan 2000

[7] S. McFarlaing, Combining branch predictors, Technical Note (TN-36), DEC west-

ern research laboratory, 1993

[8] J. E. Smith, A study of branch prediction strategies, In proceedings of the inter-

national symposium of computer architecture, pp. 135-148, 1981

[9] T. Y. Yeh and Y. N. Patt, Alternative implementations of two level adaptive

branch prediction, In proceedings of the international symposium of computer

architecture, pp. 124-134, 1992

[10] E. Hao, P. Chang and Y. Patt, The effect of speculatively updating branch

history on branch prediction accuracy, revisited, In proceedings of the 27th annual

international symposium on microarchitecture, pp. 228- 219, 1994

54

BIBLIOGRAPHY

[11] Scott E. Breach, T. N. Vijaykumar and Gurindar S.Sohi, The anatomy of the

register file in a multiscalar processor, Proceedings of the 27th annual interna-

tional symposium on microarchitecture,1994

[12] K. Farkas, N. Jouppi and P. Chow, Register file design considerations in dynami-

cally scheduled processors, Technical report 95/10, Digital equipment corporation

western research lab, November 1995

[13] Nam Sung Kim and Trevor Mudge, Reducing Register ports using delayed write-

back queues and operand pre-fetch,Proceedings of the 17th annual international

conference on supercomputing, 2003

[14] Rajeev Balasubramonian, Sandhya Dwarkadas and David H. Albonesi, Reduc-

ing the complexity of the register file in dynamic superscalar processors, 34th

international symposium on microarchitecture 2001.

[15] I. L . Park, Michael D. Powell and T. N. Vijaykumar, Reducing register ports for

higher speed and lower energy, Proceedings of the 35th international symposium

on microarchitecture, 2002

[16] Dezso Sima, Superscalar instruction issue, IEEE Micro, 1997

[17] R. M. Tomasula, An efficient algorithm for exploiting multiple arithmetic units,

IBM journal of research and development, pp. 25-33, Jan 1967

[18] A. Moshovos, S. Breach, T. Vijaykumar and G. Sohi, Dynamic speculation and

synchronization of data dependencies, In proceedings of the 24th annual interna-

tional symposium on computer architecture, pp. 181-193, 1997

[19] Oscar Gustafsson, Andrew G. Dempster and Lars Wanhammer, Multiplier blocks

using carry save adders

[20] Gurhan Kucuk, Diitry Ponomarev and Kanad Ghose, Low Complexity reorder

buffer architecture, International conference on supercomputing, June 2002

[21] J. D. Fisher, C. Romo, E. John and W. Lin, Design and low power implementa-

tion of a reorder buffer, Thesis submitted to University of texas at San Antonio

55

BIBLIOGRAPHY

[22] Cristal, Ortega, Llosa and Valero, Out-of-order commit processors, IEE Pro-

ceedings in software, 2004.

[23] Antonio Gonzalez, Fernando Latorre and Grigorios Magklis, Processor

Microarchitecture-An implementation perspective, Synthesis lectures on com-

puter architecture, Morgan and Claypool 2011.

[24] John Paul Shen and Mikko H. Lipasti, Modern processor design- Fundamentals

of superscalar processors.

[25] John L. Hennessy and David A Patterson, Computer Architecture- A quantita-

tive approach

[26] Championship branch prediction, http://www.jilp.org/cbp2014/

[27] ARM information center - http://infocenter.arm.com/help/index.jsp

[28] P. S. Tulasiram, D. Vaithiyanathan and R. Seshasayanan, Implementation of

modified booth recoded wallace tree multiplier for fast arithmetic circuit, Interna-

tional journal of advanced research in computer science and software engineering,

Vol. 4, Issue 10, 2014

[29] R.Canal, J. M. Parcerisa, and A. Gonzalez, Dynamic cluster assignment mech-

anisms, In proceedings of the 6th international symposium on high performance

computer architecture, France, 2000

56

 http://www.jilp.org/cbp2014/

Appendix A

Assembler

The increasing complexity in design demanded a lot of test benches to validate design.

Initially manual assertion based testing was done which was time consuming. As

the processor design does not support the entire ARMv7 ISA, the use of standard

compilers and assemblers was ruled out.

As a supplement to the processor, an assembler was designed for the supported

instructions. The assembler was designed in python. A simple look-up table based

architecture was followed, each line of the assembly code is read. Then each instruc-

tion is broken down into segments using comma and space as delimiters. Then these

segments are further processed to generate the required instruction word. This archi-

tecture is also known as single pass algorithm and does not have provisions to resolve

assembler directives and labels. Hence the assembler cannot use labels. This design

does not have any memory requirements. A limitation of this assembler is that errors

cannot be detected and it simply quits in case of errors. The assembler takes in an

assembly file as input and generates a binary file. The entire assembly file is scanned

until end of file is reached. This assembler is compatible to all the processor designs

we designed based on ARMv7 ISA. The out of order processor demands an additional

requirement of generating the binary code that is compatible with the wide instruc-

tion memory implemented in this design. An additional python script is provided to

do the same, it takes two adjacent instructions (each 32 bits) and combines to form

one 64 bit entry in the instruction memory.

57

Appendix B

Matlab based RS and ROB

simulator

A back-end architectural simulator based on matlab was designed to simulate the

optimum sizes required for re-order buffer and different reservation stations. These

sizes have immense effect on the throughput of the processor. They are not fixed

quantities as they vary based on the architecture. The simulator only incorporated

the design parameters from ROB allocation to write-back phase. The idea behind

this design is to model the source dependencies and execution unit delays as random

cycle delays rather than actually implementing the internals of the processor. This

reduces the complexity in the simulator design. Out of order nature of the processor

is introduced by randomness in picking the delays for instruction.

Execution Unit Type Execution unit delay range Dependency delay range

Integer unit (1,2) (1,6)

Shifted integer unit (2,3) (1,6)

MAC unit (3,4) (1,6)

Load and store unit (1,2) (1,6)

Branch unit (1,2) (1,6)

Table B.1: The delay ranges for dependency and execution unit for different types of

instructions

58

Figure B.1: The matlab simulator

The simulator randomly picks 4 instructions per cluster each cycle from an instruc-

tion set. The instruction set is designed to incorporate the probability of occurrences

of different types of instructions in a code, for example integer based instructions

have an occurrence probability of 40%.

Once the instructions are fetched, if there is an ROB slot and an available slot in

the respective reservation station, then the simulator picks a random number from

the respective ranges of both execution unit delay and dependency delay. Table B.1

lists down the delays for different type of instructions, which is largely dependent on

the architecture of the processor. This delays are decremented every iteration and

if the instruction is ready for writeback, then its ROB slot is freed. The iterations

Configuration 32-8-2-2-2-8 32-4-2-2-2-4 32-8-2-2-2-2-4 16-8-2-2-2-4 64-8-2-2-2-4

RS-IU Stall 9.05 54 6.62 0.6 7.1

RS-SIU Stall 34.09 21 29.12 15.04 29.4

RS-MAC Stall 33.96 21 28.54 15.02 29.14

RS-B Stall 33.99 22 29.05 15.07 29.2

RS-LS Stall 2.52 28 41.447 14.6 41.8

Overall RS Stall 38.24 57 48.126 24.12 48.64

ROB Stall 6.45 0.02 1.13 51.8 0

Table B.2: The reservation station and ROB stall percentages for different combina-

tions of sizes. The configuration is to be read as ROB Size - IU RS size - SIU RS size

- MAC RS size - LS RS size - B RS size

59

(a)

(b)

Figure B.2: Simulation Results for the configuration 32-8-2-2-2-4 (a) Reservation

Station slots availability and overall reservation station stall and (b) re-order buffer

stall during the course of simulation

order of the simulator is discussed in Fig. B.1.

The sizes of ROB and Reservation stations are optimized by running a monte

carlo across different combinations of ROB and Reservation station sizes for 10,00,000

60

instructions each. The optimization was done based on the percentage of ROB and

Reservation station stall for the entire simulation.

Table B.2 lists down the percentages of ROB and Reservation station stalls across

different configurations. The stall percentages are computed based on the number of

cycles that particular stall persisted with respect to the total number of cycles taken

to execute the simulation. Fig.B.2 lists down the variation in reservation station

stalls across the simulation. The simulation results closely match the intuitive sizes

discussed in sections 6 and 8.1.

61

Appendix C

Instruction Set Architecture

As discussed in section 1.3, the processor was designed based on the ARMv7 instruc-

tion set architecture. This processor is compatible with only 90 instructions of the

ISA, not considering the complex instructions that gives 64 bit results and conditional

arithmetic instructions. These instructions were not considered as this will need a

lot of hardware support. This chapter deals with all the instructions which are sup-

ported by the processor. The instructions are divided in to data processing, multiply

and multiply accumulate, saturation, load and store and branch instructions. These

instructions optionally update flags based on the flags valid bit in the instruction

word

Data Processing Instructions

Instruction Operation Notes

AND Rd = Rn & Rm, Rd = Rn & ShiftedRm,

Rd = Rn & Const

Logical AND operation

EOR Rd = Rn Λ Rm, Rd = Rn Λ ShiftedRm,

Rd = Rn Λ Const

Logical Exclusive OR op-

eration

SUB Rd = Rn - Rm, Rd = Rn - ShiftedRm, Rd

= Rn - Const

Subtraction operation

RSB Rd = Rm - Rn, Rd = ShiftedRm - Rn, Rd

= Const - Rn

Reverse subtraction

62

Instruction Operation Notes

ADD Rd = Rn + Rm, Rd = Rn + ShiftedRm, Rd

= Rn + Const

Simple Addition

ADC Rd = Rn + Rm + C, Rd = Rn + ShiftedRm

+ C, Rd = Rn + Const + C

Addition along with

carry flag

SBC Rd = Rn - Rm - C, Rd = Rn - ShiftedRm - C,

Rd = Rn - Const - C

Subtraction along

with carry flag

RSC Rd = Rm - Rn - C, Rd = ShiftedRm - Rn - C,

Rd = Const - Rn - C

Reverse subtraction

along with carry flag

TST Rd = Rn & Rm, Rd = Rn & ShiftedRm, Rd

= Rn & Const

Logical AND up-

dates only flags

TEQ Rd = Rn Λ Rm, Rd = Rn Λ ShiftedRm, Rd =

Rn Λ Const

Logical EOR updates

only flags

CMP Rd = Rn - Rm, Rd = Rn - ShiftedRm, Rd =

Rn - Const

Compare, only flags

are updated

CMN Rd = Rn + Rm, Rd = Rn + ShiftedRm, Rd

= Rn + Const

Compare Nega-

tive, only flags are

updated

ORR Rd = Rn ‖ Rm, Rd = Rn ‖ ShiftedRm, Rd =

Rn ‖ Const

Logical OR opera-

tion

MOV Rd = Rm Transfer of data,

does not update flags

LSL Rd = Rm<< Imm(5), Rd =Rm <<Rn Left shift and condi-

tionally affects flags

LSR Rd = Rm>> Imm(5), Rd =Rm >>Rn Logical shift right

ASR Rd = Rm>> Imm(5), Rd =Rm >>Rn Arithmetic shift right

RRX Rd = Rm << 1 Rotate right through

carry flag

ROR Rd = Rm << Rn, Rd = Rm << Const Rotate right by Rn or

immediate

63

Instruction Operation Notes

BIC Rd = Rn & ∼Rm, Rd = Rn & ∼ShiftedRm,

Rd = Rn & ∼Const

Logical AND of Rn

with compliment of

Rm

MVN Rd = ∼Rm, Rd = ∼ShiftedRm, Rd = ∼Const Movies complement

of a register in to des-

tination

Multiply and MAC instructions

Instruction Operation Notes

MUL Rd = Rm*Rn Multiplication operation and only lower 32

bits are stored; overflow and carry flags are

not updated

MLA Rd = Rm*Rn+Rs Multiply and accumulate operation; Lower

32 bits are only stored; carry and overflow

flags are not updated

Saturation based instructions

Instruction Operation Notes

QADD Rd = Rm+Rn Saturation based addition will saturate to

most positive or negative number; Will up-

date saturation flag

QSUB Rd = Rm-Rn Saturation based subtraction will saturate

to most positive or negative number; Will

update saturation flag

64

Load and store based instructions

Instruction Operation Notes

STR DMEM[Rn + Const] =

Rt, DMEM[Rn + Rm] =

Rt

Stores a word in to memory; offset for ad-

dress calculation can be register or imme-

diate

LDR Rt = DMEM[Rn +

Const] , Rt = DMEM[Rn

+ Rm]

Loads a word from memory to a register;

offset for address calculation can be regis-

ter or immediate

LDRB Rt = DMEM[Rn +

Const] , Rt = DMEM[Rn

+ Rm]

Loads a byte from memory to a register;

The remaining data is zero extended

LDRSB Rt = DMEM[Rn +

Const] , Rt = DMEM[Rn

+ Rm]

Loads a byte from memory to a register;

The remaining data is sign extended

LDRH Rt = DMEM[Rn +

Const] , Rt = DMEM[Rn

+ Rm]

Loads a half word from memory to a reg-

ister; The remaining data is zero extended

LDRSH Rt = DMEM[Rn +

Const] , Rt = DMEM[Rn

+ Rm]

Loads a half word from memory to a reg-

ister; The remaining data is sign extended

STRB DMEM[Rn + Const] =

Rt, DMEM[Rn + Rm] =

Rt

Stores a byte in to memory; offset for ad-

dress calculation can be register or imme-

diate

STRH DMEM[Rn + Const] =

Rt, DMEM[Rn + Rm] =

Rt

Stores a half word in to memory; offset for

address calculation can be register or im-

mediate

65

Branch instructions

Instruction Operation Notes

BEQ If(ZF==1); PC = PC + Imm Branch if zero flag is set

BNE If(ZF==0); PC = PC + Imm Branch if zero flag is clear

BCS If(CF==1); PC = PC + Imm Branch if carry flag is set

BCC If(CF==0); PC = PC + Imm Branch if carry flag is clear

BMI If(NF==1); PC = PC + Imm Branch if negative flag is set

BPL If(NF==0); PC = PC + Imm Branch if negative flag is clear

BVS If(OF==1); PC = PC + Imm Branch if overflow flag is set

BVC If(OF==0); PC = PC + Imm Branch if overflow flag is clear

BHI If(CF==1) and (ZF==0); PC = PC

+ Imm

Branch if carry is set and zero

flag is clear

BLS If(CF==0) or (ZF == 1); PC = PC

+ Imm

Branch if CF is clear or zero

flag is set

BGE If(NF==OF); PC = PC + Imm Branch if negative flag equal

to overflow flag

BLT If(NF!=OF); PC = PC + Imm Branch if negative flag is not

equal to overflow flag

BGT If(NF==OF) and (ZF == 0) ; PC =

PC + Imm

Branch if negative flag is

equal to overflow flag and zero

flag is clear

BLE If(NF!=OF) or (ZF == 1) ; PC = PC

+ Imm

Branch if negative flag is not

equal to overflow flag or zero

flag is set

B PC = PC + Imm Unconditional Branch

66

Appendix D

Processor Variants

As a part of learning the architecture at hardware level, we implemented several

processor designs. listed below are highlights of these processor designs:

D.1 ARM processor Variants

D.1.1 Single Cycle Design

A subset of 140 instructions were selected for implementation, which includes all

arithmetic and logical instructions, MAC instructions, saturation instructions, con-

ditional and unconditional branch instructions. Among these instructions there are

certain instructions that need multiple cycles for execution (Multiply or MAC in-

structions that writes 64 bit result). The Architectural description of the processor

is as listed:

• Instruction memory is Byte addressed and Little endian based memory orga-

nized. It is 256x8 bits in size. In each instruction fetch, 4 bytes are fetched.

• The register file has 16 32 bit registers. r14 and r15 are special purpose registers

- Link register and program counter respectively. The register file has 3 read

ports and 1 write port. An additional read and write port is provided for the

program counter. An additional barrel shifter is provided at the output of

register file for shifted register based instructions.

67

D.1 ARM processor Variants

• The implementation has a separate ALU and MAC unit. The output of sat-

uration unit depends on the outputs of ALU, Saturation unit is placed in the

datapath as the timing budget is very less compared to the area improvement.

• Data memory is also byte addressed and little endian based memory organized.

It is 256x8bits in size. It has asynchronous read and synchronous write. Data

memory supports byte, Half word and Word based store and load instructions.

The design was tested using self written codes to test corner cases (Fibonacci

series, code to test MAC instructions). The design was successfully synthesized on

Xilinx Virtex 5 FPGA and has a maximum operating frequency of 53.207 MHz.

D.1.2 Cannonical 5 Stage pipeline design

In order to improve the efficient utilization of resources in the processor, we went to

a classic 5 stage pipeline design from the single cycle design, that consists of fetch,

decode, execute, memory access and write back stages (IF-ID-EX-MEM-WB).

Some of the modifications done in this design from single cycle implementation

are listed below,

• Instruction memory is a distributed ROM whose size is 256 x 32 bits, that limits

the PC size to only 7 bits.

• The MAC instructions that generates 64 bit results and take 2 cycles for com-

pletion have been removed from the ISA.

• Also, R15 in the register file is no longer PC and link register which was previ-

ously R14 is removed and hence all the instructions related to it were removed

from the ISA.

• Data dependencies are taken care by data forwarding paths. Hazard detection

circuit was designed to identify such dependencies. The design had paths from

memory stage and Write back stage to Execution stage.

• Load after store hazard was dealt with an internal forwarding path in memory

stage which stores the loaded value for one cycle.

• Jump instruction incurs a compulsory penalty of 1 clock cycle.

68

D.2 MIPS processor Implementations

Dynamic branch prediction

• To further reduce the 1 cycle penalty for branch instructions, we implemented

a dynamic 2 bit branch predictor in IF stage.

• This unit has a branch target buffer(BTB) which is a cache that stores the

branch target address and prediction bits, that further helps in deciding whether

branch should be taken or not. The BTB has 32 entries and each entry is 14

bits wide, that store the LSB 3 bits of the program counter as Tag, 8 bits of

branch target address,2 prediction Bits and 1 valid bit.

• Irrespective of the branch instruction, it checks for the entry in the BTB and

makes an entry in the next clock cycle , if it is a branch instruction and miss

occurs.

• When a branch is encountered first time we will have a compulsory miss. A

mechanism must be provided to recover from this stage and make a fresh entry

in to the branch target buffer. First time the prediction entry in BTB is such

that, branch is always strongly taken.

• The second case, When a branch is detected in ID stage and if there is a

misprediction, The instruction fetched must be flushed and Program counter

must be redirected using recovery Program Counter. The recover program

counter is stored in a buffer for 1 cycle as we can detect the status of branch in

ID stage itself. Thus an early decode for branch was provided to reduce 1 cycle

branch penalty, if misprediction occurs.

• In case of wrong prediction or correct prediction, the prediction bits in the BTB

for the respective branch needs to be updated.

With the inclusion of pipeline buffers, operand forwarding and dynamic branch

prediction, the operating frequency after synthesis was improved to 91.477 MHz.

D.2 MIPS processor Implementations

Due to sheer complexity of implementing the design using ARM V7 ISA, we have

considered a smaller ISA (Mini MIPS) and implemented single cycle, multi cycle and

69

D.2 MIPS processor Implementations

pipelined architectures in the initial phases of the project.

This ISA comprises of the following instructions.

Type Instruction Operation

Register based Arithmetic Add Rd,Ra,Rb Rd = Ra + Rb

Register based Arithmetic Sub Rd,Ra,Rb Rd = Ra - Rb

Register based Logical And Rd,Ra,Rb Rd = Ra AND Rb

Register based Logical Or Rd,Ra,Rb Rd = Ra OR Rb

Immediate based Arithmetic Addi Rd,Ra,imm Rd = Ra + imm

Immediate based Memory Lw Rd,imm(Ra) Rd = DMEM[Ra+imm]

Immediate based Memory Sw Rd,imm(Ra) DMEM[Ra+imm] = Rd

Conditional Jump Beq Rd,Ra,imm If(Ra==Rd) PC = PC + imm*2

Unconditional Jump J addr PC = addr*2

Table D.1: Mini MIPS ISA

some of the features assumed in this architecture implementation are

• Instruction Memory is 256x16 bits width and it is addressed by an 8 bit program

counter.

• The register file has 8 8 bit registers, where R0 is always tied to zero.The register

file has 2 read ports and 1 write port.

• Arithmetic and logic unit performs 4 functions. It takes 2 inputs and gives 1

output along with the zero flag used for a branch instruction.

• Data memory is byte addressed of size 256x8 bits. This is accessed by load and

store instructions. Address calculation is done in the ALU.

These specifications are maintained same across all the implementations using MIPS

ISA.

70

D.2 MIPS processor Implementations

D.2.1 Single and Multi-cycle design

In this architecture, only one instruction flows through the data path at any clock

cycle, i.e no of cycles taken for each instruction (CPI) is 1.This results in a lot of

hardware remaining idle and very long data path, affecting the operating frequency.

The implementation was optimized to achieve a maximum operating frequency of

138.398 MHz.

Here, the single-cycle processor data path is divided in to multiple stages. The

architecture is implemented in such a way that all the arithmetic and logical instruc-

tions take 4 clock cycles, store instruction takes 4 cycles, load instruction takes 5

cycles and both conditional and unconditional branches take 3 cycles and 2 cycles

respectively. This architecture does not issue a instruction every clock cycle. The

critical data path is significantly shrinked leading to an operating frequency of 212.096

MHz. The disadvantage of this design is that CPI is greater than 1

D.2.2 Canonical 5 stage pipeline design

In order to get the benefits of CPI = 1 in single cycle processor and a higher operating

frequency as in multi cycle implementation, we went in to a classic 5 stage pipeline(IF-

ID-EX-MEM-WB) design where we pipeline the control logic also allowing it to fetch

an instruction every cycle. Some of the highlights of this design are listed below,

• Next instruction speculation was used. This means a static branch prediction

that always the branch is not taken.

• An early decode for branch was provided to reduce the branch penalty. As only

one type of branch instruction is present, we provided a small logic in ID stage

to determine if branch was taken or not. Branch and Jump instructions incur

an compulsory 1 cycle penalty.

• There are no structural dependencies in this design as both instruction and

data memory take only 1 cycle for read or write.

• Data dependencies are taken care by data forwarding paths. Hazard detection

circuit was designed to identify such dependencies. The design had paths from

memory stage and Write back stage to Execution stage.

71

D.2 MIPS processor Implementations

• Load after store hazard was dealt with an internal forwarding path in memory

stage which stores the loaded value for one cycle.

• As expected the operating frequency was close to multicycle but due to data

forwarding paths and additional logic to ensure the functionality, the frequency

dropped to 194.554 MHz.

Dynamic Branch Prediction To further reduce the 1 cycle penalty for branch

instructions, as we encounter a branch every 8 instructions at least, we implemented

a dynamic 2 bit branch predictor in IF stage. A similar Branch target buffer was used

as in the pipelined ARM design. With the inclusion of Dynamic branch prediction the

reduction in operating frequency was not that significant as we fetch from the branch

target buffer in parallel with the instruction memory. The operating frequency after

synthesis was around 182.052 MHz.

D.2.3 Two-Way In-order Superscalar processor Design

To further improve the CPI of the pipelined processor, the design was upgraded to

a two way in-order superscalar processor design. The design has two pipeline paths

A and B to support execution of two instructions simultaneously. Listed below are

modifications done to 5 stage pipelined processor to make it a two way superscalar

processor:

• The instruction fetch stage fetches two instructions every cycle from the instruc-

tion memory. The branch target buffer is also provided with two read ports

to enable dynamic branch prediction, since both instructions can be branch

instructions. The BTB also can update two locations in the buffer every cycle.

The conditions for determining the next program counter drastically increases.

• The decode stage will take care of WAW, RAW hazards. Few of the hazards

that are considered are listed below, Data dependencies between instruction in

the same stage are handled by letting the instruction in Pipe A to flow and

stalling Pipe B for 1 cycle. Branches are resolved in the similar way.

• Execution stage / Memory stage / Write back stage These stages are similar

to the 5 stage pipeline but they are modified to handle 2 instruction in every

stage.

72

D.2 MIPS processor Implementations

• The Execution unit is modified to handle 4 data forwarding paths. Two paths

from both memory units and two from write-back stages.

• Similar changes are performed to register file. The register file has 4 read ports

and 2 write ports. Only instruction in Pipe B is written when both instructions

write to the same register.

Ideally, a two way superscalar processor must give IPC of 2, but due to hazards we

may be able to execute 2 instructions every cycle. There is significant improvement

in performance compared to a scalar pipelined processor. Post synthesis maximum

operating frequency is about 150MHz.

73

	1 Introduction
	1.1 Classification of Microarchitectures:
	1.2 Importance of Instruction Set Architecture:
	1.3 ARMv7 Instruction Set
	1.4 ARM processor variants

	2 Processor Micro-architecture
	3 Instruction Fetch Stage
	3.1 Program Counter
	3.2 Instruction Memory design
	3.2.1 Instruction Fetch Alignment

	4 Instruction Decode stage
	4.1 Instruction Decode Stage-1
	4.1.1 Branch Prediction Unit

	4.2 Instruction Decode Stage-2

	5 Dispatch Stage
	5.1 Register file read ports bottleneck
	5.2 Dispatch Stage - 1
	5.2.1 ROB Allocation
	5.2.2 Intra-dependency
	5.2.3 Unique Reads
	5.2.4 Branch Buffer

	5.3 Dispatch Stage - 2
	5.3.1 The O(1) complexity problem
	5.3.2 Register file design
	5.3.3 Register Renaming
	5.3.4 Register file data bus
	5.3.5 Reservation slot Allocation
	5.3.6 Dependency matrix

	6 Reservation Station
	6.1 Issue logic

	7 Execution Stage
	7.1 Integer Unit
	7.2 Shifted Integer Unit
	7.3 MAC Unit
	7.4 Load and Store Unit
	7.4.1 Data Memory design
	7.4.2 Store Buffer

	7.5 Branch Unit
	7.6 Common Data Bus (CDB)
	7.6.1 CDB Arbiter

	7.7 Program Status Register (PSR)

	8 The commit stage
	8.1 Re-Order Buffer
	8.2 Write-back
	8.3 Exception handling

	9 Centralized Control Unit
	10 Synthesis results
	11 Conclusion and Future Work
	Bibliography
	A Assembler
	B Matlab based RS and ROB simulator
	C Instruction Set Architecture
	D Processor Variants
	D.1 ARM processor Variants
	D.1.1 Single Cycle Design
	D.1.2 Cannonical 5 Stage pipeline design

	D.2 MIPS processor Implementations
	D.2.1 Single and Multi-cycle design
	D.2.2 Canonical 5 stage pipeline design
	D.2.3 Two-Way In-order Super-scalar processor Design

