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ABSTRACT

KEYWORDS: DNN; HMM; CDHMM; GPU

Abstract

This thesis investigates how Deep Neural Networks can improve the performance

of Speech Recognition Systems. At the beginning, most recognition systems were

based on hidden Markov Models (HMMs) as a statistical framework which models

the sequential structure of speech signals. Despite their good performance, the

non-optimal assumptions made by HMMs limit its capabilities. Few years back,

the Gaussian Mixture Models (GMMs) have replaced the HMMs as the dominant

technique for speech recognition by modeling the HMMs states with a mixture

of Gaussian functions. But even this technique has its limitations as it requires

detailed assumptions about the data distribution in order to estimate the poste-

rior probabilities. Those systems evolved together as the only way to do speech

recognition in a time when computers were not fast enough to achieve highly com-

putational e�cient methods. Using a mathematical representation of a biological

neuron, Neural Networks (NNs) were born as a model that avoid many of those

wrong assumptions, being able to learn complex functions, tolerate noise and sup-

port parallelism. Deep Neural Networks (DNNs) take those characteristics from

NNs and go one step beyond. The main idea behind �deep� is that every layer

is able to provide a higher level representation and a better classi�cation of the

input. If all those properties of DNNs are applied in acoustic modeling techniques,

we can design a very reliable Automatic Speech Recognition System.

The basic of this project is the research about performance of this new acous-

tic modeling technique based on a deep learning approach and its applications

on Automatic Speech Recognition Systems. Two di�erent ways to implement

deep neural networks for acoustic modeling were explored: A processor architec-
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ture (CPU) and a graphic architecture (GPU). The advantages of GPU in terms

of computational cost, accuracy and speed combined with the characteristics of

DNNs lead into outperforming results compared with other conventional tech-

niques. For Resource Management Database, a relative improvement of 43.6 %

over Continuous Density Hidden Markov Model (CDHMM) has been achieved on

DNN in a CPU, meanwhile 48.9 % relative improvement was obtained in GPU

approach.
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Chapter 1

Introduction

Speech is the natural ability that humans have to communicate among themselves.

Speech is derived from a highly complex brain structure that allows human beings

to produce a language model that describes the environment surrounding them.

No other living species has the anatomy and the brain mechanisms to produce

speech. This capacity of speech sets us apart from all creatures known, even those

closest to us on the evolutionary scale. Truly, this faculty of human speech and

language is one of the most astonishing attributes of mankind.

The most important skills are learned during our early childhood, without any

instruction. When we start to grow, we use speech communication through the

rest of our lives. The speech process is so natural that we can not even realize the

complexity of the phenomena. As speech is related with human brain and processes

of the unconscious concerning the human biology, there are many factors that

can a�ect speech production: Accent, articulation, pronunciation, nasality, pitch,

volume, speed, background noise distortion are only a few examples. Furthermore,

the speech will be directly in�uenced by external sources as transmission media if

speech signal is used in electronic devices. All the variability intrinsic to speech

production nature makes speech recognition a very complicated task.

Automatic Speech Recognition (ASR) is the scienti�c �eld of study where the

mathematical models employed to convert human speech into machine under-

standable text are studied. The parameters related with speech recognition are so

many that the mathematical models developed are very complex. Despite of that

complexity, we have been always fascinated of how humans and machines can com-

municate. ASR systems have a special place in science �ction. It will always be in

the memory of many the �lm � 2001: A space odyssey � where Captain Bowman

has a perfect conversation with the supercomputer HAL 9000 or J.A.R.V.I.S in

Iron man talking with Tony Stark about how to improve the Iron man armor. The



ultimate goal of ASR systems is to create such communication between humans

and machines in the most e�ective way possible. But it is still impossible to repli-

cate the natural language patterns between humans when talking to a machine

due to the limiting factors previously mentioned.

The classical approach for ASR systems based on statistical Gaussian models

have reached a limit in terms of computational power and performance. One

single question made a big change in ASR systems: What makes people so good

at recognizing speech?

The brain is wired in a way that enables humans to understand the speech with

the associated knowledge related to the language they communicate. But brain

and computers do not follow the same computational paradigm. In a computer, a

clock frequency synchronizes the program instructions with the central processor

and data is stored in an addressable memory. The human brain uses a massively

parallel connection of slow and simple processing elements known as neurons which

are connected by weights (synapses) whose strengths are modi�ed by experience,

creating an associative memory. Taking this as an inspiration, many researches

and literature have been generated since then. The most signi�cative stage was

in 1957 with the perceptron proposed by Rosenblatt. The perceptron was the

simplest model built to imitate the connectivity between neurons. But recent

advances on machine learning algorithms have lead into deep learning techniques to

provide high-level abstractions in the input data by using architectures composed

of multiple non-linear transformations.

DNNs were proposed in 1985 by G.Hinton combining the machine learning

techniques with the perceptron structure. The evolution of hardware and the

availability of programming languages introducing parallel computing give us the

capacity to rebuild the brain computational model. DNNs are able to create a

higher level representation of the input and all the units can be updated jointly

making easier to train the model with limited resources. Thus, DNNs stand as

the state-of-the-art in speech recognition systems. The main motivation of this

thesis is therefore to study the performance of DNNs in ASR systems. Further-

more,this thesis will focus on DNNs applications for Indian languages, where less
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data resources are available. Also, a GPU hardware architecture is investigated

to give the closest approach to the computational brain model and see if results

are improved.

The rest of the thesis is structured as follows:

• Chapter 2 summarizes a brief overview in speech recognition and will provide
an introduction into acoustic modeling techniques.

• Chapter 3 provides the essential framework of neural networks and its ap-
plication on speech recognition.

• Chapter 4 presents our research with deep neural networks and shows the
results for di�erent language databases.

• Chapter 5 presents the conclusions of this thesis and provides future lines of
action.
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Chapter 2

Review of Speech Recognition

In this chapter a brief review of speech recognition �eld will be described. This

introduction will be followed by a discussion on Hidden Markov Models in detail

and a summary of the algorithms related with this technology will be discussed.

2.1 Fundamentals of Speech Recognition

Think about a bird singing on a tree early on the morning, the sound of the

ocean waves hitting rocks or the ignition of a rocket being launched to the space.

All this sounds are generated continuously in time according to certain attributes

as frequency or sound intensity. Every single process in nature will generate a

set of continuous values on a continuous interval of time. This is the de�nition

of an analog signal. But we are limited by many factors and sadly, we can not

capture all the information in an analog signal. In practical applications, a �nite

number of samples can be extracted from the signal. The speech signal is highly

random signal and it can be a�ected by many factors. Due to its nature, speech

signals are highly variational on time and non-stationary. According to Rabiner

and Schafer (2010), we can consider the signal as stationary process on a 25ms

duration window. Thus, we can assume the speech signals as pseudo-stationary

signals. Hence, all the main characteristics of them can be studied.

Speech recognition can be considered a pattern recognition multilevel task

in which all the signal will be structured in a hierarchy of subword units which

phonemes as basic units. From phonemes, morphemes, words, phrases and sen-

tences can be built. Therefore, we can consider phonemes as the smallest linguistic

unit. The layer model has some advantages in speech recognition as we can add

additional constraints per layer to limit the error or uncertainties at lower lay-



ers, e.g., if a sentence is well pronounced or the speaker has accent that make

recognition more complicated.

At this point, one question needs to be answered: How we convert the speech

sound to basic subunits words? The basic structure of a standard speech recogni-

tion system is shown in �gure 2.1. A more detailed explanation about the process

can be found in Rabiner and Schafer (2010) .

Figure 2.1: Structure of speech recognition systems

The �rst step is to sample the signal. Typically, this is done at high frequency,

e.g, 16KHz over a microphone or 8KHz on a telephone. As a result, we will get a

largely array of speech samples. From the speech samples,the conversion process

from the sampled signal into a sequence of feature vectors to capture the spectral

variability of the data is known as Feature Extraction.

Once all the features have been processed, a statistical framework known as

Hidden Markov Model (HMM) is used to model those features. The modulation

is done during the training stage if enough amount of transcribed training speech

is available. Dictionary model is de�ned as the associative model that correlates

the words with the sound.

After the training stage, testing is done with identical feature extraction pro-

cess. In order to capture the properties of a language and give a probability to the

next word in a speech sequence a language model is de�ned. Viterbi algorithm
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is used for decoding in combination with dictionary, language model and the test

data. After Viterbi decoding, the text output can be obtained. ASR systems

need large amount of vocabulary. Hence, triphones are built. A triphone is the

acoustic realization of a phoneme when surrounded by two speci�c phones. In

the Viterbi decoding, those triphones will be chained together according to some

given probabilities and words are formed.

2.1.1 Hidden Markov Models

The HMM has been considered as the most successful milestone in speech recog-

nition �eld. HMMs, as explained in Rabiner and Juang (1986), is de�ned as a set

of states connected by transition probabilities. In each state, a process of mea-

surable observations is represented. The transitions between states is ruled by a

�nite state Markov chain. If a transition between states happens, then one output

symbol will be generated in that state. The concept behind �hidden� is, for a given

individual output sequence, we can not immediately identify the states sequence.

In common language, we can consider the HMM as a �black box � where the input

is given and the output is obtained, but we can not see �whats happening inside�.

Figure 2.2: Hidden Markov Model

From a mathematical point of view the HMM can be de�ned as λ = (Π, A,B)

where :

• Π is the initial state distribution
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• A is the state transition matrix where each element of the matrix aij repre-
sents the probability of going from state i to state j.

• B is the emission probability matrix where each element bi(u) is the proba-
bility of emitting a sound while in state i

At discrete intervals of time, a transition between state �one� to �two� will take

place following the transition matrix A and a output will be generated. Speech

sentences are spoken from left to right, so HMMs will always go forward or have

some loops that represent the emission of the same sound in a spoken sentence.

HMMs can also be structured in a hierarchy level from phoneme level to sentence

level. But there are some problems associated with HMMs according to Rabiner

and Juang (1986) that must be solved in order to have real applications. Those

problems and their solutions can be brie�y summarized as :

• Problem 1 : For an output sequence O in the model λ = (Π, A,B), how
do we compute the probability Pr(O|λ) of the output sequence?

The main issue with this problem is related with matching the model with

a given observation sequence. It is necessary to �nd an algorithm with a high

e�ciency in terms of computation. This algorithm is well-known as �the forward

procedure�. Given the state sequence i and the output sequence O in a model

λ, the probability Pr(O|λ) can be calculated as the product of the observation

probabilities at every t through the forward procedure:

Pr(O|λ) =
∑
all i

Pr(O|i, λ) · Pr(i|λ) (2.1)

Pr(O|λ) =
∑
all i

πi1bi1(Oi1)ai1i2b12(O2)...ait−1bit(Ot) (2.2)

The implementation of (2.2) is highly computational and not feasible as it

increases the number of operations required to estimate the result and it has to

compute all the probabilities in the state sequence. An e�cient implementation

is made taking the maximum probability in the state sequence, as:
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Pr(O|λ) = max
i
πi1bi1(Oi1)ai1i2b12(O2)...ait−1bit(Ot) (2.3)

The (2.3) solution is called the Viterbi algorithm and it can be easily imple-

mented in ASR systems due to its low computational cost.

• Problem 2 : Given a set of outputs O = O1, O2, O3, ..., OT , we must �gure
out how to choose the best optimal states.

Forward procedure algorithm allows to calculate the probability of a HMM

with respect to sequence of observations O, but we remain clueless about the

states sequences that gave the output. The Viterbi algorithm is employed here as

a mathematical tool in which the main di�erence is how probabilities are chosen.

Viterbi is very similar to forward procedure but whereas the forward algorithm

takes the sum of all the probabilities, the Viterbi algorithm takes the maximum

probability. Therefore, the best path in a given set of states i = i1, i2, i3, ..., iT will

be given by:

argmaxP (i|O, λ) = argimax
P (i|λ) · P (O|i, λ)

P (O|λ)
(2.4)

The above (2.4) is another way to write the Viterbi algorithm. The power

of Viterbi lies on its simplicity to calculate the best path with the maximum

probability with a low computational cost compared to the forward procedure.

• Problem 3 : How is it possible to maximize the probability Pr(O|λ) ?

The most complicated problem related with HMM is due to the mathematical

nature of the model. There is no direct solution for maximizing this probability

and iterative procedures as gradient techniques or Baum-Welch method have to

be used.

It is shown in that the common and natural representation of HMM is done

through weighted �nite-state transducers (WFSTs). WFST framework provides

not only a representation of HMM, but also context-dependencies, dictionaries,
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grammars and other outputs. They are connected by weights that can be opti-

mized by e�cient algorithms whose ultimate goal is to make weights distribution

optimal. A further explanation can be found in Mohri et al. (2002).

2.1.2 Hybrid Systems: GMM-HMM

The states of an HMM have to be implemented by a probability distribution per

state. The most common approach is made by direct modeling of the probabilistic

distribution in each state. Typically, the best approximation is made by taking aK

mixture of Gaussian distributions over the state space. A detailed implementation

about this approach can be obtained in Woodland et al. (1994). The bj(u) in a

HMM can be obtained jointly with a GMM as:

bj(u) =
K∑
k=1

cjkG(u, µjk, Ujk) (2.5)

Where cjk is the weight factor of the Gaussian G characterized by its covariance

matrix Ujk and meanµjk. This mathematical approach is known as Continuous

Density Hidden Markov Model or CDHMM. The disadvantage of this model is

that parameters are not shared by states.Therefore, for many states, a large value

of K Gaussian might result in many parameters. If the value of K is decreased,

a mediocre modulation of the Gaussian will be done and it may yield into a bad

performance of the system.

2.1.3 Mel-Frequency Cepstra Coe�cients (MFCC) features

Mel-Frequency Cepstra Coe�cients (MFFCs) are the most used features in the

state-of-art speech recognition systems. The steps can be summarized in Fig. 2.3:
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Figure 2.3: MFFC features extraction

The �rst stage is done through a short time processing of the input signal.

The ultimate goal of this stage is to capture the spectral envelope of the signal.

Speech input is analyzed by short analysis window (typically 25 ms and 50% frame

overlap) in order to make a frame conversion. A pre-emphasis �lter is applied to

give weights to higher formants. Taking a Hamming window to minimize noise,

the spectrum is obtained using DFT.

In second stage Mel Filterbank Analysis (MFB) is performed. Based on human

perception experiments, the human ear act as a �lter that concentrates on only a

certain frequency range. Those �lters are non-uniformly spaced on the frequency

axis and concentrates more �lters in the low frequency regions. This can be done

by a triangular �lter bank with Mel-wrapping. As a results, for each triangular

�lter an output coe�cient will be obtained. Then,apply a log operation on each

coe�cient to reduce dimensionality. Finally, a DCT is performed to compress the

information and uncorrelated the vector. Some additional processing as cepstra

liftering is done to give same weight for all the coe�cients. Additional processing

as cepstra mean subtraction (CMS) is also performed to reduce any unwanted

e�ect during the recording stage.

2.1.4 Cepstral Mean and Variance Normalization (CMVN)

MFCC feature extraction is very sensitive to the presence of background noise.

This can be a serious problem that yields in a performance degradation of the

system, specially in the testing phase. Previous solutions like CMS are not good

10



enough as they are also highly a�ected by noise background. A robust feature

extraction approach is done through cepstral mean and variance normalization

(CMVN) . This technique uses both the sample mean and standard deviation

to normalize the cepstral sequence. Given a set of feature MFCC vectors OT =

o1, o2, o3, ..., oT , the mean and variance vectors are computed as:

σ2 =
1

T

T−1∑
t=0

diag(oto
T
t )

µ =
1

T

T−1∑
t=0

oT

˜Ot(d) =
ot − µ
σ

(2.6)

At the end of the normalization operation, the mean of the cepstral sequence

must be zero and the variance equal to one. CMVN is applied to the full cepstra

vector and it is not associated with any particular type of distortion. It provides

robustness against speaker variability and additive noise background. There is

many techniques in feature extraction,as proposed by De la Torre et al. (2005)

based on Histogram Equalization (HEQ).

2.2 Brief review of speech techniques

Some preprocessing techniques must be done in order to start the training of neural

networks. The last part of this chapter will be dedicated to give a brief review on

those techniques.

2.2.1 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is an application of pattern classi�cation �eld

into speech recognition. For a given set of input features X in a n-dimensional

space, the mathematical challenge is to �nd a linear transformation for feature

11



vectors Y in an m-dimensional space (with m < n ) such that the separability

between classes is maximum. A linear combination with a vector wt will be given

by :

Y = wtX (2.7)

From geometry, if |w| = 1 then, each yi is the projection of xi onto a line in

direction w. Therefore, what we are interested to compute in LDA analysis is not

the magnitude, but the best direction of the w vector as it will give the optimum

discrimination. Lets assume that our input dataX must be classi�ed into J classes

with meanµj and shared variance matrix
∑
. Let it be three possible matrices W :

within-class, B : between-class and T : total scatter matrix. The transformation

will be done by enhancing the total scater matrix T keeping the within-class matrix

W constant. The matrix T , W and B are de�ned as:

T =
J∑
k=1

∑
gi=1

(Xi − x̄)(Xi − x̄)T (2.8)

Wj =
∑
gi=j

(Xi − x̄)(Xi − x̄)T ⇒ W =
∑
gi=1

Wj (2.9)

B = T −W (2.10)

Thus, the maximization of the ratio between B and W matrices will lead into

the following equation:

Ŵ = argmax(
wtBw

wtWw
) (2.11)

It is shown in Haeb-Umbach and Ney (1992) that the best solution to maximize

those equations yields in a projection of X into the subspace of those m eigen-

vectors in W−1B which correspond to the m largest eigenvalues. LDA is a robust

model to any non linear transformation in the feature spaces as well as invariant
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to any linear transformation previously made. A set of new features with smaller

dimensionality is obtained.

2.2.2 Maximum Likelihood Linear Regression (MLLR)

Maximum Likelihood Linear Regression MLLR is a based likelihood technique

used for adapting Gaussian mean vector in HMM systems. The basic procedure is

detailed in Woodland et al. (1994). Starting from the adaptation data from a new

speaker, MLLR will update the model mean parameters to maximize the likelihood

of the adaptation data. Assuming a CDHMM model with a given extended mean

vector ξs, the adapted mean vector µ̄s will be calculated as :

µ̄s = Wsξs (2.12)

where Ws is a n × (n + 1) dimension matrix with n as the dimension of the

observation vector O. The matrix Ws maximizes the likelihood of the adaptation

data. The extended mean vector ξs is de�ned as ξs = [ω, µTs ] where ω is just

a parameter to control the o�set. Therefore, the adapted Gaussian probability

density function (µ̄s,
∑

s) becomes:

badapt(o) =
1

(2π)n/2|
∑

s |1/2
· exp− 1

2
(O−Wsξs)

′
(
∑

s)
−1(O−Wsξs) (2.13)

This methodology depends on the Gaussianm and it can be updated depending

on the presence of silence or non-silence.

2.2.3 Feature-space MLLR (FMLLR)

Feature-space MLLR (fMLLR) technique is employed in ASR systems to reduce

the mismatch between the adapted models and the acoustic data for a given

speaker. The algorithm is fully described in Ghoshal et al. (2010) and its math-

ematical roots lie in Constrained MLLR. For what concerns,in a GMM-HMM
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model, the full covariance matrix is used and a Hessian computation in the trans-

formed space is done in order to �nd the gradient with a number of pre-established

iterations. For each in-speaker transform W s, the update rule will be given as:

W s ← W s
n−1 + k4 (2.14)

where 4 is the proposed estimation in W and k the step size. As 4 is propor-

tional to the gradient, we can rewrite the previous equation as:

W s ← W s
n−1 + k(

1

β
P̃ ) (2.15)

Where the matrix P̃ is the Hessian transformation of a previous matrix P

which is the transformed gradient matrix in the adapted space. The constant 1
β
is

needed due to the expected Hessian is a per-observation quantity. This technique

stands as an excellent optimization method and provides consistent results if it

is done by taking all the available data for a particular speaker and gives poor

results if an adaptation per utterance is done.

2.2.4 Speaker Adaptation (SAT)

Let it be a speech recognition system in which a high accuracy for one speaker is

achieved. The motivation in Speaker Adaptative Training (SAT) is the improve-

ment of the accuracy for another speaker taking only the utterances worth his/her

speech data by maximizing the likelihood of the training data given the MLLR-

adapted models. A further and detailed explanation can be found in Anastasakos

et al. (1996). For what concerns us, lets assume a set of speakers R and a ini-

tial CDHMM modelλ. Each speaker will generate a sequence of observations O.

The mathematical formulation suggest to �nd a mapping function G that convert

features from initial model to an optimal model λc given by:

(λc, G) = arg max
(λc,G)

R∏
r=1

L(Or;Gr(λc)) (2.16)
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where L() is the likelihood estimator. In SAT, both λc and G are estimated

jointly. This frameworks has some problems in terms of computational cost. From

the stored standard diagonal statistics for each speaker, the estimation of optimal

model and mapping function is done jointly, by keeping the mean and the variance

updated for each speaker. Through each computation, mean and variance must

be read from disk and updated. Infeasibility can arise due to excessive use of disk

space and the computation of per-speaker statistics. Alternative solutions have

been proposed by Povey et al. (2008). The most common technique is diagonal

SAT, where only the diagonal quadratic term in the mean's objective function is

stored. This fast training SAT technique will save disk space and computation

time, leading into a fast and e�cient method to estimate the optimal model.
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Chapter 3

Neural Networks

In this chapter, we will brie�y review the fundamentals of Neural Networks (NNs).

Since its beginning, NNs have evolved following a speci�c design for the application

they required. But there are some speci�c elements in common among all of them:

• A set of processing units that deal with the computational procedure.

• A set of connections characterized by a value (or strength) which describes
how they interact.

• A training procedure that involves preparation of a neural network for a
particular task.

A theoretical discussion, in relation to di�erent con�gurations of neural net-

work architectures and its applications in speech recognition systems, will be held

in the upcoming sections of this chapter.

3.1 The �rst generation of neural networks

In a neural network, a huge amount of smallest processing units can be found.

Those smallest units are known as neurons as per the biological model. In a

human brain, a huge amount of those neurons are connected working jointly in

parallel. Tree-like nerve �bers called dendrites are associated with the cell-body.

The signal from the others neurons are received by the dendrites. At the same cell,

a long �ber called the axon branches itself to the synaptic zones. The synapse is a

chemical process activated by the increment of chemical potential according to a

threshold value in which neurons communicate with each other through electrical

pulses. When many pulses are received, their e�ects accumulate. Therefore, the

neuron acts as a kind of �adding� device. The �rst mathematical model was



developed by McCulloch and Pitts (1943) as a binary threshold unit that can give

one or zero as output. The model is shown in Figure 3.1:

Figure 3.1: McCulloch&Pitts neuron model

For a sum of inputs ni with associated weights wi and a threshold value b, an

activation threshold function σ() must be computed, given as a result a binary

output s that can be used as a decision boundary for classi�cation task. The

formula is given as in:

s = σ(b+
∑

niwi) (3.1)

The limitations of this model are clear as binary decision boundary is not good

enough for any task which involves huge amount of data and complex dimension

spaces.

This mathematical model leads into the Rosenblatts perceptron model pub-

lished in Rosenblatt (1958) where the combination of simple units will lead into

more complex feature spaces based on the idea that each neuron would split the

feature space with a hyperplane. A layer of hand-coded features is used to recog-

nize words. A schematic overview of the model is given in Fig.3.2:
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Figure 3.2: Perceptron model

A target output b is de�ned and our binary output s = f(x) is compared with

b. The resulting error δ = b−s is used to adjust the weights (connections) between

the input and the middle layer according to the rule:

4wi = ηδai (3.2)

The way in which a neural network adjusts its weights is called the learning

rule. But how is a perceptron able to learn? From a geometric point of view, we

de�ne the weight space as the space with one dimension per weight where each

point in the space represents a particular setting of all the weights. As an example

of the complexity attached with learning, notice that it can be fourteen dimension

space if fourteen weights are present. If the threshold is removed, each neuron

will split the region in a hyperplane. The challenge is to �nd the correct side of

this hyperplane in which the weight must lie. It can be demonstrated Minsky and

Papert (1987) that the correct direction will be computed regarding the angle of

the scalar product between the input with the weight vector. Thus, for a large

number of neurons a hyper-cone of feasible solutions will be formed. An interesting

and detailed explanation of geometry in perceptrons can be read in Minsky and

Papert (1987). After some iterations, the correct feature vector must lie in the

feasible solution region if it exist.
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Notice that perceptrons are limited as the solution region must exist. The

existence of this region is related with the input features.Hence,features limitation

is a problem in perceptrons as they need to learn the correct features. Even if

hand-coded features are used, the existence of such region is not guaranteed. In

case this region does not exist, the weights in the perceptron will not converge.

Thus, perceptrons have a very limited capability to solve changing problems. In

ASR systems, a large amount of vocabulary is employed and the objective function

keeps changing. This will yield into an infeasible e�ective representation of the

desired target.

3.2 The second generation of neural networks

The second generation of neural networks are well known as Multilayer Perceptrons

(MLP). They were developed to solve the limitations of the previous generation.

A new set of elements known as �hidden layers� were incorporated. Those hidden

layers are an adaptive non-linear unit that will allow an e�cient learning. At

the hidden units is we do not know what they have to do, but a computation

regarding the change in an error function when we modify the hidden activity can

be done very e�ciently. In MLP, neurons in one layer are connected to neurons

in the next layer. Both properties, architecture and connections, lead in a higher-

order and more complex representation of the input vector. For a given set of

inputs x0, x1, ...xP , we must de�ne the desired output function f(x, ~θ) with ~θ =

{wij, wjk,, wkl} the set of weights on each layer. The MLP model is given in Fig.

3.3:
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Figure 3.3: Multilayer Perceptron Model

Thus, for a reference model yref a cost function must be de�ned. Regarding

the task, for classi�cation problems, cross-entropy cost function is used, mean-

while for regression problems it is better sum-of-squared error function. In speech

recognition, as we are classifying phones, we will use cross-entropy function. Thus,

for yref , f(x, ~θ) the cost function L is de�ned as :

L = −
∑

ynlog fn(x, ~θ) (3.3)

The training procedure must minimize the cross-entropy function. The log

function is taken for numerical stability and math simplicity. Once we have a

de�ned loss function, a �rst order optimization known as Stochastic Gradient

Descent (SGD) can be computed.

3.2.1 Stochastic Gradient Descent (SGD)

The Stochastic Gradient Descent is an optimization method used for updating

the weights in a neural network. To train an MLP, we learn all parameters of the

model. Once we have de�ned the objective function f(x, ~θ), a forward propagation

must be done to initialize the weights. Then, we compute the gradient with respect

to the objective function and propagate the gradient backwards to update each

layer. From a geometrical perspective, this algorithm will repeatedly make small

steps ( learning rate η ) downward on an error surface de�ned by the loss function
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L. In each step, the weights will be updated. The mathematical rule for the new

weights will be given by:

w
′

kl = wkl − η δL
δwkl

w
′

jk = wjk − η δL
δwjk

w
′

ij = wij − η
δL

δwij
(3.4)

Where {wij, wjk,, wkl} are the previous weights, {w,ij, w
,
jk,, w

,
kl} the updated

weights, η the learning rate and { δL
δwij

, δL
δwjk

, δL
δwij
} the gradient operator. Notice

that SGD does not need to remember which examples were used in previous it-

erations, and it can compute features on the �y. There is one alternative called

pre-conditioned SGD that we will use later in our software receipt. The use of a

preconditioning matrix is a well-known technique to accelerate optimization meth-

ods. This technique is fully explained in Zhang et al. (2014). Instead of using a

�xed learning rate, a symmetric positive de�nite matrix-value learning rate is de-

�ned. Also, its eigenvalues must be limited. Thus, the eigenvalues of this matrix

will decrease during the training stage. This matrix shall not depend on the cur-

rent training sample or we can get a non desired direction in the feature space.

SGD is not the only method to train neural networks. Second order methods such

as computing the Hessian matrix are also possible, but computationally expensive.

A main issue with SGD is when the neural network becomes very deep. In

that case, SGD is ine�ective as it can be stuck in local minima and the objective

function can diverge. An extra problem related with the training stage is the

dataset itself. The training data can contain information about mapping the

input with the output, but some noise can be present. Once the model is �t, the

noise will be still there and we are clueless about its origin: Does it belong to the

data, to a particular dataset, or both?. This problem is known as �over�tting�

and it can lead into a noise modeling. Despite of large number of solutions have

been proposed, over�tting is still a problem in this generation of neural networks.
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The most popular approach is the L2 regression. It suppress over�tting and it

does not add too much complexity as is easy to calculate.

3.2.2 The softmax layer

For a classi�cation problem we need to have a probabilistic output that lies on the

interval [0,1]. This can be done by forcing the output of the last layer to represent

a probability distribution with discrete values. Thus, �nal non-linearity can be

solved by the softmax layer. The �nal MLP model is as shown in Fig. 3.4

Figure 3.4: MLP with softmax layer

With softmax layer we can compute the class posterior probability p(ci|x) as:

p(ci|x) =
exp(−ai)
n∑
j=1

exp(−aj)
(3.5)

where ai is the logit (or accumulative input for the layer below) and aj repre-

sents the logit for all the neurons in the softmax group. Thus, as our objective

function f(x, ~θ) is now a posterior probability p(ci|x), we must re-de�ne the loss

function L as:

L = −
∑

yrefi log p(ci|x) (3.6)
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withp(ci|x) and yrefi belonging to the interval [0, 1]N . Therefore,neural net-

works are trained to minimize that cross-entropy function. This result leads us to

use each class ci as the basic unit to model HMM. By the Bayes' theorem, we can

calculate the likelihood p(x|ci) as:

p(x|ci) =
p(ci|x)

p(ci)
(3.7)

The likelihood in equation 2.4 can replace the likelihood de�ned in GMM and

it is the same equation. Thus, we can conclude that neural networks can be used

as acoustic models.

3.3 The third generation of neural networks

The third generation of neural networks are called deep neural networks (DNN).

DNNs were born as a result of advances in pattern recognition techniques and

computer hardware. As de�ned in Hinton et al. (2012), a DNN is an MLP with

more than one hidden unit between the input and the output layer. The perfor-

mance of MLPs is limited by the training procedure: The objective function could

diverge and SGD training is done serially on a machine, leading into a very slow

solution on normal CPUs. The key to success in DNNs is the e�ective training

procedure which is divided into two main stages:

• First, a set of units known as Restricted Boltzmann Machines are stacked
together layer by layer. Pre-training is performed via unsupervised learning.
The weights will be located in a good initial feature space for a posterior
optimization. The stack of RBMs can be combined to build a single model
de�ned as Deep Belief Networks (DBNs)

• Second,a softmax layer is added to the previous DBNs. This will create an
architecture known as DNN-DBN. A ��ne tuning� through mini-batch SGD
is performed in order to adjust the pre-trained weights.

The �nal model will be used to predict each possible state on the HMM with

the central frame of the input features. The rest of the chapter will be related with

the description of the building methodology and training procedure in DNN-DBN.
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3.3.1 Restricted Boltzmann Machines (RBM)

Restricted Boltzmann Machines (RBMs), deeply explained in Hinton (2010), are a

graphical model that de�ne a probabilistic function over a set of stochastic units.

The upper layer is related with the learning procedure and is composed by smaller

�hidden� units h that receive the data from the lower layer of visible units v. We

say RBMs are �restricted � because there are no connections between hidden or

visible units in order to make the learning process easier. The model is given as

shown in

Figure 3.5: RBM architecture

Every joint con�guration between visible and hidden units has an energy. Thus,

we can de�ne the energy E(v, h) of a RBM model as:

E(v, h) = −hTWv − cTv − bTh (3.8)

where W is a matrix in which each element wij is the connection between the

visible unit i and hidden unit j. The parameter h is the binary array of hidden

units, v is the binary array for the visible units and ck, bj are the bias variables.The

use of biases in a neural network increases the capacity of the network to solve

problems by allowing the hyperplanes that separate individual classes to be o�set

for superior positioning. We can rewrite equation 3.9 as:

E(v, h) = −
∑
i

∑
j

hjwijvi −
∑
i

ckvi −
∑
j

bjhj (3.9)
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The joint probability p(v, h) within units is proportional to the energy and is

de�ned as:

p(v, h) = exp(−E(v, h))/Z (3.10)

With 1/Z, the �partition function� or the addition for all the pairs of hidden and

visible vectors. Consequently, the probability in a given con�guration of visible

units p(v) is computed by summing all the hidden vectors:

p(v) =
1

Z

∑
h

exp(−E(v, h)) (3.11)

The model will give an output probability according to the energy distribution.

Furthermore, we must go a step beyond and maximize log p(v) in order to get an

e�ective training procedure for RBMs. Hence, by taking the average negative log-

likelihood (NLL), we can maximize log p(v) by employing the gradient operator.

The cost function L can be de�ned as:

L =
1

N

∑
h

− log p(v) (3.12)

with N the step size .Thus, we can write the gradient as:

−δ log p(v)

δwij
= Eh[

δE(v, h)

δwij
|v]− Ev,h[

δE(v, h)

δwij
] (3.13)

where the operator Eh[] is the expected value for the hidden layer given the

visible units and Ev,h[] the expected value for both, visible and hidden layers.

Therefore, we have two expressions, one regarding the data and another one related

with the observation. Alternatively, we can rewrite equation (3.13) as in Hinton

et al. (2012):

δ log p(v)

δwij
=< vihj >data − < vihj >model (3.14)
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where the operator< . > is the expected value. The data part of the equation is

easy to calculate. The unbiased samples of vihj can be obtained by computing the

conditional probability within units. Due to limitations in the connections between

hidden units, learning is simpler. Visible units are conditionally independent given

the visible units, and hidden units are conditionally independent given the visible

units. As a consequence, the conditional probability in each hidden unit hj can

be calculated as:

p(hj = 1|v) =
1

1 + exp[−(
∑
i

viwij + bj)]
(3.15)

Similarly, the conditional probability in each visible unit vi will be:

p(vi = 1|h) =
1

1 + exp[−(
∑
j

hjwij + bi)]
(3.16)

In contrast, the unbiased sample dealing with the model part of the equa-

tion (3.14) is more complicated. Notice from equation (3.13) that we have an

exponential summatory over both vectors, v and h. As a consequence, it is com-

putationally intractable. We need an e�ective method to approximate Ev,h[
δE(v,h)
δwij

]

in order to apply SGD e�ciently. An e�cient training method called Contrastive

Divergence (CD) was proposed by Carreira-Perpinan and Hinton (2005) based on

Gibbs sampling. For a training set of vectors {v}, we update all the hidden units

in parallel using equation (3.15). Consequently, we must update all the visible

units in parallel using equation (3.16). This procedure can be done in k steps

(noted as CDk) as shown in Fig. 3.6

As commented in Hinton et al. (2012) even if a large number of Gibbs sampling

steps are run in order to learn better generative models, it is not an e�cient

procedure for pre-training because all the required parameters can be learned

only in one Gibbs step. This method is called Contrastive Divergence One (CD1)

and was also proposed by Carreira-Perpinan and Hinton (2005). It is faster than

normal Gibbs sampling. As only one step is run, the procedure is as follows:
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Figure 3.6: Gibbs sampling

• First, we give the training data vector to the visible units v.

• Second, the binary states in the hidden layer are changed by employing
equation (3.15) .

• After, the sampled model can be obtained by setting the visible units to one
and using equation (3.16) .

• Finally, the states in the hidden units will be updated once again.

For the reconstructed samples, we can derive the learning rule. Hence, the

weights in the RBM will change according to:

W n = W n−1 + ε(< vihj >data − < vihj >sampled) (3.17)

A more detailed derivation of equation (3.17) is given in Appendix A.1. CD

is an e�ective training procedure for a RBM. Over�tting problem can be avoided

in the �rst update of the hidden layer by taking the sampled binary values from

the visible units. This is due to the property of the sampling noise as an e�ec-

tive noise regularizer. The second update can be computed using the real-valued

probabilities instead of binary values.

3.3.2 Real data and Restricted Boltzmann Machines

Real data follow di�erent probability distributions. Therefore, we must change the

distribution in the �rst RBM in order to adapt the network for the input features.

The inputs are generally MFCC features which can be parameterized far better

with a Gaussian distribution. Hence, we must write the energy in this RBM as:
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E(v, h) = −
∑
i

∑
j

hjwij
vi
σi
−
∑
i

(vi − ci)2

2σ2
i

−
∑
j

bjhj (3.18)

where σi is the standard deviation of the Gaussian. Thus, if the energy changes,

the conditional probabilities must be rewritten as:

p(hj = 1|v) =
1

1 + exp[−(
∑
i

vi
σi
wij + bj)]

(3.19)

p(vi = 1|h) = G(ci + σi
∑
j

hjwij, σ
2
i ) (3.20)

With G(µ, σ2) as the Gaussian distribution. Because of the conditional proba-

bilities, this type of RBM is called a Gaussian-Bernoulli RBM (gRBM). According

to Hinton (2010), the issue in this model is related with the learning of the standard

deviation as it becomes very complicated if CD1 is used. In practical applications,

the normal procedure is to perform a data normalization to achieve a zero mean

and unit variance. As a consequence, the variance in equation (3.18) is set to one.

Thus, we can compute a reconstructed sample from the posterior probability in

(3.20) without any noise.

As a �nal remark, the RBMs initialization has a huge impact about how the

DBN-DNN behaviors. Taking equation 3.8, we can make a representation of the

energy in equation 3.8 as a function of parameters. For a set of initial conditions,

we can represent the energy as in Figure 3.7:
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Figure 3.7: Energy function outlook

Where the red dot represents the initials conditions. We can make an analogy

with �a ball� moving in the graph. Once the ball is placed in A, we want to move

it to the lowest point. It is clear that when it moves, the ball can be stuck in

any of the depressions without any chance to go up an reach the lowest point. If

we push the ball very hard, it will reach a far point in the graph that it can not

be the lowest one. In RBMs happens the same. Given a set of initial conditions

(learning rate and initial parameters), the neural network tries to minimize the

energy. Hence, the initial conditions must be placed in a place �nearby� the lowest

point. Then, computing the gradient, it will move forward that minimum. How

�fast� the ball moves in the graph is given by the learning rate. Therefore, setting

an optimal initial conditions is key to guarantee a good convergence. An in depth

lecture about this topic can be read in Hansen and Salamon (1990).

3.3.3 Deep Belief Network

Once we have an initial RBM, we can build a Deep Belief Network (DBN). As

de�ned in Hinton et al. (2012), DBN is a �single, multilayer generative model�.

Each layer of the DBN is a RBM whose posterior probability over its hidden layer

is the input for the next RBM. Thus, the idea of stacking RBMs is to improve

the prior probability on the last layer just by adding another hidden layer. At

the top, the last two layers are going to be connected undirected. The rest of

layers will have top-down directed generative connections. Hence, the DBN is
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a generative model that mix both, directed and undirected connections between

variables. Finally, once the DBN is built with initial parameters, a �ne-tuning

operation is performed in order to adjust the weights for a particular task. A

schematic overview of the building process is given in Figure 3.8

Figure 3.8: DBN building procedure

Analysis of Figure 3.8 shows a building process for a DBN with three hidden

layers as proposed in Hinton et al. (2012). The �rst RBM must be a Gaussian

RBM as the input are MFCC features. At this �rst stage, we learnW1 by assuming

that all the weights are tied. Then, we �freeze� W1 and we address (W1)
T as the

input data to the �rst hidden layer, h1. As indicated by Hinton et al. (2012), we

can rewrite equation (3.11) with a direct dependence of weight matrix W ,

p(v;W ) =
∑
h

p(h;W ) p(v|h,W ) (3.21)

where p(h;W ) is as in equation (3.11) but with changed roles of hidden and

visible units. The training process can be done by freezing the p(v|h,W ) and

learning the remaining weights. This is equivalent to learn another RBM using

the aggregated conditional probability on h1 as the input data. Furthermore,

the resulting aggregated probability can be computed from a training sample and

infering a hidden vector according to equation(3.19). This procedure will be re-

peated from a bottom up approach, forcing in each layer to learn �features of the
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features�. Each RBM can be trained using CD1 as explained in Section 3.3.2. At

the end of the training, we will have a DBN with undirected connections on the

two top layers and downward connections (top-down) in the remaining layers.

Stacking RBM in order to build a DNN is so successful because, as exposed

inHinton (2010), each time that we add another layer of features, an improvement

on the variational lower bound of the log probability is achieved. Furthermore,

the bound will be de�ned as:

log p(x) ≥
∑
all h

q(h1|v) [log p(v) + log p(v|h1)−
∑
h1

q(h1|v) log q(h1, v) (3.22)

where h1 is the binary con�guration on the �rst hidden layer, p(h1 ) its prior

probability and q(·|v) is the probability distribution de�ned on the binary con�g-

urations in h1 hidden layer.Therefore, we can understand q(h1|v) as and approx-

imation of p(h1|v). The closer p(h1|v) and q(h1|v) are, the stronger bound will

be. Notice that if both are same, equation (3.22) becomes an equality. Moreover,

if the di�erence between the two terms is very large, the approximation q(h1|v)

might not be good and the bound will be weak. On the training procedure, when

we freeze p(v|h,W ), we also keep constant the probability distribution q(·|v) and

p(v|h1). On these conditions, the derivative of the bound will be calculated as:

∑
all h1

q(h1|v) log p(h1) (3.23)

The previous equation (3.23) is very similar to train an RBM on data generated

from q(h1|v). If the bound becomes very strong, the log p(h1) might decrease even

if the lower bound increases. But the new decreased value will be limited when

the probability is �xed at the beginning. At this point, the bound is tight and it

will not decrease again. Therefore, notice that for many layers, a set of weights

can be learn and the bound will always increment. This powerful property makes

possible the improvement on the variational lower bound of the log probability.
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Finally, to convert the pre-trained DBN into a DNN, we must drop all the

calculated weights Wk and take the inverse direction, which is given by W T
k . We

have to add a softmax (3.8)to compute the posterior probabilities for each state

in the HMMThen, we can train the DNN discriminately and use SGD in order to

optimize the training.

3.3.4 Deep Neural Networks and Hidden Markov Models

DNNs can be applied as acoustic models if a previously discriminative training is

performed in order to give the posterior probability for each of the states in the

HMM model. As exposed in Hinton et al. (2012), the �output probability for a

given observation ot at time t in utterance ut for the HMM state s is given by�:

p(s|ot) =
exp(au(s))∑

s∗
exp(au(s∗))

(3.24)

where au is the activation output layer corresponding to state s. A log-

likelihood for state s in observation ot is used for recognition:

log p(ot|s) = log p(s|ot)− log P (s) (3.25)

and P (s) as the prior probability obtained from the data. A further explanation

about how to compute P (s) probability can be read in Hinton et al. (2012). Once

we have de�ned log p(ot|s), we can apply the back propagation algorithm jointly

with SGD to model the HMM states.
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Chapter 4

Results

4.1 Databases Used

The performance of DNN has been tested on TIMIT, Resource Management (RM)

and Mandi. RM is a standard database (Price et al. (1988)). It consists of 3990

training sentences related with naval resource management. It was recorded among

by 168 speakers: 109 for training and 59 for testing. The sampling rates is 16Khz.

The test set has been supplemented by periodic releases of speaker-independent

testing data for comparative evaluation. We have implemented all these set as a

whole testing set. The TIMIT database (Garofolo et al. (1993)) is recorded on

eight principal dialects of American English. It is composed by a total number of

490 speakers: 462 speakers for training and 28 speakers for testing.

The Mandi data was collected for building Automatic IVR systems in order to

get the price of Agricultural commodities in Indian languages. The speech data

were collected among various states of India. This database comprises of six major

Indian languages: Tamil, Telugu, Hindi, Bengali, Assamese and Marathi. Among

these six languages, Hindi has been chosen for this study. All the recorded data is

recorded with sampling rate of 8 KHz. The speakers were selected among farmers

as the database was recorded on an rural environment. In our experiments the

full databases have been separated into 1 hour, 3 hour, 5 hour and 22 hour sets

to probe the performance of DNN.



4.2 The Kaldi Software Toolkit

4.2.1 What is Kaldi and why to use it

Kaldi is an open source and multi-purpose software toolkit for speech recognition.

Kaldi is under Apache License v2.0. Its core is written in C++ with some auxiliary

libraries in Perl and Python. The top functions are Shell scripts. Kaldi has some

advantages with respect to other classic toolkits such HTK or Sphinx:

• The Kaldi code is very simple and easy to understand. The design is based on
compact and modular functions ( feature extraction, training and decoding)
which can be easily adapted and modi�ed.

• Kaldi has complete recipes for building speech recognition systems. Thus,
Kaldi can work with most of the databases in the Linguistic Data Consortium
(LDC)

• The main core of Kaldi is integrated with many extensible libraries. A Finite
State Transducer (FST) framework for decoding purpose is incorporated.
Also, linear algebra libraries with CUDA language programming are incor-
porated in order to enable parallel computing in a GPU (Graphic Processor
Unit)

• The vanilla version is tested against failures. The algorithms implemented
are the best known solutions for speech recognition. Alternative procedures
that do not work on certain cases are avoided. Hence, Kaldi is very reliable
software.

• Kaldi provides integration with HTK features. HKT features can be used
to train our systems in Kaldi.

All these advantages make Kaldi a very powerful tool for speech recognition

and research purposes. In the subsequent sections, the main aspects of Kaldi

related with data preparation, feature extraction and deep neural networks are

covered.

4.2.2 Data preparation and language modeling

Before running any script, we must prepare the data. This step will allow not only

to run our own databases, but also the standard ones. As commented in 4.2.1,
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Kaldi is based on FST-framework. Thus, any language that can be represented as

a FST graph can be used in Kaldi. If any language can not be represented as a

FST, we can convert it by employing IRSTLM toolkit. Further information about

this extension can be read in Povey et al. (2011).

Data preparation is an essential step to ensure a proper functionality of the

scripts. In order to clarify further explanations, the tree directory for any generic

database �SS� is given in Figure 4.1:

Figure 4.1: Folder tree structure in KALDI

The �rst stage is the con�guration of the execution variables. In SS folder, we

must con�gure:

• The script �cmd.sh� links hardware and software setup. If we are running
on IITM Libra Cluster (refer as Libra), all the variables on this script must
point to a �le called �queue.pl �. I would like to make an appreciation about
�queue.pl � script. Kaldi is optimized for Sun GridEngine (SGE), an admin-
istrative solution for executing batch jobs (mainly, shell scripts) in UNIX.
Thus,for Libra, we must check that our �queue.pl � �le is con�gured with the
proper SGE commands. Our laboratory con�guration for �queue.pl � will not
work as it is based on TORQUE, a di�erent solution for queuing the jobs
with di�erent commands.

• The script �path.sh� links the program with the folder where Kaldi was
compiled. All the path variables must point to that folder.

Once we have con�gured the execution variables, we must setup the data prepa-

ration. Inside �/data� folder, three main �les have to be con�gured:
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• The �/local � folder contains the dictionary for the current database. As seen
in Figure 4.1, we can distinguish:

� The �/local/dict� folder. Several �.txt� �les are located inside: � lex-
icon.txt�, �non-silence.txt� and �silence.txt�. On these �les, we can
de�ne the lexicon, the silence and non silence phonemes.

� The �/local/lang� folder. It can be created using the script "utils/prepare_lang.sh".
Here, �words.txt� and �phones.txt� are located. Based on OpenFst li-
braries, they represent the conversion from string to integers and back.
It is needed for the FST framework. Further information about FST
can be read in Mohri et al. (2002).

• Folder �/train� is related with the train dataset. Three key �les are found
in this folder: "utt2spk" gives information about the number of speakers
that pronounce an utterance, �wav.scp� links the database with the main
program when extracting features and �text� contains the transcriptions of
each utterance.

• Structure in �/test� folder is similar to �/train�, but it contains the data for
testing stage.

Regarding the other folders in Figure 4.1, �/tools� has extra add-ons to manip-

ulate the output. Folder �/steps� has all the execution �les.

4.2.3 Feature extraction in Kaldi

The feature extraction in Kaldi is focused on MFCC features. Features are com-

puted as explained in Chapter 2. Before running the extraction algorithm, we

must sort all the links to the database in the �le �wav.scp�. If case we do not

do this step, as random inputs are given to the program, MFCC coe�cients will

present small variations. This will yield in a mismatch between the baseline and

the obtained results. The algorithm can be described as follows:

1. Frame the input signal with a window of 25 ms with 10 ms shift.

2. For each frame:

• Frame preparation: Extract data, dithering, pre-emphasis, DC o�set
suppression and multiplication by Hamming window.

• Compute FFT and power spectrum.

• Triangular Mel-Filterbank with 23 triangular �lter.

• Compute the log and take 13 MFCC coe�cients.

• Liftering operation to give equal weights for all the coe�cients.
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After the extraction, we will get 13 dimensional MFCC features. Cepstral

mean and variance normalization (CMVN) is applied to those features to achieve

noise robustness.

4.2.4 Features pre-processing and models building

Neural networks will give better accuracy if MFCC features are improved. Hence,

a �pre-processing� stage is necessary. This procedure consists on several speech

recognition techniques applied on MFCC features. These techniques are explained

in Chapter 2. A schematic overview of the process is given in Figure 4.2

Figure 4.2: Features pre-processing

We would like to remark that procedure on Figure 4.2 corresponds to the

�ow execution diagram in our scripts. From the 13 MFCC features, monophone

model is computed. In Kaldi, monophone system is treated as a special case of a

context-dependent system, with zero phones of left and right context. Once the

monophone is trained, we must get the alignment with the data in order to train

the CDHMM system. This is done using expectation maximization algorithm.
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Afterwards, splicing is done over these features with 9 frames before and after

each center frame. LDA analysis is performed to get discriminant features with

40 dimensions and also to decorrelate the input. The output will be decorrelated

again using MLLT. At this stage, a speaker adaptation (SAT) should be done.

However, we must introduce a control mechanism:

• If the database is Hindi (A=1), the utterances are very short (maximum
one second) and SAT algorithm does not have enough data to make a good
estimation. In addition, our databases do not have any speaker label for the
utterances, yielding into an imprecise adaptation.

• If we are using RM or TIMIT (A=0) we can perform SAT as the utterances
are longer and the speaker labels utterances are present.

Afterwards, in both cases, we compute fMLLR to normalize the speaker varia-

tion. The whole procedure yields into a baseline of 40 dimensional fMLLR features.

This baseline will be the input in the deep neural network scripts.

4.2.5 Deep Neural Networks in Kaldi

Deep Neural Networks are implemented in Kaldi from two di�erent computational

approaches: A �rst script for CPU architectures and a alternative one which takes

advantage of parallel programming in a graphic processor or GPU.

4.2.5.1 DNN implementation on CPU

CPU implementation performs DNN training using fMLLR features extracted in

Section 4.2.4. The �rst step is to accumulate LDA statistics. As commented

in Povey et al. (2011), this LDA is a Kaldi script which implements a slightly

di�erent analysis fromHaeb-Umbach and Ney (1992): it is done to scale down the

dimension and decorrelate the input. The main reason of this previous step is to

reduce the �non-informative� part of the data which degrades the performance.

By making it smaller, SGD will just ignore it.

The input features are now dumped into the disk. This will lead into several

�les, copied from our extracted features, and with extension �X .Y.ark �. The X
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refers to the job index and Y is the iteration index. It depends on the data and

will be used during the training stage to perform that given number of iterations.

Afterwards, second stage is the neural network initialization. The activation

function for each neuron is �tanh� type. The initial neural network will have one

hidden layer and will be increased by two each iteration. The information about

the initial neural network (number of nodes, activation function , mini-batch size)

can be con�gured in an �le called: �nnet.conf�. In addition, we can also con�gure

the particularities of each new hidden layer in a �le named �hidden.conf �.

Next step is the training, performed by pre-conditioned SGD (refer Section

3.2.1). It is computed as a loop. The number of iterations are de�ned as the

number of epochs plus an extra margin. Our default number of iterations are 20.

On each iteration, we use di�erent data in di�erent jobs. We also calculate the

cross-entropy yielding into an exponential decay of the learning rate to improve

the accuracy. The smaller step size in the features space, more accuracy is gained.

In the last iterations, it will keep constant. At the �nal step, we will average the

models and the �nal fully trained deep neural network is obtained. A pseudo-

likelihood is computed to use as state emission probabilities in the HMM.

4.2.5.2 DNN implementation on GPU

GPU scripts implement DNN as explained in Section 3.3.3. Training procedure

is performed in CUDA. For a further explanation about the code and how deep

neural network model is copied into GPU memory, please refer the Appendix A.2.

First, several �les are created to split the data: 90 % of the train data is used

as a proper training set and the remaining 10 % is used as cross-validation set.

The activation function is given as a sigmoid. Afterwards, by taking the fMLLR

features computed in Section 4.2.4, we start to stack RBMs. As the input features

are Gaussian, the �rst RBM employs a Gaussian-Bernoulli distribution with lower

learning rate. Remaining RBMs are Bernoulli-Bernoulli with same learning rate.

To maintain the learning rate as constant during the training, we have to use

a momentum from 0.5 to 0.9 that will be used to rescale the learning rate as:
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1−m. Contrastive Divergence with one Gibbs sampling step (CD1) is computed

during all RBM training. Jointly, samples are taken from the data by performing

sentence-level and frame-level shu�ing. In addition, a L2 regularization to avoid

over�tting: with a penalty factor of 0.0002 is used.

Second part of the code performs frame-level cross-entropy training. By em-

ploying the SGD with a given learning rate and a mini-batch size, we train the

DNN to classify frames intro triphone states. We use sentence-level and frame-level

shu�ing to pick up the samples from the training dataset. When DNN improve-

ment between two iteration is less than 0.5%: learning rate is reduced by half and

the DNN is re-trained again. This procedure is repeated until improvement is less

than 0.1%. The �nal step is to compute the posterior probability of each HMM

state.

4.3 Hardware Setup

All the experiments and simulations have been run on IITM Libra Cluster. The

job queue management system is based on Oracle SGE with 4.4.6 GCC compiler

version. DNN computations have been performed on three NVIDIA Tesla M2070

GPU, with 6GB graphic memory and 448 CUDA cores. Feature extraction and

rest of procedures were computed using Intel Xeon x5675 with 24 CPUs working

at a frequency of 3.07 GHz and 1288 KB cache size.

4.4 Experimental Setup

4.4.1 Baseline Parameters

Table 4.1 shows the baseline systems for RM, TIMIT and Hindi. For all the

databases, the total number of HMM states was 8. The silence is con�gured as

context-independent phone with 5 states and the remaining states are belong to the

context-dependent phones.The total number of CPU jobs was set to 20. Baseline
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systems were built with a speci�c number of tied-states and Gaussian mixtures.

For each language, the number of tied states, Gaussian mixtures, number of phones

and Word Error Rate (WER) are listed in Table 4.1:

Dataset #Ph

CDHMM

Triphone LDA+MLLT

#Ts #Gauss #Ps % WER #Ts #Gauss #Ps % WER

RM 47 1449 9017 0.71 3.41 1479 9020 0.71 2.74

TIMIT 38 402 2710 0.22 28.38 395 2705 0.22 25.45

Hindi (1hr)

42

383 1803 0.14 14.92 382 1806 0.14 14.31

Hindi (3hr) 454 2206 0.17 11.59 470 2204 0.17 10.77

Hindi (5hr) 571 4216 0.33 9.10 577 4212 0.33 8.44

Hindi (22hr) 1061 10834 0.86 5.75 1090 10823 0.86 5.68

#Ph - Number of Phones, #Ts - Number of tied states, #Gauss - Number of Gaussians, #Ps - Parameters (million)

Table 4.1: CDHMM baseline parameters

4.4.2 DNN simulations

The following subsections disseminate the obtained di�erent results. To avoid

overwhelm the reader, we have only selected the relevant results. More detailed

and extended results are included in the Appendix A.3. DNN performance was

evaluated for GPU and CPU on TIMIT, Hindi and RM databases. In addition,

DNN on Hindi database has been studied for di�erent parameter variations. The

time has been measured for all the training stage. CPU jobs were �xed to 20.

Mini-batch size was 256 an initial learning rate was 0.008 for GPU and 0.002

for CPU. Following the same pre-processing procedure discussed in Section.4.2.4,

before extracting the fMLLR features, SAT was performed only in RM and TIMIT

databases. Several simulations for number of parameters, hidden layers, simulation

time and learning rate were conducted:

• DNN - CPU baseline con�guration
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Dataset
DNN (CPU)

#Hn #Hl #Id #Od #Ps Time (min) %WER

RM 1126

4 360

1495 7.2 143 1.92

TIMIT 793 1057 4.8 1505 21.57

Hindi (1hr) 250 384 11.1 70 13.79

Hindi (3 hr) 1761 470 11.9 126 9.86

Hindi (5 hr) 1181 472 7.6 252 6.65

Hindi (22 hr) 1741 1090 12.1 970 3.89

# Hn - Number of Hidden Nodes, # Hl - Number of Hidden layers, # Id - Input dimension, # Od - Output dimension, #Ps -

Parameters (million)

Table 4.2: DNN trained on CPU baseline results

• DNN - GPU baseline con�guration

Dataset
DNN (GPU)

#Hn #Hl #Id #Od #Ps Time (min) %WER

RM 1024 6 440 1495 7.2 43 1.74

TIMIT 1024 6 360 1940 4.7 242 21.39

Hindi (1hr) 2000 5 440 384 3.6 32 14.26

Hindi (3 hr) 2000 7 440 470 10.6 63 10.30

Hindi (5 hr) 2048 6 440 698 19.11 123 6.60

Hindi (22 hr) 2048 6 440 712 21.3 275 3.74

# Hn - Number of Hidden Nodes, # Hl - Number of Hidden layers, # Id - Input dimension, # Od - Output dimension, #Ps -

Parameters (million)

Table 4.3: DNN trained on GPU baseline results

• Variation of number of input parameters and simulation time
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# Ni

Hindi (1hr) Hindi (3hr) Hindi (5hr) Hindi (22hr)

Time (min) % WER Time (min) % WER Time (min) % WER Time (min) % WER

3 45 15.95 105 10.57 109 7.00 719 3.98

4 54 14.06 123 9.86 240 6.77 838 3.97

6 70 13.79 166 10.31 306 7.71 1190 3.89

8 92 16.58 248 10.53 345 7.14 1360 3.91

10 110 14.37 271 10.29 472 7.20 1549 3.92

# Ni - Number of input parameters (million)

Table 4.4: DNN trained on GPU baseline results

• Tuning the learning rate

# Lr

Hindi (1hr) Hindi (3hr) Hindi (5hr)

#Ps Time (min) % WER #Ps Time (min) % WER #Ps Time (min) % WER

0.001 11.1 77 15.66 15.8 158 11.69 7.6 171 6.82

0.002 11.1 70 13.79 11.9 126 9.86 7.6 252 6.65

0.003 8.5 123 17.21 15.9 156 9.99 7.6 191 6.74

0.004 8.4 60 14.53 15.9 159 10.39 7.6 124 6.98

#Lr - Number of input parameters (million), #Ps - Number of input parameters (million)

Table 4.5: Variation of learning rate

4.5 Discussion

4.5.1 Baseline CDHMM results

The Table 4.1 shows the baseline parameters for the CDHMM system. The results

for �LDA+MLLT� give improved results when compared to triphone model for all

of the cases. As instance, for Hindi 5 hours, we achieve an improvement of 7.25%

over basic triphone model. Also, as the database grows in time, the number

of parameters also increases as the data needed to be estimated is larger. This

baseline is used as basic features to build the DNN systems.
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4.5.2 DNN baseline results

Table 4.1 and 4.3 gives the best DNN results for the baseline. Substantial re-

ductions in the WER are achieved in DNN. A closer look at Table 4.2, when

comparing DNN with �LDA+MLLT� system, the DNN on a CPU gives a relative

improvement of 15.24% and 29.92% for RM and TIMIT respectively. Moreover,

if we contrast the results with triphone model, an enhancement of 43.69% for RM

and 23.99% in TIMIT are obtained. For Hindi databases, DNN also improves the

baseline results. Comparing with �LDA+MLLT �, in small datasets, Hindi 1 hour

improves 3.63% and Hindi 3 hours does 8.44%. Furthermore, improvement is up

to 21.21% and 31.51% for 5 and 22 hours respectively.

But the most astonishing results are for the GPU implementation in bigger

datasets. An almost identical results of 1.74% and 0.35% were achieved in Hindi 1

hour and Hindi 3 Hours when compared with �LDA+MLLT �. However, the DNNs

that performed best on the validation belong to larger databases. Comparing with

�LDA+MLLT � system, relative improvement in Hindi 22 hrs goes up to 21.8%,

meanwhile in Hindi 5 hours is 34.15%.

Furthermore, the number of parameters give an important observation. First,

the number of parameters needed in the models will increase as the database

becomes larger. This is due to the estimation of DNN to converge into a solution

with successful accuracy.

We notice that for Hindi in 1 hour on GPU, even for a good performance,

DNN parameters decrease up to 3.6 million, meanwhile in CPU the number of

parameter is 11.1 million. This is due to the con�guration of the scripts. As

commented in Section4.2.5, in CPU we add two hidden layer per iteration. If the

improvement is good, then we continue the training, if not, we re-initialize the

weights. The procedure of adding layers an re-estimating parameters yields into a

slower, but better convergence. In contrast, when we train on GPU, it will take full

advantage of the parallelism and it will converge faster. For Hindi 1 and 3 hours,

the di�erence in performance is due to the random initialization of the weights

done by Kaldi at the beginning of the training. Even if we have learning rate or
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topology constant, it leads into an unwanted convergence. That can be a problem

for small datasets. Notice that for small datasets, the way GPU script uses to

initialize the neural network is not good and performance is degraded. When the

data is increased, the GPU computation is able to do a better estimation as it has

enough data to re-train the DNN e�ectively.

Notice the huge improvement regarding the simulation time between CPU and

GPU for all the databases. From Table 4.2 and Table 4.3, we can observe that

the simulation time is almost halved. Experiments show that DNN computation

on GPU when the dataset is large is a better option: Less number of parameters

and better accuracy can be achieved.

As a remark, notice that in Table 4.2 and Table 4.3 when the number of

parameter increases, the complexity of the network will also increase. This heads

into an increment of the model size when dumping models on disk. We must be

extremely careful about this fact if we are training the DNN on a GPU. Kaldi

allocates the whole DNN with the initial number of parameters inside the GPU

memory (refer Appendix A.2). When stacking the RBMs, the model size increases.

If we do not have enough GPU memory, a segmentation error is thrown. As we

are simulating on Libra with three graphic cards, the total memory is up to 18

GB and it will not be a major issue. But if the simulation is done on a single

GPU with less graphic memory, training the DNN can become impossible. A good

practice to avoid this is to train the stack of RBMs on the CPU and, if size of

the neural network is less than the GPU memory, then allocate the resulting DBN

inside the GPU.

4.5.3 Initialization and Convergence

The simulations in Table 4.4 are conducted to determine how the accuracy of the

DNN changes regarding the number of input parameters. The learning rate was

0.002 and the number of initial hidden layers are �xed by 2. The time needed for

convergence is also recorded. We can observe two important facts. As we increase

the number of parameters, the time to reach stable results will also increase.
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Second, the initial number of parameters also plays a fundamental role in DNN

behavior. As discussed in Figure 3.7, if we initialize the neural network with some

random parameters that are not near the convergence region, it will be stuck in

any local minima. Simulations in Table 4.4 show that for Hindi language. As an

illustration, we can notice that for every number of parameters, in Hindi 5 hours

dataset, it get stuck in local minima, except in 4 million parameter which is the

optimal case. Further simulations (refer Appendix A.3) do not show any major

improvement as we are introducing redundant information and it will increase the

simulation time. Same discussion is extendable for the other datasets. In addition,

notice the big performance jump in Hindi 1 hour with 8 million parameter as initial

con�guration. In this case, performance is very poor due to an over�tting problem.

When shu�ing frames at the beginning of the training, it is taking noisy frames,

leading into a noise modulation. This yields in wrong initial con�guration and

hence, in an erroneous convergence.

4.5.4 Variation of learning rate and hidden layers.

Experiments on Table 4.5 shows the variation on the learning rate, simulation time

and accuracy. These simulations were made by taking the best DNN architecture

in Table 4.2. Notice that the change is very dramatic. As commented in Chapter

3, the learning rate gives the magnitude of the jump in the error surface of the

cost function. If the learning rate is increased, the weights of the neural network

oscillates, moving downhill or uphill, leading into an erroneous convergence. For

example, for Hindi 3 hours, the number of parameters oscillates around 15.9 mil-

lion, and only at the best result case, the parameters decrease properly because

the solution is optimal. In addition, if decreased, oscillations happen too. More-

over, if the learning rate is too low, the jump in the error surface is smaller and

simulation time will grow.
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Chapter 5

Conclusions

This thesis has addressed the question of whether deep neural networks can be

useful as acoustic models in automatic speech recognition systems. We succeed

in that task by showing that they can if they are optimized properly. For many

years, HMM's solutions have been proved to be e�ective. However, they su�er

several drawbacks which yield into poor discrimination. Given those drawbacks,

new alternatives have to be studied.

Deep Neural Networks are becoming the state-of-the-art technique in speech

recognition. By imitating the human brain, they are well known for their ability

to learn from the features, tolerate noise, and support parallelism. Thus, DNN's

will be a future success in ASR systems.

We have explored two di�erent approaches to use DNNs as acoustic models.

The �rst approach is based on CPU computation. Experiments conducted on this

architecture shows a relative improvement of 43.6 % over CDHMM's solutions for

Resource Management and 23.9 % for TIMIT. For a small Hindi dataset of 1 hour,

a improvement of 7.59 % is achieved with respect CDHMM.

The second approach is based on parallel computing on a GPU. This approach

proved much more successful in terms of results and speed. DNNs takes advantage

of parallel computing and outperforms the previous results on CPU. A relative

improvement of 48.9 % for RM and 24.63 % for TIMIT on GPU architecture has

been achieved. In addition, for Hindi language, an improvement of in Hindi 5 hrs

with 25.3 % and Hindi 22 hours with 34.4 % were achieved. With our results, we

support the previous research on this �eld and we show that DNNs stand as an

excellent solution for building ASR systems in Hindi language.

Future lines of research can focus on the implementation of better training

procedures, feature improvement and neural networks architectures. However, we



believe that deeper research into neuro-science theories about how human brain

learns will lead into new computational techniques that will overtake the actual

solutions.
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Appendix A

A.1 Derivation of the learning rule for RBM

The learning rule for an RBM in equation 3.17 can be expressed as:

W n = W n−1 − ε(∇W (−log p(x))) (A.1)

According to 3.13, we can rewrite:

W n = W n−1 − ε(Eh[
δE(v, h)

δwij
|v]− Ev,h[

δE(v, h)

δwij
]) (A.2)

where the �rst term is related with the data and the second concerns the model.

We commented in 3.14 the need to make a sample from the model in order to

compute equation A.2. Thus,

W n = W n−1 − ε(Eh[
δE(v, h)

δwij
|v]− Eh[

δE(v, h)

δwij
|ṽ]) (A.3)

In order to derive the learning rule, we need to compute the derivative of the

energy. Thus, taking the energy function in 3.9:

δE(v, h)

δwij
=

δ

δwij
(−

∑
i

∑
j

hjwijvi −
∑
i

ckvi −
∑
j

bjhj) (A.4)

As the derivative of the biases do not depend on the weights , they will be zero.

EquationA.4 becomes:

δE(v, h)

δwij
=

δ

δwij
(−

∑
i

∑
j

hjwijvi) (A.5)



Therefore

δE(v, h)

δwij
= −hjvi (A.6)

Hence, from A.2, we can say :

Eh[
δE(v, h)

δwij
|v] = Eh[

δE(v, h)

δwij
|v],

=
∑
−

hj

hjvip(hj|v) (A.7)

By de�ning h(v) as the activation sigmoid function, from previous results in

equationA.7 we can rewrite A.3 as :

W n = W n−1 + ε(h(v)vT − h(ṽ)ṽT ) (A.8)

which is the same as equation 3.17
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A.2 Parallel Computation: A CUDA tutorial

In this section, we present a brief overview of CUDA programming application

in Kaldi. More speci�cally, we will focus on how the matrix is allocated on the

GPU. It does not intend to be an in depth description, but a helpful one for any

reader who wants to work with Kaldi and DNN on a GPU giving some basic idea.

For further explanations, we suggest to visit read related literature ( Nukada and

Matsuoka (2009))

A.2.1 CUDA brief overview

CUDA or ComputeUni�edDevice Architecture is a C/C++ extension optimized

for GPU computing exclusively on NVIDIA graphic cards. CUDA de�nes a com-

puting dual paradigm : Part of the code which is run by the host (CPU) and

remaining part of the code is run by the device (GPU) in a �kernel �. It also

proposes a hierarchical execution model:

• The kernel or function executed on the GPU as an array of threads in parallel
with an unique ID.

• Hierarchy can be resumed as:

• When we are computing matrix multiplication, it takes not single elements
but full rows and columns, which are processed in parallel.

A memory model divided in Shared (only host can write) , Local (only for

devices) and Global ( host and devices) memory is also de�ned.

A.2.2 Copying the DNN into the GPU

The DNN and the RBM must be allocated to inside the GPU if trained. The

transfer to the memory happens when a class object CuMatrix is created. If we

are working with vectors, we use Then, we copy the data into the GPU memory

using the special command cudaMemcpy. The general procedure used by Kaldi

when is trying to allocate a matrix �data� inside the GPU is shown below:
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Algorithm A.1 Kaldi GPU allocation

# We check if there is any GPU active CuDevice(char * name, int32 len, int32

dev)

# if (device)

• Select the GPU CuSelectGPUId( GPU_id )

• Copy the matrix cudaMemCopy( data , sizeof (data), cudaMemCpyhost-
ToDevice)

• Perform computations on GPU by executing kernels.

• Get the data back cudaMemCopy ( data , sizeof (data), cudaMemCpyde-
viceToHost)

• Clean the memory cudaFree( GPU_id )
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A.3 Additional tables

Tables regarding the initial number of parameters and the simulation

time for datasets.

# Ni
Hindi (1hr) Hindi (3hr) Hindi (5hr)

Time (min) % WER Time (min) % WER Time (min) % WER

1 28 14.78 86 10.14 157 7.21

2 39 14.32 88 10.45 187 6.60

3 45 15.95 105 10.57 109 7.00

4 54 14.06 123 9.86 252 6.65

5 62 14.69 138 10.49 289 7.19

6 70 13.79 166 10.31 306 7.71

7 85 14.38 217 11.46 323 7.50

8 92 16.58 248 10.53 345 7.14

9 95 14.88 242 10.41 404 7.12

10 110 14.37 271 10.29 472 7.20

# Ni - Number of input parameters per million.

Table A.1: WER variation for Hindi - 1hr, Hindi - 3hr and Hindi - 5hr

# Ni
Hindi (22hr)

Time (min) % WER

3 719 3.98

4 838 3.97

5 965 3.89

10 2110 3.92

20 2900 4.21

25 2983 4.17

Table A.2: WER variation for Hindi - 1hr, Hindi - 3hr and Hindi - 5hr
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