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ABSTRACT

High speed cameras are very bulky and costly and we want to construct high frame

video sequence from low frame rate video. The idea is to obtain the ego motion of

the camera and once we have the ego motion i.e. the trajectory of the camera we can

use it to estimate the how the scene has moved between consecutive frame. We use

event based sensors to calculate the ego motion. Event-based sensors are built with

biological inspiration and differ greatly from traditional sensor types. A standard vi-

sion sensor uses a pixel array to produce a frame containing the light intensity at every

pixel whenever the sensor is sampled. Event-based sensors, on the other hand, are

typically substantially sparser in their output, producing output events that occur upon

informative changes in the scene, usually with low latency and accurate timing, and are

data-driven rather than sampled. The outputs produced by these novel sensor types dif-

fer radically from traditional sensors. Unfortunately, these differences make it hard to

apply standard data analysis techniques to event-based data, despite the advanced state

of computational techniques for image understanding and acoustic processing. Machine

learning especially has made great strides in recent years towards scene understanding,

and particularly in the area of deep learning.

We use two approaches. First is to reconstruct the in between frames by image to im-

age translation using conditional adversarial generative network. Generative adversarial

network have shown a great amount of success in the recent years. The network make

use of the first SLR, last SLR and in between event frames(constructed by clubbing the

all the events in between a time interval) to reconstruct the intensity image between the

consecutive images. There are various drawback of this method so we move to second

approach. Second approach is to first construct intensity image directly from the event

frame. Once we have intensity image we can use it to get the relative pose between the

SLR frames and the reconstructed event frame. There are two network DispNet and

PoseNet. Pose net is used to obtain relative pose between the reconstructed intensity

frames and DispNet is used to compute the depth. We use deep prior to train PoseNet

and DispNet.
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CHAPTER 1

Introduction

1.1 Problem statement and method

Our motivation is to construct high frame rate video sequence from low frame rate

CMOS camera using event based sensor. There are already high speed camera but they

are bulky, costly and consume lots of power. All these cameras are not data driven. They

capture lot of redundant information like they keep on capturing video event when there

is no scene change thereby wasting power and storage. Instead of capturing high frame

rate video we can capture low frame rate video and use event based sensors to estimate

the in between frames.

Figure 1.1: Reconstruction of in between frames using event based data

There are two ways of reconstructing in between CMOS frame. First is directly

estimate the CMOS frame using deep learning architecture.We try conditional gener-

ative adversarial network to reconstruct the in between frames. Second is to learn the

geometry of the scene. Using the images of low frame rate CMOS camera we estimate

the depth of the scene and with the events data we first construct event frame by com-

bining the events between in between time interval. The event frames are then used to



reconstruct sudo intensity frames. Sudo intensity frames and the obtained depth map

are used to compute the relative pose between the sudo intensity frame. Now we have

the depth as well as pose for the in between event frames. We warp the first and the last

image of the low frame rate camera to warp the in between frame.

We reconstruct the photo-realistic image using event based sensors keeping the follow-

ing day to day problem in consideration First, power constraints are an ever-present

constraint on real world implementations. We cannot consume arbitrary amounts of

energy to perform an intended task.Second, real-world timing and latency constraints

are perennial.
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CHAPTER 2

Prior Work

There have been lot of recent work on Neuromorphic or event-based cameras. The low

latency compared to traditional cameras make them particularly interesting for track-

ing rapid camera movement. Also more classical low-level computer vision problems

are transferred to this new domain like optical flow estimation, or image reconstruc-

tion. We will survey on problems that benefits the most from the temporal resolution

of event cameras: camera pose tracking as proposed in this work. Typical simultaneous

localization and mapping (SLAM) methods need to perform image feature matching to

build a map of the environment and localize the camera within [1]. Having no image

to extract features from means, that the vast majority of visual SLAM algorithms can

not be readily applied to event-based data. Milford et al. [2] show that it is possible to

extract features from images that have been created by accumulating events over time

slices of 1000 ms to perform large-scale mapping and localization with loop-closure.

A different line of research tries to formulate camera pose updates on an event basis.

Cook et al. [3] propose a biologically inspired network that simultaneously estimates

camera rotation, image gradients and intensity information. An indoor application of a

robot navigating in 2D using an event camera that observes the ceiling has been pro-

posed by Weikersdorfer et al. [4]. They simultaneously estimate a 2D map of events

and track the 2D position and orientation of the robot. Similarly, Kim et al. [5] pro-

pose a method to simultaneously estimate the camera rotation around a fixed point and

a high-quality intensity image only from the event stream. A particle filter is used to

integrate the events and allow a reconstruction of the image gradients, which can then

be used to reconstruct an intensity image by Poisson editing. All methods are limited

to 3 DOF of camera movement. Guillermo Gallego et al. [9] propose an implicit Ex-

tended Kalman Filter (EKF) approach to localize the DVS with respect to a given dense

map of the 3-D scene (consisting of geometric and photometric information) without

additional sensing, just using the information contained in the eventstream. The map is

not constrained to consist only of lines and it is also richer in brightness changes.They



allow for localization in the general case of 6-DOF motion of the DVS and design the

filter accordingly.

Benosman et al. [6] tackle the problem of estimating optical flow from an event

stream. This work inspired our use of an event manifold to formulate the intensity im-

age reconstruction problem. They recover a motion field by clustering events that are

spatially and temporally close. The motion field is found by locally fitting planes into

the event manifold. In experiments they show that flow estimation works especially

well for low-textured scenes with sharp edges, but still has problems for more natural

looking scenes. Barua et al. [7] use a dictionary learning approach to map the sparse,

accumulated event information to infer image gradients. Those are then used in a Pois-

son reconstruction to recover the log-intensities. Bardow et al. [8] proposed a method to

simultaneously recover an intensity image and dense optical flow from the event stream

of a neuromorphic camera. The method does not require to estimate the camera move-

ment and scene characteristics to reconstruct intensity images. In a variational energy

minimisation framework, they concurrently recover optical flow and image intensities

within a time window. They show that optical flow is necessary to recover sharp image

edges especially for fast movements in the image. In contrast, in this work we show

that intensities can also be recovered without explicitly estimating the optical flow.

Deep Learning have shown significant advancement in recent years. First we try to

generate the images directly using conditional adversarial network.It has the disadvan-

tage that it fails capture spatial information on those location where there are edges in

scene but the event based sensor has failed to capture due to similar intensity nearby

that edge. We obtain 6 DOF movement of the camera instead of calculating optical

flow. We also obtain depth of the scene. Using these information to warp in between

images. We forward warp from both side and then blend them to one. Since we are

obtaining global information our way is robust to small error or noise in event data.
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CHAPTER 3

Background

3.1 Event-Based Sensors

The sensor operates on logarithmic intensity, it has much greater dynamic range than a

standard image sensor. At top, the log intensity of the scene changes in continuous time.

When the log intensity increases by a threshold ON threshold) it produces an ON event

(bottom plot) and is then reset; when the log intensity decreases by a threshold (OFF

threshold) an OFF event is produced. The data rate therefore is dependent on the rate

of change in the scene and not the duration of the recording. These sensors with both

dynamic and active sensors allow easier comparison between traditional (frame-based)

inputs and event based inputs.

A traditional image sensor would produce a frame-based snapshot that is discon-

tinuous and marred by a blurring of this rapid input. The event-based input, however,

maintains a smooth surface over time and does not suffer from blurring. Moreover, if

the dot stops spinning, the frame-based sensor will continue to capture and transmit

a full frame of unchanging data, while an event-based sensor will produce no further

events until a change again occurs.

Standard CMOS cameras send full frames at fixed frame rates. On the other hand,

retinal cameras such as a DVS have independent pixels that generate spike events at

local relative brightness changes in continuous time. These events are timestamped and

transmitted asynchronously at the time they occur using a sophisticated digital circuitry.

Each event is a tuple < x, y, t, pt >, where x, y are the pixel coordinates of the event,

t is the timestamp of the event, and p ∈ {1,+1} is the polarity of the event, which is

the sign of the brightness change. This representation is sometimes also referred to as

Address-Events Representation (AER). The DVS has a resolution of 128 * 128 pixels.

Event cameras have numerous advantages over standard cameras: a latency in the order

of microseconds, a very high dynamic range (140 dB compared to 60 dB of standard

cameras), and very low power consumption (10 mW vs 1.5 W of standard cameras).



Most importantly, since all pixels capture light independently, such sensors do not suf-

fer from motion blur.

Figure 3.1: Event based sensor

3.2 GANs

GANs have two models: a generative model G that captures the data distribution, and

a discriminative model D that estimates the probability that a sample came from the

training data rather than G. The generator is simply a differentiable function. When z is

sampled from some simple prior distribution,G(z) yields a sample y drawn from Pmodel

. The training procedure for G is to maximize the probability of D making a mistake.

This framework corresponds to a minimax two-player game. The GAN framework pits

two adversaries against each other in a game. Each player is represented by a differen-

tiable function controlled by a set of parameters. The game plays out in two scenarios.

In one scenario, training examples x are randomly sampled from the training set and

used as input for the first player, the discriminator, represented by the function D . The

goal of the discriminator is to output the probability that its input is real rather than fake,

under the assumption that half of the inputs it is ever shown are real and half are fake.

In this first scenario, the goal of the discriminator is forD(x) to be near 1. In the second

scenario, inputs z to the generator are randomly sampled from the model’s prior over

the latent variables. The discriminator then receives input G(z), a fake sample created

by the generator. In this scenario, both players participate. The discriminator strives

to make D(G(z)) approach 0 while the generative strives to make the same quantity

approach 1.

GANs learn a loss that tries to classify if the output image is real or fake, while

6



simultaneously training a generative model to minimize this loss. Blurry images will not

be tolerated since they look obviously fake. Because GANs learn a loss that adapts to

the data, they can be applied to a multitude of tasks that traditionally would require very

different kinds of loss functions. We will use GANs in the conditional setting. Just as

GANs learn a generative model of data, conditional GANs (cGANs) learn a conditional

generative model. This makes cGANs suitable for image-to-image translation tasks,

where we condition on an input image and generate a corresponding output image.
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CHAPTER 4

Reconstruction using conditional generative adversarial

network

Generative Adversarial Networks (GANs) are state of the art architecture for generating

images as they use a differential adversarial architecture loss function.

4.1 Proposed method using cGAN

GANs are generative models that learn a mapping from random noise vector z to output

image y, G : z -> y. In contrast, conditional GANs learn a mapping from observed

image x and random noise vector z, to y, G : x, z -> y. The generator G is trained

to produce outputs that cannot be distinguished from real images by an adversarially

trained discriminator, D, which is trained to do as well as possible at detecting the

generator’s fakes.

4.2 Objective function

The objective function of conditional GAN can be expressed as

LcGAN(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z))]

Previous approaches have found it beneficial to mix the GAN objective with a more

traditional loss. The discriminator’s job remain unchanged, but the generator task is not

only to fool the discriminator but also to be near the ground truth. We try both L1 and

L2 loss function. L1 loss function seems to give less blurring:

LL1 = Ex,y,z[|y −G(x, z)|1]



Figure 4.1: Direct intensity image reconstruction using cGAN

So our final objective function is

G∗ = arg minG maxD LcGAN(G,D) + λLL1(G)

4.3 Network Architecture for cGAN

We tried two conditional adversarial network.First cGAN takes event frames as input

and tries to reconstruct intensity frames directly.The problem with this approach is that

it does not generalize well for the other data as the events data does not capture the in-

tensity information. The images produced by this network are not temporally consistent

as each frame is produced independent of the other frame.But it has great advantage if

we train on some data and try to reconstruct high frame rate video on the same data.

Since this does not generalize on other data we modify the architecture so that the net-

work can produce good results for on the data which the network has not seen before.

Second we add a LSTM in the latent space of the Generator to remove the tempo-

ral inconsistency in the frame produced by the network. We also add another encoder

module so that the network learn the texture information well, which it was not able to

capture directly from the event data.

9



Figure 4.2: Modified cGAN architecture

4.3.1 Generator with skip connection

All the prior image to image translation problems used encoder decoder network. In

these kind of network , input is passed through a series of layers that progressively

downsample until a bottleneck layer at which point the process is reversed. For such a

network all the information must flow through all the layers. The problem which we

are considering the structure in input is roughly aligned to the structure of the output.

The skip connections helps in retaining the overall structure.

Adding skip connection to the "U-Net" architecture helps us to bypass the bottleneck for

the information. Specifically , we add skip connection between each layer i and layer

n-i, where n is the total number of layers. Each skip connection simply concatenates all

channels at layer i with those at layer n-i.

4.3.2 LSTMs in latent space

LSTMs helps preserve the error that can be backpropagated through time and layers. If

we directly produce the images without LSTM, they donot have temporal consistency.

So, to get temporal consistency we add LSTM in hidden layers. It has advantage that the

10



video produced are temporally consistent. But it has one disadvantage that it remembers

spatial information.
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4.4 Results using cGAN

4.4.1 Results using cGAN

Figure 4.3: Results using cGAN directly

12



4.4.2 Results using modified cGAN

Figure 4.4: Intensity images generated using modified cGAN
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CHAPTER 5

Reconstruction using unsupervised depth and ego

motion

Since the conditional GANs learn only the local information. It fails for the cases in

which there is scene change but the event based camera has failed to record any change

may be due to similar texture.We try another geometric approach which is instead of

learning the local information if we can capture global information like depth and ego

motion of the camera. This will work even for the cases in which there is event based

data are spatially not recorded properly.

We aim to use the DVS for ego-motion estimation. The approach provided by tra-

ditional visual-odometry frameworks, which estimate the camera pose at discrete times

(naturally, the times the images are acquired), is no longer appropriate for event-based

vision sensors, mainly due to two issues. First, a single event does not contain enough

information to estimate the sensor pose given by the six degrees of freedom (DOF) of a

calibrated camera. We cannot simply consider several events to determine the pose us-

ing standard computer vision techniques, because the events typically all have different

timestamps, and so the resulting pose will not correspond to any particular time. Sec-

ond, a DVS typically transmits 105 events per second, and so it is intractable to estimate

the DVS pose at the discrete times of all events due to the rapidly growing size of the

state vector needed to represent all such poses.

For obtaining photorealistic reconstruction we propose to use a conventional image

sensor along with the event sensor. The conventional image sensor will compensate for

the lost spatial information due to encoding of events. In order to reconstruct photo-

realistic intensity images we warp the low frame-rate intensity images to intermediate

locations where only event data are available. Image warping requires the information

of scene depth and the ego-motion estimate of the sensor. To estimate scene depth we

use the low frame rate intensity images because they contain enough texture informa-

tion and to estimate the sensor ego-motion we use the temporally dense event sensor



data. We propose an unsupervised and learning free method for estimating scene depth

by explicitly enforcing geometric and photometric constraints between successive in-

tensity frames. We jointly estimate the dense depth map and relative pose between

successive images by warping one image to the location of the other and minimizing

the the photometric error between them.

As compared to intensity images, event data is more suitable for estimating the ego-

motion because they acquire data at a much higher temporal rate. However, event data

is generally noisy and the stochastic model of event generation makes it hard to rely on

the actual values of the events. For this reason, we initially map the events to pseudo-

intensity frames. We propose an autoencoder based deep learning model to learn this

mapping. Events do not hold any spatial intensity information, hence autoencoder can

only estimate pseudo-intensity images. We use the trained autoencoder based model

to estimate pseudo-intensity images at all intermediate temporal locations where we

would like to warp the conventional image frames. We now estimate the relative pose

between the estimated pseudo-intensity images and the two nearest intensity frames in

time. To estimate this relative pose we propose to use a direct matching based unsuper-

vised and learning free method similar to the one used for depth estimation. At each of

the temporal location we blend the two images obtained by forward mapping the two

nearest intensity frames.

We use preexisting unsupervised learning framework for the task of monocular

depth and camera motion estimation from video sequences. It has a limitation that

that this network requires lot of training and we don’t have lot of training data. The

network is trained on KITTI dataset. We try to fine tune the network for our task using

deep image prior. Deep prior can directly optimize the network but it fails in cases

where there is lot of movement of the scene.

This network consists of two module. First is the disparity net. It calculates the dis-

parity from the monocular image and inverse of the disparity gives depth. There is a

second architecture which is Pose net. It calculates the relative pose between the input

images.So we get the depth of one image(target image) from disparity net and pose with

respect to target image. We use depth and pose to inverse warp the other images to the

target image. Our loss function is photometric loss with respect to the target image. We

also use explainability mask loss and depth smoothning loss.

15



Our idea is to use these network to get depth between the two SLR frames. We

generate intensity image from the event frames between the two SLR images. Using

these intensity frame and the depth of the SLR frame obtained using disparity net we

calculate the relative pose between the reconstructed intensity frame and first SLR im-

age. Similarly we do with respect to second SLR image. Now we have the first and

the last frame i.e. two SLR images , their depth and relative pose for the in between

intensity images. We forward warp from both side and then use blending to merge the

images from both sides.

Figure 5.1: Basic framework of problem statement

5.1 Method to estimate depth from two unstructured

image

This framework jointly trains a single-view depth CNN and a camera pose estimation

CNN from unlabeled video sequences. Despite being jointly trained, the depth model

and the pose estimation model can be used independently during test-time inference.

Training examples consist of short image sequences of scenes captured by a moving

16



camera. While our training procedure is robust to some degree of scene motion, we

assume that the scenes we are interested in are mostly rigid, i.e., the scene appearance

change across different frames is dominated by the camera motion.

5.1.1 View synthesis

The idea behind depth and pose prediction CNNs comes from the task of novel view

synthesis : given one input view of a scene, synthesize a new image of the scene seen

from a different camera pose. We can synthesize a target view given a per-pixel depth

in that image, plus the pose and visibility in a nearby view.This synthesis process is

implemented in a fully differentiable manner with CNNs as the geometry and pose

estimation modules. Visibility, along with non-rigidity and other non-modeled factors,

are modled using an "explanability" mask.

5.1.2 Depth image-based rendering

Here we have the we want to warp the reference image to target image. Let pt denote the

homogeneous coordinate of a pixel in the target image,K denotes the intrinsic matrix of

the camera. We want to project pt from target image to the source image. We first move

from target image frame to camera frame by multiplying depth and inverse of intrinsic

matrix (D̂tK
−1pt). Now we apply translation and rotation in camera domain. Using

pose net we get 4*4 transformation matrixT̂t−→s . We multiply transformation matrix

T̂t−→s and coordinates in camera frame (D̂tK
−1pt) to get the transformed coordinates in

camera frame T̂t−→sD̂tK
−1pt. The coordinates in the camera frame are back projected

to pixel frame by multiplying with K. So we can obtain the projection of a point in

target image pt to the source image by

ps ∼ KT̂t−→sD̂tK
−1pt

The projected coordinates ps are continuous values. We use bilinear interpolation

to linearly interpolate the the value of 4-pixel neighbours of ps to approximate Is(ps)

i.e. Is(ps) =
∑

iε{t,b},jε{l,r}w
ijIs(p

ij
s ), where wij is linearly proportional to the spatial

proximity between ps and pijs and
∑

i,j w
ij = 1. Whereas t, b, l, r represent top, bottom,

17



left and right.

5.2 Photometric loss

Let < I1, ...., IN > be the training image sequence with one of the frames It being the

target image and the rest being source view Iz(1 ≥ s ≤ N, s 6= t). The Objective

function can be formulated as

Lvs =
∑
s

∑
p

|It(p)− Îs(p)|

where p indexes over pixel coordinates, and Îs is the source view Is warped to the

target coordinate frame based on a depth image-based rendering module, taking the pre-

dicted depth D̂t, the predicted 4*4 camera transformation matrix T̂t−→s and the source

view Is as input.

The above view synthesis formulation uses monocular videos assuming that the

scene is static without object moving in it, there should be no occlusion or disocclusion

between the target and the source images. There can be such cases in our data. To

tackle this problem we use a explainability prediction network that outputs a per pixel

mask Ês for each target source pair. This gives a network’s belief in where direct view

synthesis will be successfully modeled for each target pixel. Using Ês the objective

function becomes:

Lvs =
∑

<I1,...,IN>εS

∑
p

Ês(p)|It(p)− Îs(p)|

Since we do not have direct supervision for Ês, training with the above loss would

result in a trivial solution of the network always predicting Ês to be zero, which per-

fectly minimizes the loss. To resolve this, we add a regularization term Lreg(Ês) that

encourages nonzero predictions by minimizing the cross-entropy loss with constant la-

bel 1 at each pixel location.

We also use smoothness loss that allows gradients to be derived from larger spatial

18



regions directly.For smoothness, we minimize the L1 norm of the second-order gradi-

ents for the predicted depth maps. So our final objective becomes:

Lfinal =
∑
l

Llvs + λsL
l
smooth + λe

∑
s

Lreg(Ê
l
s)

5.3 Network Architecture for estimating depth

Figure 5.2: Disparity and Pose network

5.3.1 Disparity net

Forr single-view depth prediction, we use the Disparity net architecture that is mainly

based on an encoder-decoder design with skip connections. All conv layers are followed

by ReLU activation except for the prediction layers, where we use 1/(α∗sigmoid(x)+

β) with α = 10 and β= 0.01 to constrain the predicted depth to be always positive within

a reasonable range.
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5.3.2 Pose Net

he input to the pose estimation network is the target view concatenated with all the

source views (along the color channels), and the outputs are the relative poses between

the target view and each of the source views. The network consists of 7 stride-2 con-

volutions followed by a 1*1 convolution with 6*(N-1) output channels (corresponding

to 3 Euler angles and 3-D translation for each source view). Finally, global average

pooling is applied to aggregate predictions at all spatial locations. All conv layers are

followed by ReLU except for the last layer where no nonlinear activation is applied.

5.3.3 Explainability mask

The explainability prediction network shares the first five feature encoding layers with

the pose network, followed by 5 deconvolution layers with multi-scale side predictions.

All conv/deconv layers are followed by ReLU except for the prediction layers with

no nonlinear activation. The number of output channels for each prediction layer is

2*(N-1) , with every two channels normalized by softmax to obtain the explainability

prediction for the corresponding source-target pair.
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5.4 Results

Figure 5.3: Result on kitti dataset
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Figure 5.4: Result on kitti dataset
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Figure 5.5: Results on DAVIS dataset
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CONCLUSION

We combine the strength of a texture-rich low frame rate conventional camera with

a high temporal rate events camera to obtain photorealistic images at high temporal

resolution. We achieve this by warping the low frame rate intensity frames from the

conventional image sensor to intermediate locations. We compute dense depth maps

from the low frame rate images and sensor ego-motion from the events data by direct

matching of pseudo-intensity frames reconstructed from event frames. However, in this

paper we have assumed a static scene with the sensor in motion. Extending this to

dynamic scene will lead to a system for high speed imaging which will be far more

power efficient than any of the existing systems.
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