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ABSTRACT

KEYWORDS: Event Sensors, Image Reconstruction, 6-DoF pose estimation, Hy-

brid Sensors, Deep Image Prior

Event cameras are bio-inspired vision sensors that output pixel-level brightness changes

instead of standard intensity frames. They offer significant advantages over standard

cameras, namely a very high dynamic range, no motion blur, and a latency in the order

of microseconds. Due to the nature of event sensors, a lot of spatial intensity informa-

tion is lost. Previous attempts at recovering the intensity images use only event data.

We make use of an additional low frame rate conventional camera and pose the image

reconstruction problem as a novel view synthesis problem. Thus, we need to estimate

ego-motion of the event sensor in order to reconstruct intensity frames, at a higher rate

than the CMOS sensor. This task has been solved by using an unsupervised, learning

free method. We have additionally used consistency loss to further improve pose esti-

mation. Thus, we combine the strength of both by warping the low-frame rate video to

intermediate locations where we only have event sensor data, resulting in high frame

rate video. We show photorealistic reconstructions using this method on a real hybrid

sensor.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF FIGURES iv

1 INTRODUCTION 1

1.1 Problem Outline and Motivation . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND 3

2.1 Introduction to Event Sensors . . . . . . . . . . . . . . . . . . . . . 3

3 PRIOR WORK 4

3.1 Traditional Method . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Event Based algorithms for pose estimation . . . . . . . . . . . . . 4

3.3 Deep Learning algorithms for pose estimation . . . . . . . . . . . . 5

4 6-DoF POSE ESTIMATION FROM EVENTS 6

4.1 Overall Problem Formulation . . . . . . . . . . . . . . . . . . . . . 7

4.2 Pose estimation using deep image prior . . . . . . . . . . . . . . . 7

5 WARPING AND BLENDING 10

5.1 Forward Warping of Intensity Images to
Intermediate Location . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 α Blending to get final intermediate intensity frame . . . . . . . . . 11

6 RESULTS 12



LIST OF FIGURES

2.1 (a) Comparison of standard CMOS camera with event sensor output,
(b) visualization of output of event sensor . . . . . . . . . . . . . . 3

4.1 Event frame and corresponding pseudo-intensity frame . . . . . . . 6

4.2 Overall problem diagram. The highlighted part in yellow is the subject
of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.3 Architecture of PoseNet which is used as a handcrafted prior . . . . 8

4.4 Relative pose ξjk and ξ−jk have been estimated using PoseNet, via a
learning free unsupervised method . . . . . . . . . . . . . . . . . . 9

5.1 The figure shows forward warping in three steps. x denotes a 2-D im-
age point in homogeneous coordinates, whereas X denotes a 3-D point
in homogeneous coordinates. K=camera intrinsic matrix, R,T=relative
camera pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.1 Comparison of our results with Reinbacher et al. (2016) . . . . . . . 12

6.2 Results on DAVIS Dataset compared to [4] . . . . . . . . . . . . . 13

6.3 Position and Orientation error for the sequence "slider far" . . . . . 13

iv



CHAPTER 1

INTRODUCTION

1.1 Problem Outline and Motivation

As a result of the nature of the event sensor, unlike the conventional cameras, the spa-

tial intensity information is lost. The algorithms developed for frame-based computer

vision like object recognition, segmentation, etc. cannot be directly applied to event

sensors. There have been works that attempt to bridge this gap by developing algo-

rithms that convert event data back to intensity frames. Due to the high temporal res-

olution of event sensors, videos at a higher frame rate can be potentially obtained by

such methods.

All of the previous methods use only the event stream in order to reconstruct inten-

sity images. Due to this reason, the resulting reconstructed images using such methods

do not look photorealistic, and regions where there are no events can go missing in the

reconstructions. In order to avoid these issues, and to obtain more photorealistic recon-

struction of images, we propose to use a low frame rate conventional camera along with

the event sensor. Such a hybrid camera is commercially available, called Dynamic and

Active Pixel Vision Sensor (DAVIS). The high texture intensity images from the low

frame rate sensor can now be used to generate intensity images, by making use of the

event stream. We thus make use of the strengths of both: conventional camera which

has high texture intensity images and a event sensor which is sparse but has high tem-

poral resolution. This intensity image reconstruction pipeline can be divided into four

main blocks:

1. A learning free network for scene depth estimation using low frame rate intensity
images

2. An auto-encoder for mapping event data to pseudo-intensity frames

3. A learning free pose network for estimating sensor pose

4. A warping module to warp the intensity frames using estimated depth and pose



In this thesis, Parts 3 and 4 of the above mentioned pipeline are explained and

discussed in detail. That is, given the pseudo-intensity frames from event data and depth

for intensity images, pose of the intermediate intensity frame with respect to either of

the extreme frames have been obtained. Subsequently, in the warping module, both

these extreme frames have been forward warped to the intermediate temporal location

and blended using alpha blending.
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CHAPTER 2

BACKGROUND

2.1 Introduction to Event Sensors

Event sensors are neuromorphic sensors which are a paradigm shift away from the

traditional cameras. These sensors capture only the intensity changes in the scene, much

like a human retina. Hence, they have advantages like ultra-low response latency, low

data rate, high dynamic range and low power consumption over conventional cameras.

Standard CMOS cameras send full frames at fixed frame rates. On the other hand,

event-based sensors such as the DVS, have independent pixels that fire events at local

relative brightness changes in continuous time. Specifically, if I(x, y) is the brightness

or intensity at point u(x, y)T in the image plane, the DVS generates an event at that

location if the change in logarithmic brightness is greater than a threshold (typically

10-15% relative brightness change). These events are timestamped and transmitted

asynchronously at the time they occur using sophisticated digital circuitry. Each event

is a tuple ek =< xk, yk, tk, pk >, where xk, yk are the pixel coordinates of the event, and

pk ∈ −1,+1 is the polarity of the event, which is the sign of the brightness change. This

representation is sometimes also referred to as Address Events Representation (AER).

Figure 2.1: (a) Comparison of standard CMOS camera with event sensor output, (b)
visualization of output of event sensor



CHAPTER 3

PRIOR WORK

3.1 Traditional Method

Traditionally, 6-DoF pose estimation between two views from images is generally car-

ried out by first finding point or feature correspondences (x1 ↔ x2) in the images, and

subsequently estimating the essential matrix from the obtained point correspondences.

Essential matrix relates the point correspondences by enforcing the epipolar constraint

(3.1). Once the essential matrix has been estimated, relative camera rotation (R) and

translation (T ) can be extracted from it using (3.2).

xT2Ex1 = 0 (3.1)

E = T̂R (3.2)

3.2 Event Based algorithms for pose estimation

Due to high temporal resolution and low bandwidth requirements of event sensors, they

have been used for localization and ego-motion estimation, for various applications

ranging from drones to robots. Along similar lines, there has been an interest in Vi-

sual Odometry / SLAM algorithms research using event sensors. Kim et al. (2016)

estimates 6-DoF camera motion, log intensity gradient and inverse depth using three

decoupled probabilistic filters. Weikersdorfer et al. (2013) use only the event data for

visual SLAM. EVO (Event-based Visual Odometry) by Rebecq et al. combines an

event-based tracking approach based on image-to-model alignment with a recent event-

based 3D reconstruction algorithm to achieve 6-DoF tracking in real time. Recently,

a dataset by Mueggler et al. (2017) was proposed to benchmark event based pose es-

timation, visual odometry and SLAM algorithms. The dataset contains multiple video

sequences captured with DAVIS and sub-millimeter accurate ground truth camera mo-

tion acquired using a motion-capture system.



3.3 Deep Learning algorithms for pose estimation

There has been significant interest in recent times to tackle simultaneous pose and depth

estimation using supervised and unsupervised deep neural networks. Ummenhofer et al.

(2017) formulate structure from motion as a supervised learning problem. They employ

multiple encoder-decoder networks and additionally estimated surface normals and op-

tical flow, along with structure and motion. Zhou et al. (2017) use a PoseNet and

DispNet to estimate pose and depth in an unsupervised manner. Other recent works

by Mahjourian et al. (2018) and Kendall et al. (2015) tackle similar problems of pose

estimation using deep networks.

5



CHAPTER 4

6-DoF POSE ESTIMATION FROM EVENTS

In this chapter, we describe the approach we take to estimate the pose of intermediate

location. We use pseudo-intensity images in order to obtain 6-DoF pose of the sensor

in intermediate location, by using deep image prior as in Ulyanov et al. (2017). We

assume that depth map is available at all low frame rate intensity images. We describe

the problem formulation and the approach to solve it in detail in the following section.

As the event data contains noise which is dependent on various factors such as

threshold, scene illumination, etc and cannot be modelled, it is not suitable for matching

points or features. Hence, we map the event frames to pseudo-intensity frames (Fig

4.1). In order to learn this mapping, we propose an auto-encoder based deep learning

model, which has been explained in more detail in section 3.2.1 in "Photorealistic Image

reconstruction from Hybrid Intensity and Event based Sensor".

Figure 4.1: Event frame and corresponding pseudo-intensity frame

We propose to estimate pose by direct matching of these pseudo-intensity frames,

as detecting and matching feature points in two views for the noisy event data is very

challenging. We aim at reconstructing the intermediate intensity frames using this esti-

mated pose obtained from event data, and using the texture rich intensity frames from

the low frame rate conventional camera.



4.1 Overall Problem Formulation

Let two consecutive intensity images from low frame rate (25 fps) conventional cam-

era be Ik and Ik+1. The event data in the time between two frames (i.e. 40 ms), is

divided into N time blocks (each of time duration 40/N ms). Events in each of these

time blocks are accumulated to form an event frame. This way, the event stream be-

tween the two frames Ik and Ik+1 can be divided into N event frames denoted as ejk

where j = 1, 2, ..., N . These event frames mapped to pseudo-intensity frames Ej
k

where j = 1, 2, ..., N , using a learned auto-encoder based deep learning model as

mentioned above. In the following pose estimation algorithm, it is assumed that the

pseudo-intensity images Ej
k where j = 1, 2, ..., N corresponding to the event frames ejk

where j = 1, 2, ..., N and E0
k and E0

k+1 temporally corresponding to Ik and Ik+1 are

available. Furthermore, depth for intensity frames Ik and Ik+1 are also assumed to be

available. The dense depth maps used in this work have been obtained as described in

detail in (paper). The overall problem has been depicted in Fig 4.2.

Figure 4.2: Overall problem diagram. The highlighted part in yellow is the subject of
this thesis

4.2 Pose estimation using deep image prior

We propose to estimate 6-DoF relative pose between pseudo-intensity frames E0
k (tem-

porally corresponding to Ik) and any intermediate Ej
k (j = 1, 2, ..., N ) by direct match-

ing. We use a convolutional encoder-decoder architecture (PoseNet)(Fig 4.3) which has

been widely used for pose estimation.
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As opposed to learning the weights of the parameter from a vast amount of data, we

use this network as a handcrafted prior. Treating deep networks as handcrafted prior

has shown excellent results for tasks like denoising, inpainting, etc by Ulyanov et al.

(2017) in Deep Image Prior. The weights of the network (θ) act as the parameterization

of the restored image. A loss function is appropriately defined according to the task at

hand, and the network parameters are randomly initialized. A uniform noise (z) is given

as input to the network, and the loss function is optimized w.r.t the network parameters

till convergence.

x = fθ(z) (4.1)

θ∗ = argmin
θ

E(fθ(z);x0) (4.2)

Figure 4.3: Architecture of PoseNet which is used as a handcrafted prior
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Figure 4.4: Relative pose ξjk and ξ−jk have been estimated using PoseNet, via a learning
free unsupervised method

We need to find the pose of the intermediate pseudo-intensity frame Ej
k w.r.t to E0

k ,

given the depth map dk for E0
k . We use PoseNet as our network architecture, which

corresponds to f in the above equation. The weights of the network correspond to

parameterization θ, and the same uniform noise (z) is given as input to the network at

each iteration of optimization. The network gives an estimate of relative pose ξjk of Ej
k

w.r.t E0
k , along with an explainability mask mj

k. Using this estimated pose and given

depth dk, we warp the intermediate pseudo-intensity frame Ej
k to E0

k to obtain Ê0
k . The

photometric error Lp(E0
k , Ê

0
k ,m

j
k) = ‖(Ê0

k − E0
k) � m

j
k‖1 is minimized to obtain the

estimate of the relative pose ξjk. In order to avoid holes in the reconstructed images due

to disocclusions and for increased consistency, we jointly estimate relative pose ξjk of

Ej
k and E0

k along with relative pose ξ−jk of Ej
k w.r.t E0

k+1. For robustness, we compose

the two relative pose ξjk and ξ−jk to obtain the pose between E0
k and Ej

k, using which we

warp Ik to Ik+1 to obtain Îk. The photometric loss Lcons = ‖(Îk+1−Ik+1)‖1 is included

in the total loss function. Relative pose estimates ξjk and ξ−jk are obtained as

ξjk, ξ
−j
k ,mj

k,m
−j
k = argmin

ξjk,ξ
−j
k ,mj

k,m
−j
k

L1 + L2 + λconsLcons (4.3)

L1 = Lp(E0
k , Ê

0
k ,m

j
k) + λpregLreg(m

j
k); L2 = Lp(E0

k+1, Ê
0
k+1,m

−j
k ) + λpregLreg(m2)

(4.4)

Here, λpreg(m) is binary cross entropy loss with a constant label 1 at each pixel

location. This is to ensure that the explainability mask doesn’t produce a zero mask to

minimize the loss.
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CHAPTER 5

WARPING AND BLENDING

5.1 Forward Warping of Intensity Images to

Intermediate Location

We now have the relative pose ξjk and ξ−jk of the intermediate location w.r.t the frames Ik

and Ik+1. We also have depth maps dk and dk+1 at these frames. Using these depth maps

and 6-DoF pose, we can perform forward warping of the frames Ik and Ik+1 to obtain

intensity frames at intermediate location, Ij1k and Ij2k respectively. The knowledge of in-

trinsic matrix of the camera is essential for forward warping, which was provided in the

dataset. The holes due to forward warping are filled by splatting the intensity values. In

order to perform splatting, we use implementation given by scipy.interpolate.griddata.

Figure 5.1: The figure shows forward warping in three steps. x denotes a 2-D image
point in homogeneous coordinates, whereas X denotes a 3-D point in ho-
mogeneous coordinates. K=camera intrinsic matrix, R,T=relative camera
pose



5.2 α Blending to get final intermediate intensity frame

Finally, we need to merge the intensity frames at intermediate location, Ij1k and Ij2k

obtained by forward warping Ik and Ik+1 respectively, in order to obtain the final inten-

sity frame at intermediate location Ijk . We use alpha blending in order to merge these

images.
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CHAPTER 6

RESULTS

We have used the recently proposed dataset by Mueggler et al. (2017) which consists

of several video sequences captured using DAVIS. We divide the event stream between

two frames Ik and Ik+1 into 10 event frames, with the last event frame corresponding to

the second intensity frame Ik+1. We have used the PyTorch implementation of PoseNet

provided in Zhou et al. (2017). We found that we get optimal results when we use

λpreg = 0.05 and λcons = 0.007.

Figure 6.1: Comparison of our results with Reinbacher et al. (2016)



Figure 6.2: Results on DAVIS Dataset compared to [4]

Figure 6.3: Position and Orientation error for the sequence "slider far"
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CONCLUSION

We combine the strength of a texture-rich low frame rate conventional camera with

a high temporal rate events camera to obtain photorealistic images at high temporal

resolution. We achieve this by warping the low frame rate intensity frames from the

conventional image sensor to intermediate locations. We compute dense depth maps

from the low frame rate images and sensor ego-motion from the events data by direct

matching of pseudo-intensity frames reconstructed from event frames. A three way

consistency loss has been used to improve robustness of estimated pose. We warp

images from both ends and blend them using alpha blending in order to avoid holes due

to disocclusions. We show photorealistic results on DAVIS dataset.
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