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ABSTRACT

KEYWORDS: Spherical Robot, Attitude Estimation, Quaternion, Extended

Kalman Filter

This project explores a stochastic approach to estimate the attitude of a spherical robotic

system. It takes the noise corrupted data from inertial measurement unit (IMU) and

uses a quaternion based extended Kalman filter algorithm to give the pose estimate of

the robot. Using the nonholonomic constraints of the robot and no-slip condition, the

trajectory is calculated, and then compared with the truth. Robustness analysis is done

using the comparison of body angular velocities and Euler angles. The algorithm is

tested on a real-world spherical robot system by dead-reckoning on circular and tri-

folium trajectory, and the results are compared and analyzed.
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NOTATION

r Radius, m
a Linear acceleration in inertial frame, m/s2, a ∈ R3

ω Body angular velocity, rad/s, ω ∈ R3

m Magnetic field in inertial frame, T , m ∈ R3

Ω Spacial angular velocity, rad/s, Ω ∈ R3

ω̂ Skew symmetric matrix corresponding to body angular velocity, ω̂ ∈ so(3)
R Rotation matrix, R ∈ SO(3)
ψ,θ,ϕ Yaw, pitch and roll respectively, rad
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CHAPTER 1

INTRODUCTION

1.1 Background

The development and control of a spherical shaped robot has been an interesting re-

search topic over the last two decades. One of the biggest advantage spherical robots

have over other wheeled mechanisms is the omnidirectional mobility they provide.

Many novel designs based on various techniques have been generated (Bhattacharya

and Agrawal, 2000). Some of them use a wheeled robot to displace the barycenter.

Some others use internally driven pendulum which imparts torque on outer shell.

This paper considers an internal rotor driven mechanism which produces reaction

torque on spherical shell when actuated (Morinaga et al., 2014). This system has non-

holonomic constraints, which makes it difficult to model and control (Urakubo et al.,

2016).

The attitude and the orientation estimation is a crucial precursor step to all the nav-

igation and control algorithms especially used in aerial robotics in recent times (Jing

et al., 2017) (Leccadito et al., 2015). The attitude can be represented in three forms

namely Euler angles, direction cosine matrices (DCM) and quaternions. While direc-

tion cosine matrices need larger storage due to 9 elements, euler angles suffer from a

singularity known as "gimbal lock" problem where one degree-of-freedom is lost at a

specific orientation. Quaternions need only 4 elements to store and do not suffer from

singularity faced by Euler angles. Thus, it is the preferred choice (Diebel, 2006).

With the advent of MEMS technology, there has been an exponential rise in the use

of compact, low-cost inertial measurement units (IMUs) for this purpose. Accelerome-

ter in these sensors cannot detect rotation about the vertical axis. Therefore, often these

inertial sensors are used in combination with magnetic, vision based systems. Some

popular deterministic algorithms such as TRIAD and QUEST have been developed to

fuse the sensor outputs. The measurements obtained are often prone to environmental



noise. In such cases, a deterministic approach to estimation may not be a good choice

(Kok et al., 2017). Extended Kalman filter is a stochastic algorithm which is practically

used in many applications (Lefferts et al., 1982).

1.2 Organization

The paper is organized as follows. Section II discusses the preliminaries of attitude esti-

mation that are required. Section III gives description of the spherical robot kinematics

and the sensor outputs. Kalman filter and its nonlinear extension is discussed in section

IV. Finally, section V gives experimental results and analysis. Section VI concludes the

paper.
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CHAPTER 2

ATTITUDE ESTIMATION

The quaternion can be represented as follows

q = [q0q1q2q3]
⊤ = [q0qv]

⊤ (2.1)

where q0 is the scalar part and qv = (q1, q2, q3) is the vector part.

The time derivative of the quaternion is computed by the following identity

q̇ =
1

2
Ω(ω)q (2.2)

where ω = (ωx, ωy, ωz) ∈ R3 are the angular rates and G(ω) is defined as:

G(ω) =

0 −ω⊤

ω −ω̂

 (2.3)

Here, ω̂ is the skew symmetric operator defined as

ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.4)

The rotations from a vector xb in body coordinate frame to a vector xi inertial coordinate

frame can be represented as xb = Cb
i (q)x

i, where assuming |q| = 1, Cb
i (q) is described

as (Diebel, 2006)

Cb
i (q) =


q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q0q1 + q2q3)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q20 − q21 − q22 + q23

 (2.5)

The Euler angles corresponding toZY X convention, also known as yaw(ψ), pitch(θ)



and roll(ϕ) can be estimated as (Murray, 2017)


ϕest

θest

ψest

 =


arctan

(
2(q2q3+q0q1)

(q23+q20−q21−q22)

)
− arcsin (2 (q1q3 − q0q2))

arctan

(
2(q1q2+q0q3)

(q20+q21−q22−q23)

)
 . (2.6)
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CHAPTER 3

SYSTEM MODELLING

3.1 Kinematics of the spherical robot

O

Zi

Xi

Yi

Zi

Yi
Xi

Zb

Xb

Yb

O2

O1

Figure 3.1: Schematic of the spherical robot

The spherical robot schematic shown in Figure 3.1 consists of a spherical shell of

mass m and radius r moving in a horizontal plane. The center-of-mass of the robot is

assumed to coincide with the geometric center. The position coordinates of the point

O1 with respect to O are denoted by (x, y). The orientation of body frame (Xb, Yb, Zb)

of the robot with respect to an inertial frame (Xi, Yi, Zi) is given by a rotation matrix

R ∈ SO(3). The robot has three independently controlled rotors with inertia wheels



along the body axes. Thus, three independent torques acting about the axes of the

body-coordinate frame are generated. The rotor angles are denoted by ψ1, ψ2 and ψ3.

The configuration space is Q = R2 × SO(3) × (S1 × S1 × S1), parameterized by

q̄ = (x, y, R, ψ1, ψ2, ψ3) ∈ Q. The rotor positions are of no interest while proceeding

with the kinematics and thus the motion of the spherical robot can be conveniently

described by a curve q(t) = (x(t), y(t), R(t)) ∈ R2 × SO(3), Thus, the configuration

space is Q = R2 × SO(3) and TQ = Q× R2 × so(3).

The spherical robot is subjected to no-slip constraints given by

v =


ẋ

ẏ

ż

 = Ω×


0

0

r

 = r Rω × e3, (3.1)

where, ω ∈ R3 denotes the body angular velocity and Ω ∈ R3 is the spatial angular

velocity of the robot.

The kinematics of the spherical robot is given by

ẋ = r(ω · r2)

ẏ = −r(ω · r1)

Ṙ = Rω̂.

(3.2)

where the rows of the rotation matrix R are denoted by by r1, r2, r3. Here, R =

Ci
b = Cb

i
⊤.

3.2 Sensor model

The IMU consisting of accelerometer, gyroscope and magnetometer is mounted at the

center of the spherical robot to give raw measurements. The gyroscope measures

angular rates (ωx, ωy, ωz) with respect to body frame. The accelerometer and mag-

netometer respectively measure the linear acceleration (ax, ay, az) and magnetic field

vector (mx,my,mz) in inertial frame. The sensor readings are assumed to have a con-

stant biases b = (ba, bg, bm) and to be corrupted by independent white Gaussian noise

6



η = (ηa, ηg, ηm) with zero mean and variances σ = (σ2
a, σ2

g , σ2
m) for accelerometer,

gyroscope and magnetometer respectively. Thus, the 9-DOF sensor model is described

by

ameas = R(q)⊤atrue + ba + ηa (3.3)

ωmeas = ωtrue + bg + ηg (3.4)

mmeas = R(q)⊤mtrue + bm + ηm (3.5)

From accelerometer and magnetometer data components, Euler angles can be ob-

tained as follows (Ozyagcilar, 2012)
ϕmeas

θmeas

ψmeas

 =


arctan(−ay/az)

arcsin(−ax/
√
a2x + a2y + a2z)

γ

 . (3.6)
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CHAPTER 4

EXTENDED KALMAN FILTER

4.1 Kalman filter model

For a linear dynamical system, the state and measurement equations can be written as:

xk = Fxk−1 +wk−1 (4.1)

zk = Hxk + vk (4.2)

where xk ∈ Rn and F ∈ Rn×n are the state vector and state transition matrix at epoch

k respectively; wk−1 is the system noise; zk is the observation at epoch k; H repre-

sents the observation matrix and vk is the measurement noise. It is assumed that the

process and measurement noises wk−1, vk have a white Gaussian distribution and are

statistically independent from each other.

The state vector consists of the attitude quaternion, accelerometer biases and mag-

netometer biases.

xk = (q(k), ba(k), bm(k)) ∈ R10 (4.3)

The quaternion update equation 2.2 is nonlinear. It can be linearized by taking first

order Taylor series expansion.

fk = I4×4 +
1

2
Ω(ω̃k)Ts (4.4)

where ω̃k ∈ R3 is the bias corrected gyroscope vector. ω̃k = (ω1, ω2, ω3) −

(bgx, bgy, bgz). Ts is the time interval between consecutive epochs.

The assumption of constant biases gives ba(k)
bm(k)

 =

 ba(k − 1)

bm(k − 1)

 (4.5)



Thus, the state space equation (4.1) can be rewritten as

xk = Fxk−1 +wk−1

=


fk 0 0

0 I 0

0 0 I

xk−1 +wk−1

(4.6)

The process noise in quaternion components and bias in all the dimensions is as-

sumed to be independent of each other. Further, the quaternion noise can be taken

as(Sabatini, 2006),

Ξ(k) = −Ts
2

q0(k)I + [qv(k)×]

qv(k)

 (4.7)

This gives

Qk =


(Ts/2)

2Ξ(k)σg(k)
2Ξ(k)T 0 0

0 Tsσ
2
aI 0

0 0 Tsσ
2
mI

 (4.8)

The measurement vector includes accelerometer and magnetometer readings at each

epoch. The reference acceleration a0 and magnetic field vector m0 in the inertial frame

is taken as

a0 = (0, 0, 1)

m0 = (mx, 0,mz)

From (3.3) and (3.5) the acceleration and magnetic field vectors in body frame can be

9



Hk =


−2q2 2q3 −2q0 2q1 0 0 0
2q1 2q0 2q3 2q2 0 0 0
0 −4q1 −4q2 0 0 0 0

−2mzq2 2mzq3 −4mxq2 − 2mzq0 −4mxq3 + 2mzq1 0 0 0
−2mxq3 + 2mzq1 2mxq2 + 2mzq0 2mxq1 + 2mzq3 −2mxq0 + 2mzq2 0 0 0

2mxq2 2mxq3 − 4mzq1 2mxq0 − 4mzq2 2mxq1 0 0 0


(4.10)

calculated at any epoch k as

a(k) = Cb
i (q(k))a0 =


2(q1q3 − q0q2)

2(q0q1 + q2q3)

q20 − q21 − q22 + q23


m(k) = Cb

i (q(k))m0

=


mx(q

2
0 + q21 − q22 − q23) + 2mz(q1q3 − q0q2)

2mx(q1q2 − q0q3) + 2mz(q0q1 + q2q3)

2mx(q1q3 + q0q2) +mz(q
2
0 − q21 − q22 + q23)


(4.9)

The Jacobian of (4.9) with respect to xk, denoted by Hk is shown in (4.10).

This Hk can be used as observation matrix in state equation (4.2).

The measurement noise in all the directions of accelerometer and magnetometer

data is assumed to be statistically independent of each other. Thus, noise covariance

matrix can be taken as (Sabatini, 2006)

Rk =

σ2
aI 0

0 σ2
mI

 (4.11)

4.2 Extended Kalman Filter algorithm

Extended Kalman filter is a two-step iterative stochastic algorithm which gives state and

error covariance at each epoch. It first predicts the state apriori based on system model

and then corrects the estimate based on actual observations. The initial state and error

covariance matrix of the state are assumed to be x̂0 and P̂0 respectively while Kk is

the Kalman gain. Qk and Rk are the process noise covariance matrix and measurement

noise covariance matrix respectively.

10



The two step iterative filtering algorithm is as follows

4.2.1 Prediction step

An apriori estimate based on state transition function Fk−1 and previous state xk−1 is

calculated.

x̂k|k−1 = Fkx̂k−1|k−1 (4.12)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (4.13)

4.2.2 Update step

Based on the measurements zk = [a(k),m(k)] and estimates yk obtained from equa-

tions 4.9, error ek is calculated and used for estimating aposteriori state.

vk = zk − yk (4.14)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +R)−1 (4.15)

x̂k|k = x̂k|k−1 +Kkvk (4.16)

Pk|k = Pk|k−1 −KkHkPk|k−1 (4.17)

11



CHAPTER 5

EXPERIMENTAL VALIDATION

5.1 Robot setup

The experimentation is performed on the spherical robot developed at the Dynamics

and Control Laboratory, IIT Madras. The hardware consists of the dsPIC microcon-

troller with XBee wireless module for communication with remote PC. A digital nine

degree-of-freedom IMU ADIS16400 is placed at the center of the spherical robot on a

crossbeam attached to three orthogonal rings making up the endoskeleton. The entire

setup is enclosed within a spherical acrylic shell made up of two detachable hemispheres

that form the exoskeleton.

The robot is rolled without slipping on two paths - circular and trifolium with a goal

of tracking the pose. Nonholonomic constraints mentioned in (3.2) are used to calculate

the trajectory estimate.

Three figures of merit are chosen as follows:

1. Root mean square of the error in the estimated (x, y) position compared to true path.

2. Error in the estimated body angular velocity compared to measurements ||
(
RT

estṘest

)∨
−

ωmeas||, where ∨ is the inverse operator for the skew symmetric operator in (2.4).

3. Cross correlation between estimated output (x, y) and sampled values from true

trajectory given by

x ⋆ xtrue =
1

N − 1

N∑
k=1

x [k]xtrue [k]

σxσxtrue

y ⋆ ytrue =
1

N − 1

N∑
k=1

y [k] ytrue [k]

σyσytrue

where N is the total number of samples in the experiment.



Figure 5.1: Spherical Robot developed at IIT Madras

5.2 Magnetometer correction

Magnetometer data can be erroneous due to changes in the surrounding temperature,

presence of hard and soft iron. These factors may produce a nonlinearity in the output

which needs to be corrected. On rotating the setup about 3600 about the inertial Z-axis

the raw X and Y data obtained is transformed to give the circle as shown in Figure 5.2.

The magnetometer readings are modified as follows:

mxnew = 0.9828mxold
+ 1.450

mynew = myold + 1.955

13
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Figure 5.2: Magnetometer correction

5.3 Results and analysis

The sampling frequency is 50Hz for both the experiments.

Other parameter details are as follows:

1. Initial quaternion is set as q = [1, 0, 0, 0] along with following initial conditions -

Q (k) = 10−5 × [I10×10]

R (k) = 10× [I6×6]

14



2. The initial alignment is such that magnetic field has components present only along

x and z axes. Thus, normalized reference acceleration and magnetic field vectors are

a0 = (0, 0, 1)

m0 = (0.97, 0, 0.24)

5.3.1 Circle

For circular trajectory, the true trajectory is parametrized as follows

xtrue = rc (1− cos (fct))

ytrue = rc sin (fct)
(5.1)

where rc = 1.25m is the radius of the desired circular trajectory and fc = 2π
N

for N

sampling steps.

The results are shown in Figure 5.3 with initial condition as (x, y) = (0, 0). Fig-

ure 5.3a shows that the Euler angles estimated by (2.6) and measured from raw data by

(3.6) are close to each other. Figure 5.3b shows the norm of the error between estimated

and measured angular velocity vector having a peak value of 0.5rad/s. The estimated

trajectory compared with the true trajectory is shown in Figure 5.3c. The cross corre-

lation between estimated and true trajectory characterized by (5.1) is calculated to be

x ⋆ xtrue = 0.9973 and y ⋆ ytrue = 0.9978 clearly indicating a strong match.

5.3.2 Trifolium

For trifolium trajectory, the true trajectory is parametrized as follows

xtrue = lt cos (3fct) sin (fct)

ytrue = lt cos (3fct) cos (fct)
(5.2)

where lt = 2m is the petal length of the desired trifolium trajectory and fc = 2π
N

for

N sampling steps.

15
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Figure 5.3: Results of dead reckoning about a circular trajectory

The results are shown in Figure 5.4 with initial condition as (x, y) = (0, 0). Fig-

ure 5.4a shows that the Euler angles estimated by (2.6) and measured from raw data by

(3.6) are close to each other. Figure 5.4b shows the norm of the error between estimated

and measured angular velocity vector having a peak value of 0.8rad/s. The estimated

trajectory compared with the true trajectory is shown in Figure 5.4c. The cross corre-

16



lation between estimated and true trajectory characterized by (5.2) is calculated to be

x ⋆ xtrue = 0.9973 and y ⋆ ytrue = 0.9978 clearly indicating a strong match.

0 10 20 30 40 50 60

−2.5

0.0

2.5

Ro
ll 
(ra

d)

Measured
Estimated

0 10 20 30 40 50 60

−1

0

1

Pi
tc
h 
(ra

d)

Measured
Estimated

0 10 20 30 40 50 60
Time (s)

−2.5

0.0

2.5
Ya

w 
(ra

d)

Measured
Estimated

(a) Roll pitch yaw information of trifolium tra-
jectory

0 100 200 300 400 500 600
Time (s)

0.0

0.2

0.4

0.6

0.8

Er
ro
r (

ra
d/
s)

(b) Error between measured and estimated ω

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
X (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Y 
(m

)

Estimated
True

(c) Comparison of estimated and true trajectory

Figure 5.4: Results of dead reckoning about a trifolium trajectory
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Summary

The thesis introduces quaternion based extended Kalman filter to estimate the global

attitude of a spherical robot system. The data obtained from inertial measurement unit

(IMU) is subjected to iterative filtering which produces the trajectory information. The

robustness of this algorithm is checked by incorporating three figure of merits - RMSE

of coordinates, error in body angular velocity, and cross-correlation with true trajectory.

The results are plotted after rolling on circular and trifolium path and closeness with true

values is observed.

6.2 Future work

Solving the nonholonomic constraints for control of the robot using the attitude infor-

mation derived from EKF is the next step. Intelligent control methods like reinforce-

ment learning can also be explored.
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