
Towards energy efficient deep learning

A Project Report

submitted by

GIRIDHUR SRIRAMAN

EE13B129

in partial fulfilment of the requirements

for the award of the degrees of

BACHELOR OF TECHNOLOGY

&

MASTER OF TECHNOLOGY

in

ELECTRICAL ENGINEERING

Reconfigurable Intelligent Systems Engineering

Interactive Intelligence Laboratory

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

CHENNAI 600036

JUNE 2018

CERTIFICATE

This is to certify that the project report titled Towards energy efficient deep

learning, submitted by Giridhur Sriraman (EE13B129), to the Indian In-

stitute of Technology, Madras, in partial fulfillment of the requirements for the

award of the degrees of Bachelor of Technology in Electrical Engineering

and Master of Technology in Electrical Engineering, is a bona fide record of

the work done by him in the Department of Electrical Engineering, IIT Madras.

The contents of this report, in full or in parts, have not been submitted to any

other Institute or University for the award of any degree or diploma.

Prof Ravindran B.
Project Guide
Professor
Department of Computer Science and Engineering
IIT Madras Chennai 600036

Prof. Aravind R.
Project Co-Guide
Professor
Department of Electrical Engineering
IIT Madras Chennai 600036

Place: Chennai

Date: June 19, 2018

ACKNOWLEDGEMENTS

This thesis wouldn’t have been possible I haven’t had the opportunity to meet with

Prof Ravindran in my 2nd year to work on an Analytics club project, as part of CFI.

He has been a true friend, philosopher and guide, in almost all of my memorable

endeavors during my time at the institute. I would also like to acknowledge Prof

Anand Raghunathan (Purdue University) for being a great mentor and a gracious

host, his support throughout the summer and the term after meant a lot; Prof

Pratyush Panda, and Prof Aravind R, for guiding me through my final year, and

agreeing to co-guide with Prof Ravindran. Special thanks to Athindran R., for

helping me through my brick-walls, both academic and non academic. My family

has also supported me through my final year in times of distress and need, my

sincere thanks to them. And, finally, my heartfelt gratitude to all my friends and

well wishers, for making my insti life memorable and enjoyable.

i

ABSTRACT

KEYWORDS: Deep Learning, energy efficiency, fine-grained control, neuro-

morphic, convolutional neural networks, image classification

Machine Learning has been all-pervading and its presence in devices around us

cannot go unacknowledged. In this work, we explore the energy consumption of

popular machine learning algorithms, with focus on deep convolutional neural

networks applied on common tasks such as object detection and object classifica-

tion; and we seek to identify and correct efficiency aspects of these systems.

This work will explore three key points in chapters :

1. Using fine-grained control on neural networks on embedded systems.

2. A neuromorphic approach to object detection and tracking in videos.

3. Modeling the power-accuracy trade off in hardware used for machine learn-
ing.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vii

ABBREVIATIONS viii

1 INTRODUCTION 1

1.1 Brief Introduction to Deep Learning 1

1.2 Motivation . 3

2 Dynamic neural networks on embedded systems 5

2.1 Related Work . 6

2.2 Approach and Implementation . 8

2.2.1 SPET - Saturation Prediction and Early Termination 9

2.2.2 SDSS - Significance Driven Selective Sampling 11

2.2.3 SFMA - Similarity-based Feature Map Approximation . . . 12

2.2.4 Implementation specifics . 13

2.2.5 Implementation platforms . 13

2.2.6 Experiment Methodology . 14

2.3 Results . 15

2.3.1 Improvement in FLOPS and Execution time 15

2.3.2 Layer-wise and Knob-wise breakdown of savings 16

2.4 Limitations and Future Work . 17

3 Multi-Fovea : Eye-inspired video object detector 18

3.1 Related Work . 21

3.1.1 Object Detection in Still-Images 21

iii

3.1.2 Object detection/localisation in videos 22

3.1.3 Context based approaches . 23

3.2 Approach and Implementation . 24

3.2.1 Baseline - SSD . 24

3.2.2 Multi-Fovea Layer . 26

3.3 Results . 28

3.4 Limitations and Future work . 29

4 Hardware Trade-offs 31

4.1 Related Work . 31

4.2 Approach and Results . 32

4.2.1 DNN Profiling experiments on Raspberry Pi 32

4.2.2 Retention Time analysis for DNN weights 34

4.2.3 Resilience to normal noise in DNN weights 38

4.3 Conclusion . 40

LIST OF TABLES

1.1 Comparison of Brain vs PC . 3

2.1 Specifications of Raspberry Pi 3 . 5

3.1 mAP and inference times (in ms) on COCO test-dev 22

3.2 * . 28

v

LIST OF FIGURES

1.1 A neuron compared to a perceptron 2

1.2 Schematic of a typical DNN . 2

1.3 Schematic of a typical Convolution Layer 2

2.1 Classification threshold density plot for MNIST 6

2.2 Schematic of the DyVEDeep . 8

2.3 Schematic of the SPET heuristic . 10

2.4 Saturation prediction accuracy at different prediction intervals . . 10

2.5 Schematic of SDSS . 11

2.6 Schematic of SFMA . 12

2.7 Improvement in execution time . 15

2.8 Improvement in computation count 15

2.9 Layer-wise breakdown for CaffeNet architecture 16

2.10 Knob-wise breakdown for CaffeNet architecture 16

2.11 Comparison vs Regular inference . 17

3.1 xkcd # 1452, by Randall Munroe . 19

3.2 Normalized angular distribution of photo-receptors in the human
eye . 20

3.3 SSD Framework:a schematic . 24

3.4 SSD Framework . 24

3.5 Schematic of the Multi-Fovea system 27

3.6 Sample working of the Multi-Fovea system 28

4.1 Inference time in ms . 33

4.2 Energy consumed . 34

4.3 Structure & Hierarchy of DRAM . 35

4.4 Power Consumption of DRAM Chips vs memory 35

4.5 Retention time of DRAM Cells . 36

4.6 Accuracy vs Retention probability . 37

vi

4.7 (a)MNIST and (b)CIFAR-10 weight distributions 38

4.8 Normal Noise added to MNIST architecture 39

4.9 Normal Noise added to cifar-10 architecture 39

vii

ABBREVIATIONS

IITM Indian Institute of Technology, Madras

ML Machine Learning

DL Deep Learning

NN Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

viii

This page intentionally left blank

ix

CHAPTER 1

INTRODUCTION

1.1 Brief Introduction to Deep Learning

Machine learning is a field of computer science, which aims to give the ability to

automated systems to progressively improve on a specific task through statistical

techniques. ML can be broadly classified into three categories depending on the

relation between the signal input and the target output :

1. Supervised Learning : the input and the target are both given with a
predetermined metric to optimize on, examples include : Object Detection,
Face Recognition.

2. Unsupervised Learning : the output target is unspecified, there is no
specific accuracy metric, examples include : Clustering, Anomaly Detection,
Density estimation.

3. Reinforcement Learning : the input is an "agent" which map situations
to actions in order to maximize a reward output signal, with the actions
not known before hand, examples include : getting around a maze, playing
poker.

Deep learning is a branch of machine learning, which uses methods vaguely

inspired by the structure of brain., and its constituent neurons. Deep learning

has picked up tremendous pace over the past few years, thanks to advances in

hardware and better mathematical models alike. DL has helped us achieve super-

human accuracy in tasks that were previously deemed to be "difficult", such as

object detection, tumor segmentation, and DL has surpassed humans in erstwhile

unfathomable games such as Chess, and Go (Silver et al., 2017).

The "perceptron" learning algorithm, invented in 1957, by Frank Rosenblatt

has been widely acknowledged to be the first artificial "neuron", or the basic build-

ing block of a deep learning system (Rosenblatt, 1957). This algorithm proved to

be quite popular, although its limited applicability to just linearly separable prob-

lems was an issue., which was later rectified by adding more layers.

Figure 1.1: A neuron compared to a perceptron

Figure 1.2: Schematic of a typical DNN

This multi-layer perceptron was somewhat difficult to train, and in 1986,

(Rumelhart et al., 1986) proved experimentally the back-propagation algorithm

could generate useful internal representations in these neural networks.

Despite numerous advancements in neural networks, DL lost out to simpler

algorithms such as SVM, Decision Trees, owing to the complexity in training

them. Come late 2000s, compute power became cheap and far accessible in the

form of Graphic processing units (GPUs), which were initially used for games.

GPUs were capable for fast matrix and vector multiplication, resulting in orders

of speed up over conventional CPUs, and thus a prominent factor behind the re-

cent revival of Deep Learning. Almost all leading contests in pattern recognition,

Figure 1.3: Schematic of a typical Convolution Layer

2

object detection etc, have now been won by GPUs and modified neural network

architectures, beginning with Alexnet (Krizhevsky et al., 2012) winning the Ima-

genet challenge in 2012. Winning entries of the latest Imagenet Challenge, Ima-

genet 2017 (Russakovsky et al., 2015), have accuracies exceeding those of humans

(reported at around 95%)!

1.2 depicts the data flow in a typical deep neural network, while 1.3 gives us

a closer look at a convolutional layer in a deep neural network.

1.2 Motivation

With the growing ubiquity of Deep Learning, we seek to understand how DL in-

fluenced other aspects of computing, with specific interest in power consumption.

The ultimate goal of DL is to achieve the standards of the human brain. The table

here 1.1 Sandberg compares top of the end commercially available computers to

the brain.

Table 1.1: Comparison of Brain vs PC
Parameter Brain PC

Weight 1.5kg 10kg
TFLOPS >1000 15

Power 25 W 500 W
Value Priceless $2000

There is a considerable gap both in performance and efficiency for us to close!

1.2 compares recent recent neural network architectures in terms of their Ops

count and accuracy.

3

Furthermore, with the development of newer architectures (topologies, lay-

ers, features sizes), and increasing data sizes in Deep Learning, this gap is only

expected to widen. Over the recent few years, the growth in computational re-

quirements has far outpaced the improvements in capability of computational

platforms in the recent years.

This work tries to move DNNs an inch closer towards better energy efficiency,

through contributions broadly grouped under the following heads:

1. Dynamic control of neural network parameters to reduce computation, on
embedded systems

2. Dynamic object centered video object detection framework

3. Analyzing hardware trade-offs in improving accuracy

4

CHAPTER 2

Dynamic neural networks on embedded systems

In this chapter, we explore performance of Deep Learning systems on embedded

platforms, such as Raspberry PiTM. The chapter begins with a brief description of

related work, proceeds to a detailed discussion on DyVEDeep (Ganapathy et al.,

2017) describing its implementation and performance on Raspberry Pi 3. The

following table describes the specifications of Raspberry Pi 3 2.1.

Table 2.1: Specifications of Raspberry Pi 3
Module Specification

CPU BCM 2837 ARM Cortex-A53 Quad Core @ 1.2GHz
RAM 1 GB LP-DDR2 900MHz
GPU VideoCore IV

Raspberry Pi3 was chosen because it is by far the most popular ARM system

in use, owing to its value for money, it retails for $35, both in industry as well as

hobbyists for IoT, Machine Learning etc.

It is important to note that the GPU in the chipset cannot be explicitly used

for any sort of acceleration, since it doesn’t support CUDA or any similar API.

The DRAM chipset is shared among both the CPU and GPU.

DyVEDeep : Dynamic Variable Effort for Deep neural networks uses the

difference in composition of various inputs to improve its compute efficiency. This

motivation stems from the following observations.

First, all inputs are not equally difficult for the network to process, since only

those which lie close to the boundary need the full effort of the classifier, while

those which lie far away can make do with a simple linear classifier. And, adding

layers might seem like a good idea to increase accuracy while, this choice gives us

diminishing yields. For example, in the context of the Imagenet challenge, com-

putation requirements have gone over 15x from AlexNet to VGG, while there has

only been a 16% improvement in accuracy. Visualization for the MNIST network

is in 2

Figure 2.1: Classification threshold density plot for MNIST

Secondly, effort expended for a given input is spread across different parts

of the network. In case of an object recognition problem, this means that com-

putations stemming from regions where objects of interest are located, are more

critical than regions without.

Finally, most deep neural network systems are static, ie, they expend the same

(worst case) computational effort for all inputs, which leads to significant ineffi-

ciency. DyVEDeep addresses this by dynamically predicting and executing rele-

vant computations, while skipping or approximating the rest. This means that,

in effect, the network spends lesser effort on "easier" examples without sacrificing

accuracy.

2.1 Related Work

Prior research in the area of improving efficiency of neural networks can be di-

vided into these 4 broad sectors.

First, there has been a lot of work in focusing on parallelizing various as-

pects of the architecture, on commercial multi-core and GPGPU platforms. Dif-

ferent work strategies such as model, data and hybrid parallelism (Krizhevsky,

2014);(Das et al., 2016), and techniques such as asynchronous SGD , 1-bit SGD

(Seide et al., 2014) are representative examples.

Secondly, there have been efforts focused on developing specialized hardware

accelerators that realize fundamental computational kernels in deep neural net-

works, such as the Efficient Inference Engine (Han et al., 2016), and NeuFlow

(Farabet et al., 2011), these however compromise on programmability, cost of spe-

cialized hardware in lieu of efficiency.

6

The third set of efforts focus on novel device technologies, whose character-

istics intrinsically match compute primitives in deep neural networks, these in-

clude the neuromrphic chip TrueNorth (Modha, 2017), and spintronic neural de-

sign (Ramasubramanian et al., 2014), among others.

Finally, there have been approaches looking at the overparametrization in

DNNs, owing to their non-convex space, they approximate DNNs through vari-

ous heuristics. We shall classify them into "Static" and "Dynamic" approaches

respectively, with respect to the input.

Static Approaches: Most of the work to approximate DNNs has been static

in nature, ie, they change the model independent of the input signals, and hence

the same heuristic is applied across all inputs. These aim to reduce to overall

model size of the network, by using techniques such as Network pruning, (by

pruning the connections) as done in (LeCun et al., 1990), (Han et al., 2015b); re-

ducing the computing precision as in (Venkataramani et al., 2014), and (Anwar

et al., 2015); and storing weights in a compressed format (Han et al., 2015a);

Ex, for fully connected networks, Hashnets (Chen et al., 2015) randomly group

weights into bins using a low cost hash function, which share a common param-

eter value, thereby reducing the descriptor length of the neural network. Deep-

Compression (Han et al., 2015a), prunes connections by including a regularizer

while training, and zero-ing out weights below a certain threshold, ie removing

connections.

For convolutional layers, (Denton et al., 2014) (Jaderberg et al., 2014) exploit

the linear structure of the network to find low-rank approximations., and then

there are sparse CNNs as proposed by (Liu et al., 2015a), by using a sparsity term

in the objective function, leading to almost 90% of the parameters being zeroed

out. PerforatedCNNs, are proposed by (Figurnov et al., 2015), where only a few

neurons are evaluated for each feature, statically determined during training.

Dynamic Approaches : These focus on changing parameters/computations

involved depending on the input, and are more powerful than static techniques

owning to their increased expressibility. Stochastic neurons have been the ear-

liest approaches in this direction, as in(Bengio, 2013), which describes a method

to estimate gradients for stochastic neurons, useful for conditional computation.

7

Figure 2.2: Schematic of the DyVEDeep

Standout, as described in (Ba and Frey, 2013) is another approach where the

dropout probability for each neuron is computed in a binary belief network, in

one shot, conditioned on the inputs. An extension of this, with dropout distribu-

tion of each layer being computed by the previous layer has been done in (Bengio

et al., 2015)

DyVEDeep is orthognal to all the above efforts, it uses deterministic heuristics

rather than stochastic approaches. Such dynamic techniques have only been ap-

plied to small datasets and have not been extended to large-scale DNNs. DyVEDeep

is applicable to both convolutional and fully-connected layers, measurable im-

provements can been seen on networks made for the ImageNet dataset

2.2 Approach and Implementation

First, we will discuss how various features of DyVEDeep are proposed and and

then move on to implementation on an embedded platform,a Raspberry Pi3.

DyVEDeep looks to improve the processing efficiency of a DNN by equipping

the system with "effort" knobs, that dynamically predict criticality of groups of

computations with low overhead, and correspondingly skip/approximate them, as

in 2.2. There are 3 different approaches detailed :

8

2.2.1 SPET - Saturation Prediction and Early Termination

SPET works at a neuron level, the finest level of granularity. SPET can be used for

any neuron with an activation function that has atleast on side where it saturates,

one such activation which is commonly used is the Rectified Linear Unit (ReLU),

that saturates for negative values, to zero. Main motive behind SPET is that

the sum-dot product between weights and neuron inputs is not indicative of the

neuron’s output, viz if the sum-product is established to be negative in sign, it is

unnecessary to calculate the actual sum-product, since the output from ReLU will

be zero.

SPET 2.2.1 uses a low and high threshold to monitor the partial sums being

processed, and stops accordingly. The hyper-parameters for SPET, ie the low and

high threshold are tuned through a grid search.For one-sided activation functions,

such as ReLU, there needs to be only one threshold, either low or high, (for ReLU

: low).

SPET’s efficacy has been demonstrated in the CIFAR-10 2.2.1, where between

50% to 70% of the neurons saturate. Since, DNNs generally have a lot of saturated

neurons, this performance is expected and observed for AlexNet, and Overfeat, as

well.Additionally, the number of neurons saturating increases with their "depth"

owing to their specialization to a particular higher order feature.

The prediction interval for SPET (number of inputs to be processed for partial

sum before action can be taken) was found to be optimal at 50%, however this

could also be made into a hyper-parameter. This is implemented by processing all

the odd-indexed neuron inputs first, and then taking the decision to skip/compute

the remaining inputs based on the partial sum and the threshold. Since, this is

a hard decision, this imposes an upper cap on the maximum efficiency that it can

attain. The prediction interval can be further decreased by ensuring that higher

weights are processed first, owing to their increased expressibility towards the

final sum.

9

Figure 2.3: Schematic of the SPET heuristic

Figure 2.4: Saturation prediction accuracy at different prediction intervals

10

Figure 2.5: Schematic of SDSS

2.2.2 SDSS - Significance Driven Selective Sampling

SDSS operates at a feature-level granularity,in a convolutional layer in a DNN.

It exploits the spatial locality of activations, within each feature, viz in images,

neighboring pixels are expected to have similar values. For the convolution par-

tial sum, the kernel slides over the image, and as this happens, the aforemen-

tioned redundancy inevitably creeps in, and this is observed in deeper layers of

the network as well. This goes hand in hand with the saturated behaviour of acti-

vation functions, as variations between neighbours are masked if they fall in the

same saturated range.

As described in their paper, SDSS involves two steps to exploit intra-feature

locality :

1. Uniform Sampling : Activation features are computed for a subset of neu-
rons by uniformly sampling the feature, a hyper-parameter SP, defines the
periodicity of sampling in each dimension. This is based on covariance of
neuron activations, and size of the feature. SP was chosen to be 2 across all
experiments.

2. Significance-driven Selective Evaluation : For neurons that were not
selected in the previous step, the activation values are approximated. Two
other hyper-parameters : Max Activation value threshold and Delta Activa-
tion Value Threshold are defined. For a neuron whose activation is yet to be
computed, ie, not computed in the previous step, we examine the activation
values of its computed neighbours in all directions, and their maximum,
range is computed.If the maximum, and range both are less than thresh-
olds, the activation value of the neuron is approximated to average of its
neighbours; if not, the neuron is evaluated.

SDSS, uses a simpler form of magnitude, and variance to decide a neuron’s

position with respect to its activation’s criticality, and accordingly expends com-

putational effort.

11

Figure 2.6: Schematic of SFMA

2.2.3 SFMA - Similarity-based Feature Map Approximation

SFMA, operates at a layer level, and exploits the correlation between activation

values in a feature, in a way, different from SDSS. Here, the spatial locality is used

to approximate computations that use the feature as their input. Consider a con-

volutional layer, in which one of the input features, has all of its neuronal activa-

tions similar, when the sliding window kernel operation is performed, the outputs

are expected to be similar as well. SFMA approximates the entire convolution,

by first finding the mean neuron activation, and summing up the kernel weights,

then the approximate output is given by the product of this kernel-weight-sum,

and the average input neuron activation.

This can be expressed mathematically as :

ConvOutw =Σk2

i=0wi ∗Wi =Σk2

i=0µ∗wi +Σk2

i=0(Wi −µ)∗wi ≈µΣk2

i=0wi (2.1)

The following hyper-parameters are defined to decide on which convolutions

to apply the aforementioned approximations :

• Weight Significance Threshold : set as the sum of absolute values of kernel
weights, is an approximate measure importance of current convolution to
the output feature

• Feature Variance Threshold : set as variance of neuron activations in the
feature

Given hyper-parameters, the convolution is approximated when (i) sum of ab-

solute values of kernel weights are below the significance threshold, (indicating

that the convolution isn’t important and (ii) variance less than the threshold, in-

dicating that the error incurred by replacing with the average is within tolerable

12

limits

2.2.4 Implementation specifics

The effort knobs can be integrated as follows. To combine, SPET and SDSS, each

neuron activation across the uniformly sampled features of SDSS are computed

with SPET. SPET is applied after SDSS is complete. SFMA collectively combines

the inputs within a sliding window, to a neuron, into a single output and fits

perfectly in the process of evaluating a neuron with SPET and SDSS.

SPET is applies to all kinds of layers, both convolutional and fully-connected,

whereas the SDSS,and SFMA are tailored to Conv layers. The middle-depth con-

volutional layers have a lot of incoming inputs per neuron, and since they’re ex-

pected to be saturated, SPET will be most beneficial in such cases. SDSS works

best when feature sizes are large, since much fewer convolutions than necessary

will be performed, and thus initial convolutional layers are likely to benefit most

from SDSS. SFMA works best when there are a large number of features per

layer, with smaller feature sizes, and is optimally made for middle and later con-

volutional layers.

The hyper-parameters are tuned layer by layer, first for each convolutional

layer, and then for the fully connected layers. There are 6 Hyper-parameters in

all, and they yield a direct trade-off between computational savings vs classifica-

tion accuracy. The hyper-parameters were tuned on a pre-trained network, with

the added constraint that the net drop in accuracy is less than 0.5%, this search

was carried out over a range, and binary search was used, since the behavior of

these hyper-parameters are monotonous with respect to accuracy over a continu-

ous range.

2.2.5 Implementation platforms

While in the original paper, the authors describe implementation on a regular

x86 platform, we seek to port this system to an ARMv7 platform. Since all the

knobs were implemented with high level code, owing to their need for fine-grained

13

computations, viz, SPET looks at partial sum inputs to a neuron, which is usually

computed as a matrix multiplication implemented in libraries such as OpenBLAS,

ATLAS, etc, where assembly level optimization is done to increase performance.

This rules out usage of low-level APIs provided by Caffe (Jia et al., 2014) which

use BLAS routines as their backbone, and hence the implementation was in high

level code.

The baseline was made by implementing a plain vanilla convolution layer,

with high level C++ code, needing to make a considerable comparison between

the optimizations involved and

CMake system was used to build files for the ARMv7 platform, and methods

needed to be refactored to make better use of RISC specific features, and improve

memory management.

2.2.6 Experiment Methodology

We now describe the experiments carried out to evaluate DyVEDeep on the Rasp-

berry Pi. Pre-trained DNN models from Caffe Model Zoo (BVLC), were chosen

in view of DyVEDeep’s adaptability. The following networks were used : CIFAR-

10 network trained on the CIFAR-10 dataset; AlexNet (Krizhevsky et al., 2012),

compressedAlexNet (Han et al., 2015a), VGG-16 (Simonyan and Zisserman, 2014)

trained on ILSVRC ’12 dataset, (Russakovsky et al., 2015). The inputs for the net-

work are generated by using a 224x224 center crop of images in the test set. 5% of

the test inputs were randomly selected, and used to tune hyper-parameters. The

rest were using in evaluating speed up and accuracy. This was done on an Intel

Xeon server operating at 2.7GHz, with 128GB of RAM.

After obtaining the hyper-parameters, another 5% of test inputs were selected,

and the models were run on Raspberry Pi3, with these optimal hyper-parameters.

FLOP counters and timers were embedded within the code to measure compute

reduction and execution time. Knobs only tested on convolutional layers, since

they take up more time during forward inference, but reported times and benefits

include time taken in all layers in the network

14

Figure 2.7: Improvement in execution time

Figure 2.8: Improvement in computation count

2.3 Results

Results of all the experiments run are presented here.

2.3.1 Improvement in FLOPS and Execution time

First, we present the improvement in scalar operation and overall execution time.

Figure 2.3.1 shows ratio of time taken to perform a normal forward inference on

baseline to that in DyVEDeep. We see that DyVEDeep, attains a measurable

speedup ranging between 1.5x-3.8x in time, corresponding to 1.5x-4x in ops count,

as in ?? The overhead in running DyVEDeep was estimated to be less than 5% of

the total number of operations. The difference in classification accuracy between

DyVEDeep and the baseline was found to be less than 0.5% The time benefits

don’t seem to scale as much as the Ops count, this is expected since the dynamic

effort knobs require a different memory access, need additional variables to be

taken care of, and control operations in the software package set an upper limit

to DyVEDeep’s contribution to runtime.

15

Figure 2.9: Layer-wise breakdown for CaffeNet architecture

Figure 2.10: Knob-wise breakdown for CaffeNet architecture

2.3.2 Layer-wise and Knob-wise breakdown of savings

2.9 breaks the runtime savings across layers of the CaffeNet architecture, with

layers horizontally, and runtime normalized to baseline runtime of the DNN, on

y-axis. C1 layer has 11x11 kernels, with a stride of 4, and hence SDSS wouldn’t

be able to exploit a lot of local similarity. Since there’re very few input features,

SFMA is not very effective, and in early layers, very few neurons saturate, and

so SPET’s effectiveness is low. And thus, as seen in the figure, we achieve IN-

SERTTEXTHEREx reduction in runtime in first two convolutional layers, which

increases to 2.6x in C3,C4,C5.

2.10 breaks down savings into those from each knob, for each convolutional

layer in CaffeNet. SDSS gives us maximum savings, close to 30% of scalar opera-

tions, while SPET and SFMA follow with 20% and 8% respectively. Our hypothe-

ses about knobs being effective as we go deeper, was also observed experimentally.

16

Figure 2.11: Comparison vs Regular inference

2.4 Limitations and Future Work

DyVEDeep is able to show similar effectiveness on embedded systems as well,

and thus, is platform and network agnostic, it could be repackaged as a simple

add-on module for convolutional neural network packages DyVEDeep performs

considerably faster than the baseline, but it is of real concern that the baseline

network is a little outdated, and is nowhere as fast as running times using BLAS

libraries.This is mainly due to the fact that BLAS libraries are heavily tuned for

performance at assembly level, while our code is at a very high level, thus suffers

massive overheads. This can be seen in 2.4

Another shortcoming with DyVEDeep is that, it only runs on a CPU, and is

not all the effort knobs are inherently parallelizeable to run on a GPU, which is

the standard choice of platform for most, if not all deep learning packages. GPUs

feature an aggregated cluster of reduced instruction CPUs with shared memory;

GPUs are designed for parallel computing. SPET, and some features from SFMA

can be ported to GPUs without incurring overheads, while SDSS which forms ba-

sis of most of the runtime improvement cannot be easily transformed to GPU code

unless the core functionality is reworked to be composed as basic GPU stream op-

erations, since SDSS involves a lot of branching, and serial processing.

17

CHAPTER 3

Multi-Fovea : Eye-inspired video object detector

Continuing with the dynamic effort model in DyVEDeep, we move on to one of

the most common tasks in computer vision : object detection, where we specifi-

cally concentrate on performing object detection on video streams. Object detec-

tion has been a notable problem in computer vision, which traces its origins to

a summer project in 1966, at MIT, put forward by Seymour Papert and Marvin

Minsky (Papert, 1966). Needless to say, this helped them realize the complexity

of the problem, and spawned a new field. Close to 5 decades on, we’ve computer

vision systems overthrowing humans in object detection, with top-5 error rates in

the Imagenet challenge achieving less than 4 % , human top-5 classification error

rate being reported at around 5 % (Russakovsky et al., 2015). This problem has

also been the subject of an xkcd comic sketch 3.1

The ImageNet challenge has been one of the key driving forces behind object

detection research, and deep learning models have seized the top positions since

2012, starting with AlexNet (Krizhevsky et al., 2012). Object detection models

are used in many other domains in the world today, including Robotics, Manufac-

turing, and lately, even in Transportation, with the advent of self driving cars.

The ImageNet Video challenge (Russakovsky et al., 2015), started in 2015,

is an annual challenge where submissions compete to win the top spots, where

there models perform object detection in video streams, across 30 object categories

(which are a subset of the 200 basic level categories in ImageNet). The winning

entry in 2017 edition, attains a mean-average precision of 0.8172, is by a joint

team from Imperial College, London and University of Sydney, with an optical

flow based model (Zhu et al., 2017).

Object detection in video has a wide variety of applications, starting from

surveillance and anomaly detection, to navigation and path finding. It is thus

pertinent to make a system that has an acceptable detection rate, while simulta-

neously being energy efficient.

Figure 3.1: xkcd # 1452, by Randall Munroe

The field of video processing involves many similar problems, tailored for dif-

ferent applications, broadly, (i) Object detection - refers to detecting and local-

izing objects within each frame, (ii) Object tracking - refers to following moving

objects across the video stream, this has 2 subproblems - detection (same as (i))

and association (matching detections across time), and (iii) Segmentation - refers

to splitting a given frame into different contiguous regions (such as separating

the foreground and background,

The problem of detecting objects in videos cannot be directly applied, since the

appearance of the objects might vary, (viz, A man facing the camera for a while

and turning around) and the detections need to contain a temporal element, since

the appearance of an object in a video is highly correlated between neighboring

frames.This means that the collection of detections scores pertaining to the said

object, over a certain window of time shouldn’t change dramatically., and thus

the temporal consistency of the detections need to be regularized. These extra

constraints are very similar to the object tracking problem, and we borrow some

concepts from there as well.

Deep CNNs have shown impressive performance on object tracking, as seen

in (Nam and Han, 2015), other such papers. Temporal information been able

to regularize the detections, as seen in many multi-pedestrian tracking settings

such as (Bae and Yoon, 2014), (Leal-Taixé et al., 2014). Directly using still-image

trackers on object tracking results in 35.7% mAP compared to 45.3% mAP on

19

Figure 3.2: Normalized angular distribution of photo-receptors in the human eye

object proposals, this arises because the detector is sensitive to location changes,

there are box mismatches between the tracked proposals and object proposals;

as seen in (Krizhevsky et al., 2012). Our vision for this problem however, is two

fold, we are seeking to achieve measurably accuracy performance with real-time

processing (30FPS or above)

This work introduces a video object recognition inspired by the biological eye,

for efficient processing. The human eye works by focusing photons through a set

of converging lenses - cornea and lens to the retina, composed of photo-receptive

cells(rods and cones). The eye has an attention mechanism, guided by the brain,

which helps us focus on specific objects of interest by keeping them in our line

of sight, and detract interest from objects in peripheral vision. More detail is

captured in the objects along the line of sight, owing to non-uniform concentration

of photo-receptors in the retina as see in 3

The central portion with highest concentration of photo-receptors is termed

the Fovea, and we adopt this term in our name owing to spending more compu-

tations for specific regions in the image.

Our work is able to achieve near real-time performance with an average mAP

of 0.536 upon blind testing on the ImageNet VID data set, with the baseline

20

trained on ImageNet-DET dataset.

The following chapters will describe related work approaching the same prob-

lem, then a detailed discussion on our methodology and approach, finally con-

cluded by results, and a brief discussion on limitations and future work.

3.1 Related Work

In this section, we will look at prior research in the area of object detection, which

are extended to video processing. We will have a deeper look into methods which

take efficiency into account, and beyond this we will explore work in efficient video

processing - in other similar problems such as segmentation, caption and action

localization.

3.1.1 Object Detection in Still-Images

Approaches in object detection can be broadly classified into : Region Proposal

Based: Region proposal based approaches process only selected regions of the im-

age to reduce compute effort on unnecessary regions. Selective Search (Uijlings

et al., 2013) is one of the earliest approaches where possible object locations for

use in object detection found before processing them through a support vector

machine. Such a search algorithm captures all scales, uses a diverse set of strate-

gies to generate a hierarchy of possible object locations, and finally is efficiently

calculated. R-CNN (Girshick et al., 2014) establish the supremacy of CNN-based

features over traditional HoG variants, uses modified selective search to improve

object detection. To speed this process up further, Fast R-CNN (Girshick, 2015)

pools are regions of interest, and uses a unified CNN based model, to obtain de-

tections after a single pass. Faster R-CNN (Shaoqing Ren et al., 2015) uses the

CNN features maps to use for region proposals, and thus cuts down on the time

further.

Single Stage Detectors: This class of object detectors use a single network

to predict both bounding boxes and object classes. Famous architectures in this di-

rection include the YOLO, and SSD families. YOLO (Redmon and Farhadi, 2018)

21

divides a region into smaller regions and applies a neural network which predicts

bounding boxes and probabilities for each region. YOLO (You only Look once),

performs only one pass through the CNN, and is extremely fast, however, each re-

gion is restricted to a single class, and hence YOLO struggles with small objects.

SingleShotDetector (SSD) (Liu et al., 2015b) is another popular family, uses a

fully convolutional network, and applies small sized filters to predict classification

scores and bounding boxes; SSD produces outputs after multiple convolutional

layers to handle scale. RetinaNet (Lin et al., 2017), uses a Feature-Pyramid-

Network (Lin et al., 2016) (feature outputs for an image at various scales, along

with a modified loss function, which increases focus on misclassified examples.

Table 3.1: mAP and inference times (in ms) on COCO test-dev
Network mAP time
YOLOv3 21.6 25

Faster-R-CNN 24.2 198
SSD321 28.0 61
SSD513 31.2 125

FPN-FRCN 36.2 172
RetinaNet-50-500 32.5 73

RetinaNet-101-500 34.4 90
RetinaNet-101-800 37.8 198

Current state of art object detectors use a single-stage approach to cut down

on runtime. We’ve summarized mean-average precision (mAP) and inference time

for a few of them in 3.1

3.1.2 Object detection/localisation in videos

Since, most of the aforesaid networks have fast enough runtime, they are usually

run in a loop, for every frame to detect objects in a video, such as SSD, RetinaNet

Object localisation is a similar problem, on the YouTube objects dataset, where

the underlying assumption is that there is only one object of interest in a frame,

while each frame of ImageNet-VID may have many objects in a single frame. The

evaluation metric for object localisation is "CorLoc", while mean Average preci-

sion is used on the ImageNet-VID task, this makes the ImageNet-VID challenge

much more difficult, and closer to reality. Action recognition is another problem

where the system is required to annotate a bounding box for human action of in-

22

terest. Since temporal coherence is of more importance here, most approaches

use Optical flow, to propagate detections and features through time.

In, Object Detection with Tubelet networks (Kang et al., 2016), the authors use

a spatio-temporal tubelet proposals by combining still-image object detector with

a tracking module, in a 3 step - object proposal, proposal scoring, and tracking.

They perturb the proposals, and score these new ones to attain a greater accuracy.

This performs at a meanAP of 47.5% over ImageNet VID.

Some approaches have also tried a mixture of CNNs and LSTMs to take ad-

vantage of the temporal dimensions, the downside is of course heavy computation,

and a difficult training process, (Donahue et al., 2015)

Other approaches, use optical flow to associate detections over time, and have

performed exceedingly well at the challenge, the 2017 winners, (Zhu et al., 2017),

which warps ResNet feature maps based on optical flow, does a weighted aggre-

gation to propose detections, this runs at around 204ms per frame, to achieve an

mAP of 0.69, while the better configurations achieve higher mAPs with increased

runtime.

3.1.3 Context based approaches

Here we will look at other papers discussing the use of fovea based methods :

(Larochelle and Hinton, 2010) describes applying an attention field over the in-

put, and processing the other parts with lesser importance; which is used to make

a multi-fixation RBM, which performs as well as state of art on MNIST, and syn-

thetic datasets

(Karpathy et al., 2014) describes usage of a high-resolution feed (central fovea),

and a low-resolution context feed for improving efficiency. The authors also con-

sider "fusing" features within various time windows for increasing accuracy.

Our approach has been built on the idea of using many fovea and skipping

unnecessary computation on the other areas. This puts our mAP over (Kang et al.,

2016), while giving near real-time performance

23

Figure 3.3: SSD Framework:a schematic

(a) (b) (c)

Figure 3.4: SSD Framework

3.2 Approach and Implementation

We divide this section into two parts. The first part will describe the choice of

baseline, after a brief comparison of baselines; while the second part will delve

into our approach, and implementation specifics. We choose the SSD300 (Liu

et al., 2015b) as our baseline network, and our approach is modular and works on

top of it.

3.2.1 Baseline - SSD

SSD - Single Shot MultiBox detector - is a single stage detector, which is fully

convolutional, which does bounding box regression, and gives us multiclass prob-

abilities simultaneously. SSD is built on a pre-trained VGG16 network, schematic

as in 3.2.1 .The approach predicts bounding box offsets, and multiclass probabili-

ties for each box. Feature maps from many successive layers taken, this improves

24

detection accuracy across scales, and predictions are explicitly separated by as-

pect ratio; this leads to a very high accuracy. An example is depicted in 3.2.1 (Liu

et al., 2015b), (a) shows the Ground truth boxes, and (b) shows anchor boxes at

a given location with 8x8 feature maps (c) shows similar for 4x4 feature maps,

red box highlights regressed outputs from that box - location offsets, height,width

and multiclass probabilities.

SSD’s unique training methodology also gives it a headway in performance

and precision, over other competitors such as YOLO. SSD uses a special "multi-

box" layer for prediction for both boxes and classes simultaneously. During train-

ing, a threshold is set, and any default box matching a ground truth box with

jacquard overlap higher than the threshold is chosen, and the objective function

is a weighted sum of the localization loss (L loc) and the confidence loss (Lconf).

Let xp
i j = 1,0 be an indicator for matching the i-th default box to the j-th ground

truth box, of category p. The authors choose a threshold of 0.5, and they define

the overall loss as follows :

L(x, c, l, g)= 1
N

(Lconf (x, c)+αL loc(x, l, g)) (3.1)

where, N is the number of matched default boxes. If N is 0, then loss is set to

0. The localization loss is a Smooth-L1 loss between the predicted box (l) and

the ground truth box (g) parameters. The offsets for the center (cx, cy) of of the

default bounding box (d), width (w) and height (h) are regressed, from ground

truth values.

L loc(x, l, g)=
N∑

i∈Pos

∑
m∈{cx,cy,w,h}

xp
i jsmoothL1(lm

i − ĝm
j) (3.2)

ĝcx
j = (ĝcx

j −dcx
i)/dw

i (3.3)

ĝcy
j = (ĝcy

j −dcy
i)/dh

i (3.4)

ĝw
j = log(

gw
j

dw
j

) (3.5)

ĝh
j = log(

gh
j

dh
j

) (3.6)

25

The confidence loss is softmax loss over multiple class confidences(c) (since

more than one class can exist in a box).

Lconf (x, c)=−
N∑

i∈Pos
xp

i j log(ĉp
i)− ∑

i∈Neg
log(ĉ0

i) (3.7)

where ĉp
i = exp(cp

i)

Σpexp(cp
i)

(3.8)

and α was set to 1 after cross-validation. This modified loss function, along

with carefully chosen scales and aspect ratio for default boxes, hard negative

mining and data augmentation using randomly sampled patches with minimum

jacquard overlaps of varying thresholds are one of the major drivers behind this

increase in accuracy.

SSD performs at 77.2% mAP for 300x300 input at 59FPS, and 79.8% mAP

for 512x512 input on VOC2007. We further train SSD (for 300x300 input) on

Imagenet DET + VID and we achieve an mAP of 71% at a threshold of 0.5.

3.2.2 Multi-Fovea Layer

Algorithm 1 Multi-Fovea
1: procedure MFOVEA(f rame,dbox,nOb j) . Multi-fovea from a frame
2: maxOb j ← 6
3: z ← 0.1
4: if nOb j ≤ 2 then . Defining fovea size
5: scale = 0.25
6: else if nOb j ≤ 4 then
7: scale = 0.5
8: else
9: scale = 1

10: if nOb j ≤ maxOb j then . Breaking point for trade off
11: dboxNew ← stretch(dbox, z) . Stretches bounding box by z
12: f ovea ← montage(f rame,dboxNew, scale) . Bin-pack all detections
13: else
14: f ovea ← f rame
15: return f ovea

In this section, we describe the Multi-Fovea layer used on top of the SSD

model. In order to give objects more importance, track only the detected boxes,

26

Figure 3.5: Schematic of the Multi-Fovea system

while occasionally checking the whole image to correct for drifts. Multi-Fovea

consists of two processes - selecting frame to process, making the multi-fovea,

and processing the fovea.

The first frame of the video is always processed, and if objects are detected in

the first frame, then only every other skip_ f rame_o = 5 -th frame is processed.

This is to make use of the temporal redundancy in the video,and if no objects are

detected, then every other frame (skip_ f rame_n = 2) is processed.

To make the montage, we look at the number of detections in a video frame,

for each detection, we add an allowance to the bounding box, to account for ob-

ject movement in the next frame. This allowance (z) was chosen to be 0.1 after

estimating average object velocities on the Imagenet-VID dataset. z needs to be

higher for datasets with high velocity objects, and vice versa. After stretching the

bounding boxes by this factor z, and cropping the relevant portions of the image,

we bin-pack them into a rectangular montage, where each detection is resized into

a square, with dimensions scale∗min(f ramewidth, f rameheight). The montage

is only made if there are atmost maxOb j = 6 objects in the frame, this number

was chosen from the fact that the VID dataset on an average has 2/3 objects, and

95% of the time has less than 7 objects in the frame. The algorithm to make the

multi-fovea is succinctly stated in 1

After the montage/multi-fovea is made, we record the transformations made

to each of the initial detected boxes, through matrices for each detection. If the

fovea happens to be the complete frame itself, then the matrices are set to the

identity matrix. We now run SSD on this multi-fovea. Owing to variable size of

the fovea, we appropriately run SSD upto the final layer or the penultimate layer

accordingly. Next,for the detections we first run Non-Maximum Suppression and

then run the inverse of the transforms to get their locations in the original frame.

27

(a) (b)

Figure 3.6: Sample working of the Multi-Fovea system

Table 3.2: *
Classwise mAP on ImageNet-VID

Class Airplane Bicycle Bird Bus Car Cow Dog Cat Horse Motorcycle Sheep Train mAP
mAP(Baseline) 0.768 0.681 0.706 0.770 0.689 0.728 0.755 0.660 0.818 0.678 0.517 0.763 0.711

mAP(MultiFovea) 0.568 0.457 0.589 0.544 0.485 0.555 0.576 0.581 0.599 0.450 0.369 0.655 0.536

In order for the multi-fovea system to work better with smaller resolution im-

ages, we did an extra round of training with scaled down images from Imagenet-

DET and ImageNet-VID-train

3.3 Results

SSD300 trained on Pascal VOC was taken and was further trained on ImageNet-

DET and ImageNet-VID-Train. Tesla K80 was used for training and testing.

First, we report results on static object detection by both Multi-Fovea system

and Baseline-SSD (without our round of training), and tested on imagenet-vid.

Only common classes are reported.

As seen in 3.3, the baseline network outperforms the multi-fovea approach,

but takes twice as much time to operate. Upon visual inspection of results, most

negatives seemed to occur for small object sizes, which makes our extra round

of training inevitable for this model. After training, the baseline SSD improves

to an mAP of 0.71, at 0.5 threshold, and the multi-fovea model achieves an mAP

0.64 at 0.5 threshold.

28

s = Rfeed ×skip_frame_o
Rfovea

(3.9)

This approach gives hard attention to the objects, and ensures lesser compute

time, while actively ignoring the areas without objects. The speed up for any

frame, s, is given by 3.9, where Rfeed is resolution of input feed, which in our case

is 300x300, Rfovea is resolution of the fovea, which for 6 objects is 300x300, and

for 2 objects is 75x75. On an average, with 2-3 objects occurring in most frames,

speedup is 2x.

3.4 Limitations and Future work

The proposed system works well owing to the adaptability of the underlying SSD

network. Despite our proposal being modular, it cannot be expected to work at

the same level for other neural network baselines.

Even with SSD, we see that there’s a considerable gap to close in terms of

accuracy between the baseline and our trained model. This motivates us to search

for alternate ways of formulating the fovea, unlike our current model, where each

detection in the fovea is resized to the same size, irrespective of its original size

in the network.

Our method is not effective against high velocity objects, owing to the choice

of factor z, choosing a large value for z doesn’t make enough sense in terms of

speedup. An interesting direction to look into to solve this problem is to choose z

for each detection based on its velocity, this would be akin to calculating optical

flow at specific regions in the image, and would be a good compromise between

speed and accuracy, since winning entries of ImageNet-VID use Flow-based ap-

proaches.

Other video related problems include occlusion, defocus blur and motion blur,

our method copes well with occlusion, but is resistant to some degree of blur owing

to the frame-skip mechanism. This is acceptable since blur artifacts don’t last

long in a video.

29

This fovea-based model maybe extended to other video processing applica-

tions, as its well suited for low-power applications, such as surveillance, moni-

toring and anomaly detection, etc.

30

CHAPTER 4

Hardware Trade-offs

Any machine learning system has two major parts : the software/algorithms, and

the hardware package it runs on. The preceding chapters dealt with improving

algorithms independent of the other components of a machine learning system.

In this chapter we explore trade-offs associated with various hardware platforms

used to run DNNs. Experimental Simulations are carried out on the CPU as well

as the memory chip.

Our approach delivers key insight into various problems posed by standard

training and inference algorithms for common neural network architectures, and

provides solutions to address them.

These experiments detail the fact that design of algorithms and hardware for

machine learning should go hand-in-hand to ensure maximum efficiency.

4.1 Related Work

We look at prior work on injecting noise in Machine Learning models. Noise has

mostly been a welcome addition in this area, since (Murray and Edwards, 1993)

established that using additive noise in multi-layer perceptron improves general-

izing performance of a neural network. And more recently, there’s been a flurry of

works in reduced precision weights in DNNs, popular examples being BinaryNet,

with all weights being binary (Courbariaux and Bengio, 2016); extending it to

TernaryNet (Alemdar et al., 2016). These lead us to investigate what makes neu-

ral network architectures work with less precision, and yet fail when significant

noise is added, found by (Merolla et al., 2016).

Similarly, we’ve also seen experiments that injecting noise into inputs often

cause networks to fail inconsiderately, these so called "adversarial" inputs have

been a cause for concern, and (Zheng et al., 2016) addresses this to some extent.

Noise added may be seen as originating from fault in hardware processes. Ex-

amples include quantization noise, where weights are reduced in precision owing

the fixed width; binary noise, which occurs due to incorrect memory reads. Quan-

tization noise can be simulated on two levels : one in the activations and inputs,

and another in the neural network weights. We note that both are equivalent,

since perturbation in activations can be seen as perturbation of weights in the

previous layer, or as perturbation of inputs, with correspondingly scaled param-

eters. Typically, only weights and weight updates are quantized, owing to their

long term presence, while activations are computed in higher precision.

4.2 Approach and Results

In this chapter, we define our experiments, and compare them against standard

baselines to look at their resilience.

4.2.1 DNN Profiling experiments on Raspberry Pi

Raspberry Pi3 is a popular ARMv7 based board that runs Raspbian, a debian

based linux distribution. We choose Raspberry Pi owing to its widespread pres-

ence, and reasonable cost. The CPU/GPU is one of the key components in an

ML system, and consumes considerable amount of power. Modern GPUs such as

TitanX, TitanV consume upto 250Watts, while modern server grade CPUs such

as Xeon, i9 series report a Thermal Design Power of around 200Watts at most.

RaspberryPi3’s CPU, a Broadcom 2837, scales from 600MHz to 1.2GHz (without

overclocking), and CPU voltage can stretch from 0.8V to 1.4V, default value : 1.2V.

The chipset reports an idle power of 1.83W, and max power of 6.7W under stress,

as reported in (Team, 2016) We were only able to vary the CPU clock speed in a

stable fashion, voltage was locked in the range 1.2V-1.3V, owing to kernel restric-

tions.

Experiment Details

1. CPU clock speed varied from 600MHz to 1.2GHz

32

Figure 4.1: Inference time in ms

2. Keras system used for benchmarking

3. Inference times tested on MNIST (Le-Net), CIFAR-10, CIFAR-100 architec-
tures

We report the inference times in 4.2.1.The inference times decrease with in-

crease in clock speed as expected, and saturate beyond a point owing to time taken

by other parts of the pipeline such as memory access, context switching etc. We

now calculate the power consumed to see if there is a convex trend. In order to

calculate power consumed, we use the approach followed in (Vogeleer et al., 2014),

as follows.

Pcpu = Pd ynamic +Pleak (4.1)

Pd ynamic = Pshort +Pcharge (4.2)

Pcharge =αC f V 2 (4.3)

Pshort = (η−1)Pcharge (4.4)

Pd ynamic = ηαC f V 2 (4.5)

Edynamic(t)=
t∫

0

ηαC f V 2 (4.6)

The Power consumed by CPU, may be divided into Pleak, arising out of leakage

currents in transistors, and Pd ynamic, owing to varying load across the transis-

tors. This dynamic power may be further split into Pshort, the power lost when

the transistors conduct current (are in "on" mode), and Pcharge, power needed to

33

Figure 4.2: Energy consumed

charge the gate’s capacitors.In standard literature, Pcharge is defined as αC f V 2

(Eshraghian and Weste, 2000), where α is a proportionality constant indicating

the percentage of time the system is active/switching, C is the system capaci-

tance, and f is the clock frequency, with V being the voltage swing across C. Pshort

arises when a logic gate is toggled, and a short circuit current flows from Vcc to

ground, this is non-negligible for billions of gates, and very high clock frequencies.

We deem Pshort to be proportional to Pcharge for simplicity, and with η as scaling

factor we obtain an expression for Pdynamic, as in 4.1

4.2.1 shows a plot of energy consumed with clock frequency. We see that for

MNIST there is linear trend in energy consumed, owing to the small size of the

network, memory accesses dominate the time taken, and hence energy increases

with frequency.

While, for CIFAR networks, we see that there is a convex behavior, as hypoth-

esized. Energy attains a minimum at both 1GHz and 600MHz, with inference

time being lower at 1GHz, meaning the 1GHz parameter occupies a sweet spot

giving us faster inference at reduced power.

4.2.2 Retention Time analysis for DNN weights

The weights of a DNN are typically too large to fit on the CPU/GPU cache SRAM,

(AlexNet: 200MB, CIFAR-10 : 30 MB, and so on), and hence they are usually

stored on the shared DRAM. SRAM (Static RAM) uses CMOS transistor based

34

(a) (b)

Figure 4.3: Structure & Hierarchy of DRAM

Figure 4.4: Power Consumption of DRAM Chips vs memory

flip-flop to store memory, as long as Vcc is kept within limits, and hence requires

very less power. Owing to the complexity involved in making SRAM, it is used

only where extremely fast access memory is required in tiny quantities(CPU/GPU

caches), as depicted in 4.2.2, as it is very expensive to manufacture, since it re-

quires 6 transistors per cell, compared to one transistor and one capacitor needed

by DRAM.

DRAM (Dynamic RAM), 4.2.2 uses a capacitor to store charge, and a transistor

to change the value. Since the capacitor loses charge over time, it needs periodic

refreshing. This refresh command issued by the DRAM controller is not negligible

in terms of power consumption, as shown in 4.2.2 (Liu et al., 2012). A refresh

command is issued each 7.8µs, and each cell is refreshed every 64ms according

to the DDR3 DRAM standard. Profiling retention times in DDR3 RAM cells, as

done in (Liu et al., 2012) yields the following graph 4.2.2

35

Figure 4.5: Retention time of DRAM Cells

Algorithm 2 Retention Time
Require: weights, weights of the DNN
Require: p_retain, retention probability

1: procedure MASKWEIGHT(weights,width, p_retain) . Bitwise-masking of
weights

2: width ← 16 . Quantizing weights to 16bits fixed point
3: weights ← quantize(weights,width)
4: masks ← generate_masks(width) . Generates all possible masks for a

given width
5: for each weight ∈ weights do
6: mask ← sample(weight,masks,p_retain)
7: weight ← weight & mask

return weights

36

Figure 4.6: Accuracy vs Retention probability

We now wish to explore the effect of removing refresh on DRAM chips, in case

of DNNs. We specifically explore their effect on neural network weights, since

they are persist for a longer period of time, and activations are used almost imme-

diately in the successive layers, so activation data is no longer needed after access,

and hence, they can stay "unrefreshed". Since regular neural network weights are

floating point variables, and cannot be subject to bitwise operations, we convert

them into 16bit fixed point variables for this experiment. We perform bitwise-

and on each weight with a randomly chosen mask. These masks correspond to

normal operation (viz, 0x111111 ..) or any of the charged bits losing their charge

(viz, 0x101111, 0x11011 ..) owing to exceeding the retention time. Since weights

are usually uniformly distributed around zero, we apply masks independent of

the weight value, however, we could also sample only applicable masks for each

weight (viz, for a weight value of 1 say, the only applicable masks are 0x1111 ...

and 0x11111111..0 and then do the aforesaid bitwise-and), both methods yielded

similar results on CIFAR-10 and MNIST architectures. p_retain was varied over

0 to 1. 1-sec retention corresponds to a p_retain of 0.99 in DDR3 RAM.

We see that accuracy drops sharply as we cross 2% failure rate, this could

occur because a lot of important bits begin to be erred and that affects the final

output. We see that the curve is much sharper for CIFAR-10 as compared to

MNIST, this is because of the fact that many weights in MNIST are very close

to zero, and failures in such bits will have almost no effect on the accuracy, and

hence effects are only felt at much higher failure rates.

37

(a) (b)

Figure 4.7: (a)MNIST and (b)CIFAR-10 weight distributions

This experiment considers the event where only one bit per weight fails, since

anything more than that would be half as likely.

4.2.3 Resilience to normal noise in DNN weights

In this section, we try to expose normal noise to DNN weights, and see the effect

on accuracy. We observe that adding normal noise while training to the inputs,

gives rise to an L2 like regularization on the weights. For a linear regression case

this can be derived as 4.7. Let y ∼Σwixi, for inputs xi, and let εi ∼ N(0,σ2
i), with

εi independent. Let ynoise be outcome of adding noise εi to input vector xi. Since

y is uncorrelated to εi, the last step follows from the penultimate step.

ynoise =Σwixi +Σεiwi (4.7)

Let y0 be actual value of y, SSE is given by (4.8)

E((ynoisy − y0)2)= E((Σwixi +Σεiwi − y0)2) (4.9)

= (y− t)2 +2E((y− t)Σεiwi)+E((Σεiwi)2)

(4.10)

= (y− t)2 +E((Σεiwi)2) (4.11)

= (y− t)2 +Σw2
iσ

2
i (4.12)

(4.13)

A quick look at the distribution of weights of both MNIST and CIFAR-10 ar-

chitectures, shows that MNIST weights are almost normally distributed around

zero, while CIFAR-10 weights are a little shifted to the right, and span a wider

range.

38

(Merolla et al., 2016) describes a similar approach where they add constant

normal noise to each weight in the network. Here, we perform the following ex-

periments on the MNIST, and the CIFAR-10 standard architectures.

1. Add normal noise to all weights, with zero mean, and std deviation propor-

tional to the average weight (denoted by global) 2. For weights in each layer, add

normal noise with zero mean, std deviation proportional to average layer weight

(denoted by layer) 3. For weights in each layer, add normal noise with zero mean

and std deviation proportional to the value of the weight itself. (denoted by indiv)

Figure 4.8: Normal Noise added to MNIST architecture

Figure 4.9: Normal Noise added to cifar-10 architecture

Results for MNIST 4.2.3 and CIFAR-10 4.2.3 are attached as above. We see

that for σn less than around 10% of the original weight value, we do not see any

significant change in test-error rate. This approximately gives us the depth of the

minima of the loss function with respect to each weight. As σn increases, accuracy

39

drops sharply to that of random selection, this is more pronounced in "indiv" than

in the other two, this is because the random errors added to each weight are of

different variance, and the model does not have enough redundancy to deal with

this. Specifically in CIFAR-10 we see that the "layer" variant drops slowly than

the other two, this is most likely because of the fact that all layer weight averages

are quite close to one another, and tend to behave like the "global" variant.

4.3 Conclusion

1. Profiling of DNNs on various platforms helps us find a sweet-spot configu-
ration to balance execution speed and reduce power consumed, this will be
helpful tuning hardware for always-on machine learning models

2. Retention analysis lead us to propose a two-tiered memory model for DNNs
: one tier will be exclusively used for activations, gradients and other tem-
porary variables, and this tier will have a lower refresh rate than the other
tier, which will contain weights of various layers.

3. Analysis of weights perturbed with normal noise indicates a very complex
error surface. We’ve identified the extents of safe zone around each weight,
and this could be used to build more efficient training/inference algorithms.

Deep Neural Networks are have miles to go before they match the efficiency

and accuracy of the final frontier : the brain. Statements in the media have often

ridiculed Deep Learning to be the latest cause of global warming owing to exces-

sive energy spent in training and inference. When machine learning algorithms

have potential applications almost everywhere, our work is a reminder that not

only do algorithms need to be accurate, but even the hardware that is used for DL,

must be co-designed to maximize potential gains from efficiency and accuracy.

40

REFERENCES

1. Alemdar, H., N. Caldwell, V. Leroy, A. Prost-Boucle, and F. Pétrot
(2016). Ternary neural networks for resource-efficient AI applications. CoRR,
abs/1609.00222. URL http://arxiv.org/abs/1609.00222.

2. Anwar, S., K. Hwang, and W. Sung, Fixed point optimization of deep convo-
lutional neural networks for object recognition. In Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International Conference on. IEEE, 2015.

3. Ba, J. and B. Frey, Adaptive dropout for training deep neural networks. In
Advances in Neural Information Processing Systems. 2013.

4. Bae, S.-H. and K.-J. Yoon, Robust online multi-object tracking based on tracklet
confidence and online discriminative appearance learning. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 2014.

5. Bengio, E., P. Bacon, J. Pineau, and D. Precup (2015). Conditional com-
putation in neural networks for faster models. CoRR, abs/1511.06297. URL
http://arxiv.org/abs/1511.06297.

6. Bengio, Y. (2013). Estimating or propagating gradients through stochastic neu-
rons. CoRR, abs/1305.2982. URL http://arxiv.org/abs/1305.2982.

7. BVLC (). Caffe model zoo. URL http://caffe.berkeleyvision.org/model_
zoo.html.

8. Chen, W., J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen (2015). Com-
pressing neural networks with the hashing trick. CoRR, abs/1504.04788. URL
http://arxiv.org/abs/1504.04788.

9. Courbariaux, M. and Y. Bengio (2016). Binarynet: Training deep neu-
ral networks with weights and activations constrained to +1 or -1. CoRR,
abs/1602.02830. URL http://arxiv.org/abs/1602.02830.

10. Das, D., S. Avancha, D. Mudigere, K. Vaidyanathan, S. Sridharan, D. D.
Kalamkar, B. Kaul, and P. Dubey (2016). Distributed deep learning using
synchronous stochastic gradient descent. CoRR, abs/1602.06709. URL http:
//arxiv.org/abs/1602.06709.

11. Denton, E., W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus (2014). Exploit-
ing linear structure within convolutional networks for efficient evaluation. CoRR,
abs/1404.0736. URL http://arxiv.org/abs/1404.0736.

12. Donahue, J., L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, Long-term recurrent convolutional net-
works for visual recognition and description. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2015.

41

http://arxiv.org/abs/1609.00222
http://arxiv.org/abs/1511.06297
http://arxiv.org/abs/1305.2982
http://caffe.berkeleyvision.org/model_zoo.html
http://caffe.berkeleyvision.org/model_zoo.html
http://arxiv.org/abs/1504.04788
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.06709
http://arxiv.org/abs/1602.06709
http://arxiv.org/abs/1404.0736

13. Eshraghian, K. and N. Weste, Principles of CMOS VLSI design: a systems per-
spective. Addison-Wesley Pub. Co., 2000.

14. Farabet, C., B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. Le-
Cun, Neuflow: A runtime reconfigurable dataflow processor for vision. In Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer
Society Conference on. IEEE, 2011.

15. Figurnov, M., D. P. Vetrov, and P. Kohli (2015). Perforatedcnns: Acceleration
through elimination of redundant convolutions. CoRR, abs/1504.08362. URL
http://arxiv.org/abs/1504.08362.

16. Ganapathy, S., S. Venkataramani, B. Ravindran, and A. Raghunathan
(2017). Dyvedeep: Dynamic variable effort deep neural networks. CoRR,
abs/1704.01137. URL http://arxiv.org/abs/1704.01137.

17. Girshick, R., Fast r-cnn. In International Conference on Computer Vision (ICCV).
2015.

18. Girshick, R., J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies
for accurate object detection and semantic segmentation. In Computer Vision and
Pattern Recognition. 2014.

19. Han, S., X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
Eie: efficient inference engine on compressed deep neural network. In Computer
Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on.
IEEE, 2016.

20. Han, S., H. Mao, and W. J. Dally (2015a). Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding. CoRR,
abs/1510.00149. URL http://arxiv.org/abs/1510.00149.

21. Han, S., J. Pool, J. Tran, and W. J. Dally (2015b). Learning both weights and
connections for efficient neural networks. CoRR, abs/1506.02626. URL http:
//arxiv.org/abs/1506.02626.

22. Jaderberg, M., A. Vedaldi, and A. Zisserman, Speeding up convolutional neu-
ral networks with low rank expansions. In Proceedings of the British Machine
Vision Conference. BMVA Press, 2014.

23. Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell (2014). Caffe: Convolutional architecture for
fast feature embedding. arXiv preprint arXiv:1408.5093.

24. Kang, K., W. Ouyang, H. Li, and X. Wang (2016). Object detection from video
tubelets with convolutional neural networks. CoRR, abs/1604.04053. URL http:
//arxiv.org/abs/1604.04053.

25. Karpathy, A., G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei, Large-scale video classification with convolutional neural networks. In Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recognition.
2014.

42

http://arxiv.org/abs/1504.08362
http://arxiv.org/abs/1704.01137
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1604.04053
http://arxiv.org/abs/1604.04053

26. Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural
networks. CoRR, abs/1404.5997. URL http://arxiv.org/abs/1404.5997.

27. Krizhevsky, A., I. Sutskever, and G. E. Hinton, Imagenet classification with
deep convolutional neural networks. In Advances in neural information process-
ing systems. 2012.

28. Larochelle, H. and G. E. Hinton, Learning to combine foveal glimpses with a
third-order boltzmann machine. In Advances in neural information processing
systems. 2010.

29. Leal-Taixé, L., M. Fenzi, A. Kuznetsova, B. Rosenhahn, and S. Savarese,
Learning an image-based motion context for multiple people tracking. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2014.

30. LeCun, Y., J. S. Denker, and S. A. Solla, Optimal brain damage. In Advances
in neural information processing systems. 1990.

31. Lin, T., P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie
(2016). Feature pyramid networks for object detection. CoRR, abs/1612.03144.
URL http://arxiv.org/abs/1612.03144.

32. Lin, T., P. Goyal, R. B. Girshick, K. He, and P. Dollár (2017). Focal loss for
dense object detection. CoRR, abs/1708.02002. URL http://arxiv.org/abs/
1708.02002.

33. Liu, B., M. Wang, H. Foroosh, M. Tappen, and M. Pensky, Sparse convo-
lutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2015a.

34. Liu, J., B. Jaiyen, R. Veras, and O. Mutlu, Raidr: Retention-aware intelligent
dram refresh. In ACM SIGARCH Computer Architecture News, volume 40. IEEE
Computer Society, 2012.

35. Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C.
Berg (2015b). SSD: single shot multibox detector. CoRR, abs/1512.02325. URL
http://arxiv.org/abs/1512.02325.

36. Merolla, P., R. Appuswamy, J. Arthur, S. K. Esser, and D. Modha (2016).
Deep neural networks are robust to weight binarization and other non-linear dis-
tortions. arXiv preprint arXiv:1606.01981.

37. Modha, D. S. (2017). Introducing a brain-inspired computer. Published on-
line at IBM Research articles. URL http://www.research.ibm.com/articles/
brain-chip.shtml.

38. Murray, A. F. and P. J. Edwards, Synaptic weight noise during mlp learning
enhances fault-tolerance, generalization and learning trajectory. In Advances in
neural information processing systems. 1993.

39. Nam, H. and B. Han (2015). Learning multi-domain convolutional neural net-
works for visual tracking. CoRR, abs/1510.07945. URL http://arxiv.org/abs/
1510.07945.

43

http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1512.02325
http://www.research.ibm.com/articles/brain-chip.shtml
http://www.research.ibm.com/articles/brain-chip.shtml
http://arxiv.org/abs/1510.07945
http://arxiv.org/abs/1510.07945

40. Papert, S. (1966). The summer vision project. URL http://dspace.mit.edu/
bitstream/handle/1721.1/6125/AIM-100.pdf.

41. Ramasubramanian, S. G., R. Venkatesan, M. Sharad, K. Roy, and
A. Raghunathan, Spindle: Spintronic deep learning engine for large-scale neu-
romorphic computing. In Proceedings of the 2014 International Symposium on
Low Power Electronics and Design, ISLPED ’14. ACM, New York, NY, USA,
2014. ISBN 978-1-4503-2975-0. URL http://doi.acm.org/10.1145/2627369.
2627625.

42. Redmon, J. and A. Farhadi (2018). Yolov3: An incremental improvement. arXiv.

43. Rosenblatt, F. (1957). The perceptron–a perceiving and recognizing automaton.

44. Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning repre-
sentations by back-propagating errors. nature, 323(6088), 533.

45. Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei (2015).
ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3), 211–252.

46. Sandberg, A. (2008). Whole brain emulation: A roadmap, technical report. (3).
URL www.fhi.ox.ac.uk/reports/2008âĂŘ3.pdf.

47. Seide, F., H. Fu, J. Droppo, G. Li, and D. Yu, 1-bit stochastic gradient descent
and application to data-parallel distributed training of speech dnns. In Inter-
speech 2014. 2014.

48. Shaoqing Ren, K. H., R. Girshick, and J. Sun (2015). Faster R-CNN: To-
wards real-time object detection with region proposal networks. arXiv preprint
arXiv:1506.01497.

49. Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui,
L. Sifre, G. v. d. Driessche, T. Graepel, and D. Hassabis (2017). Mastering the
game of go without human knowledge. Nature, 550(7676), 354. ISSN 1476-4687.
URL http:https://doi.org/10.1038/nature24270.

50. Simonyan, K. and A. Zisserman (2014). Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556. URL http://arxiv.org/
abs/1409.1556.

51. Team, R. P. (2016). URL https://www.raspberrypi.org/documentation/.

52. Uijlings, J., K. van de Sande, T. Gevers, and A.W.M.Smeulders (2013). Se-
lective search for object recognition. International Journal of Computer Vision.
URL http://www.huppelen.nl/publications/selectiveSearchDraft.pdf.

53. Venkataramani, S., A. Ranjan, K. Roy, and A. Raghunathan, Axnn: energy-
efficient neuromorphic systems using approximate computing. In Low Power
Electronics and Design (ISLPED), 2014 IEEE/ACM International Symposium on.
IEEE, 2014.

44

http://dspace.mit.edu/bitstream/handle/1721.1/6125/AIM-100.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/6125/AIM-100.pdf
http://doi.acm.org/10.1145/2627369.2627625
http://doi.acm.org/10.1145/2627369.2627625
www.fhi.ox.ac.uk/reports/2008‐3.pdf
http:https://doi.org/10.1038/nature24270
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://www.raspberrypi.org/documentation/
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf

54. Vogeleer, K. D., G. Memmi, P. Jouvelot, and F. Coelho (2014). The en-
ergy/frequency convexity rule: Modeling and experimental validation on mobile
devices. CoRR, abs/1401.4655. URL http://arxiv.org/abs/1401.4655.

55. Zheng, S., Y. Song, T. Leung, and I. J. Goodfellow (2016). Improving the
robustness of deep neural networks via stability training. CoRR, abs/1604.04326.
URL http://arxiv.org/abs/1604.04326.

56. Zhu, X., Y. Wang, J. Dai, L. Yuan, and Y. Wei, Flow-guided feature aggregation
for video object detection. 2017.

45

http://arxiv.org/abs/1401.4655
http://arxiv.org/abs/1604.04326

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Brief Introduction to Deep Learning
	Motivation

	Dynamic neural networks on embedded systems
	Related Work
	Approach and Implementation
	SPET - Saturation Prediction and Early Termination
	SDSS - Significance Driven Selective Sampling
	SFMA - Similarity-based Feature Map Approximation
	Implementation specifics
	Implementation platforms
	Experiment Methodology

	Results
	Improvement in FLOPS and Execution time
	Layer-wise and Knob-wise breakdown of savings

	Limitations and Future Work

	Multi-Fovea : Eye-inspired video object detector
	Related Work
	Object Detection in Still-Images
	Object detection/localisation in videos
	Context based approaches

	Approach and Implementation
	Baseline - SSD
	Multi-Fovea Layer

	Results
	Limitations and Future work

	Hardware Trade-offs
	Related Work
	Approach and Results
	DNN Profiling experiments on Raspberry Pi
	Retention Time analysis for DNN weights
	Resilience to normal noise in DNN weights

	Conclusion

