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Abstract 

Concentrated emulsions can be synthesized in a 2D micro channel with ease. Stability of these 

emulsions are critical from the point of view of design of micro channels for applications like 

incubation. These emulsions can undergo spontaneous destabilization through a series of 

coalescence avalanches. In poly-disperse emulsions, droplets can be arranged in different 

configurations, which changes the number of neighbors for every droplet, the orientation of 

droplet pairs etc. The local configuration of the droplets affects the propagation of coalescence 

events in the system which either augments or diminishes the propagation of avalanches. Hence, 

it would be important to identify those configurations that are stable and those that are not. 

 

An interesting question would be: Can one comment on the stability of poly- disperse emulsions 

by simply observing an assembly of droplets? Say, by analyzing the snapshot of droplets in an 

experiment. To answer this question, we introduce a machine learning algorithm where we build 

what is called a classifier. 

 

The idea here is to use the droplet configuration as input and classify the given configuration as 

stable or unstable. To do so, we create a pool of possible configurations as a training set and 

identify a functional relation that can relate the measurable quantities of a droplet assembly- like 

number of neighbors, local orientation, packing density, size ratio, number ratio etc.- to its 

stability. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Coalescence in poly-disperse systems 

High concentration of drops in a micro-channel can form closely packed arrangements. On 

creating disturbance in such a system, consisting of particles of varied sizes in a dispersed phase, 

can collapse the system completely making it unstable. Movement of droplets in a microchannel 

is a dynamic phenomenon as the arrangement of the droplets changes continuously. Therefore a 

perturbation created can propagate and grow to any size. This is possible because when two drops 

are pulled apart, the low pressure between the drops deforms and pulls both the interfaces together 

facilitating contact, which results in coalescence. Efforts have been made to understand the 

mechanism of coalescence.1-3 In a concentrated emulsion, when two drops coalesce they move 

towards each other. In the process they get pulled away from every other drop in the neighborhood. 

This retraction results in a low pressure region around the coalescing pair, which avalanches into 

a cascade of coalescence events.4 This can sometime lead to phase inversion, a phenomenon where 

continuous phase becomes dispersed and vice versa. An avalanche of huge size disturbs the 

equilibrium of the system. 

 

An illustration for the propagation of perturbation is shown as below: 

                                                                                  

Fig 1.1.a Initial stage    Fig 1.1.b Propagation starts 
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     Fig 1.1.c & d Collusion of droplets 

    Fig 1.1: Propagation of coalescence in a system 

1.2 Stochastic model for coalescence 

Quantifying coalescence is difficult because of its dependency on several factors. Bremond 

et al. conducted experiments to find out that this dependency by coalescence made the process 

probabilistic. The stability of the emulsion depends on its immunity to coalescence events. If local 

coalescence events propagate through the assembly of drops, stability is compromised. Hence it 

is important to understand the collective behavior of drops in 2D micro channels.5 

 

Coalescence depends on how the initiated perturbation propagates through the system. 

Hence not every coalescence event results in an avalanche. Depending on the angle made by the 

droplet and its neighbors, the next droplet is pulled into the coalescence. Even the angle between 

two coalescing droplets and their neighbors plays a role in choosing the next droplet. To 

understand this behavior, Bremond et al. considered a combination of three drops and 

experimentally measured the probability P(θ) of drop 3 to coalesce with a coalescing pair (1 and 

2) as a function of the orientation of the three drops (defined by θ).4,5 Though Bremond et al. fit a 

fourth order polynomial for the probability data from physics of the system, a cosine formulation 

is chosen for further calculations and computations. 
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Following are two figures showing different cases of coalescence: 

            

         Fig 1.2.a: Avalanche not caused                            Fig 1.2.b: Resulted in avalanche 

    Fig 1.2: Results of coalescence 

 

Following shows the probability data obtained after Bremond’s experiments: 

 
 

Fig 1.3 Probability of coalescence as a function of theta (data digitized from ref. 4), fit-

polynomial (ref. 4) and P(θ) 
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Hence using this probability function can we quantify the stability of a system? We try to 

classify a system as stable or unstable by determining certain factors that define the system and 

maintain its unique nature. The usage of probability function comes into picture in two places. 

One during the computation of factors and other during determination of stability of system. 

QUESTION OF THOUGHT: Given a snapshot of arrangement of the droplets can we say 

anything about the stability of the system? 
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CHAPTER 2: ALGORITHM 

 

We try to classify the system as stable or not depending on certain factors obtained from 

the droplet arrangements. Hence we need dataset sufficient enough to train the model. We generate 

several configuration of droplets and run a Monte Carlo simulation on each configuration to 

determine the stability of the same configuration system. Then a machine learning algorithm is 

learnt on the dataset generated. 

 

 

Fig 2.1: Flow chart describing the algorithm 
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2.1 Configuration generation: 

 

In real life, the droplets packed in a confined area will be configured randomly with gaps 

between them. The droplets will not be of same size. The complex case being poly-disperse, we 

start by looking at bi-disperse system, two different sizes of droplets. Size ratio is the ratio of two 

different radii and number ratio is the ratio of total number of two different droplets. Imitating the 

real-life system of droplets, we create a numerous number of configurations using the algorithm 

as stated in - Random close packing of disks and spheres in confined geometries K.S.Desmond.6 

 

In this paper, the author proposes a method to create compactly packed droplets system 

abiding by few input parameters. The algorithm takes N, the number of total particles, the size 

ratio and number ratio as inputs. It runs infinitely till a breaking condition is met. The algorithm 

first sets a confining boundary based on N. Next, N particles are placed randomly inside the 

boundary of zero size (points). Then they are expanded such that no particles overlap after any 

expansion. If there is an overlap, the droplets are moved or contracted until no particles overlap 

(within the allowed tolerance). Again the droplets are expanded but this time at a rate that is half 

of previous rate. Each time we switch from contraction to expansion, the rate of expansion is 

halved. Finally, when the rate of expansion is less than a certain specified number (breaking 

condition) and no particles are overlapping, the algorithm terminates. It is made sure that the 

droplets are expanded or contracted with respect to the size ratio and number ratio given to us 

beforehand. Since the radii as such are not fixed, the radii of the droplets vary among 

configurations slightly. But this is at the least importance to us, as absolute sizes do not matter. In 

this way, we created configurations for several N, size ratio and number ratio. 
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2.2 Factors: 

 

From understanding of physics, the following is the list of factors that could possibly affect 

the propagation of the coalescence: 

1. Size ratio: 

Ratio of radii of two different droplets in the system 

2. Number ratio: 

Ratio of number of two different sized droplets in the system 

3. Average area: 

Average area is the ratio of area occupied by the droplets and the total number of droplets 

in the packed structure. It is a measure of how closely the droplets are packed. The more 

closely they are packed, more the chances of big avalanche. 

4. Average neighbors: 

Average number of neighbors for every droplet in the assembly is counted. Higher the value, 

higher the number of directions the coalescence can propagate, hence higher the chance of 

big avalanche. 

5. Effective neighbors: 

The number of neighbors weighted by the probability for propagation defines this factor. 

Effective neighbors is calculated for all neighbor pairs in the assembly. It affects the system 

in a similar way as average neighbors. 

6. Average radius: 

Average radius gives the average of radius of all the droplets in the configuration. Average 

radius in monodisperse case is the radius of droplet itself. Average radius in bi-disperse 

case lies between the two radii. 

7. N: 

Number of droplets in the system 
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Determination of factors: (input of the classification algorithm) 

Configuration files generated in section 2.1 is used for the calculation of the factors. 

1. Effective neighbors: 

 Consider every pair of adjacent droplets. Let total number of pairs be - NC. Let the 

pair be droplet A and droplet B 

 Looping over all the neighbors of A and B, we calculate the angle between line 

joining A & B and line joining the neighbor and one of A or B. Let the angle be theta 

(θ) 

 0.3552*cosd(1.565*θ)+0.3183+0.05 - is calculated and summed over all such pairs 

 Dividing the above obtained quantity with total number of pairs we get effective 

neighbors of that configuration 

2. Average area: Total area occupied by the drops/ N 

3. Average neighbors: Sum of neighbors of each droplet/ N 

4. Average radius: Sum of all the radii/ N 

5. Potential: Sum of all the distances between droplets/ N 

Number ratio, Size ratio and N: Fixed in the configuration generation code 
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Listing 2.1: Computation of factors 

 

2.3 Stability: 

 

Configuration files generated in section 2.1 is sent into a Monte Carlo simulation to obtain 

output files consisting of an array which has the sizes of avalanche resulted when a disturbance 

was triggered randomly in the system. The simulation is run for a large number of times (Here 

1e5 times). In this simulation the propagation of coalescence uses the aforementioned probability 

model. Plotting the histogram of the array of avalanche sizes gives us a curve which is similar to 

the probability curve of size of avalanche. If this curve is monotonic we call the system as stable 

and unstable otherwise (non-monotonic). Intuitively this distinction makes sense because a stable 

system will have high probability of resulting in small sized avalanche and low probability of 

resulting in big sized avalanche. 

Monotonicity determination: 

A polynomial, Y is fit over the histogram. By plotting numerous curves, it can be seen that 

there will be either two zero derivative points or no such points. Let the points be A and B. Points 

A and B are determined by differentiating the polynomial curve and equating it to zero. If A and 

B are imaginary then the curve is monotonic. If not then it is actually non-monotonic. But here 
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we give some threshold for monotonicity calculation. We calculate Y(A) - Y(B). If this difference 

is greater than the threshold, it is marked as non-monotonic. Here we are using a threshold of 0.06. 

Therefore if the peak and dip are very far apart, we consider the system to be unstable.             

   

                        
           

Fig 2.2: PAv curve of stable and unstable system 
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Listing 2.2: Determining stability of a system 

 

2.4 Classification: 

 

2.4.1 Data set for classifications: 

The dataset generated covers the following cases: 

Parameters Values 

N 144, 196, 225 

SR 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4 2.6, 2.8, 3 

NR 0, 0.1, 0.2, 0.3, 0.4, 0.5 

Alpha 0.9, 1, 1.1 

Table 2.1: Parameters and values 

Since the process of generating configurations is randomized, in each case we generate 35 

configurations. 



12 

 

Hence the total number of observations = 3*6*11*3*35 = 20,790 

Before classification we need two datasets - training and testing. And both the dataset should 

include all the possible NR, SR, N and alpha. This preprocessing of the whole data is written as a 

code. Given the percentage (x%) of data to be considered for training dataset, the code outputs 

training and test dataset. It takes x% of the 35 configuration from each possible case and adds it 

to the training data and remaining to test dataset. 
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Listing 2.3: Pre-processing of data 

 

2.4.2 Logistic regression: 

Using the above datasets, coefficients of the dividing line are obtained from training dataset 

and the error is calculated from the test dataset. 

 

Classification, in the field of machine learning, is a problem where we try to identify, to 

which given set of categories, a new observation of our variable of interest belongs to. Here we 

are trying to identify whether a given system is stable or not. Hence, our variable of interest is 

stability and since it can take only two values - true or false, we have two categories. This is 
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termed as binary classification. There are several algorithms, out of which logistic regression is 

used here. 

 

The logistic regression outputs a line which divides the stability variable into two regions 1 (true) 

and 0 (false), the two categories. This line will be a linear combination of the predetermined 

factors. The dividing line will be a1x1 + a2x2 + … = 0.5 where x1, x2… - factors. Before passing 

the dataset into the logistic regression function the dataset is scaled appropriately. Similarly the 

test dataset is scaled too, before computing the error. 

 

A1, a2 … are equivalent to weightage given to each factor. That is, how well a factor is able to 

divide the output region. From the plots we can see whether the factors play any role in 

determining the stability of the system. The process of determining these weights is known as 

learning or training the classifier. We train our classifier on certain data not as training data and 

measure the performance using test data. 

 

We define the error as the number of points that have been classified wrongly on test data that is, 

stable system being classified as unstable and vice versa. We also compute the confusion matrix 

which counts the number of true positive, true negative, false positive and false negative. 
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Listing 2.4: Logistic regression and error calculation 
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2.4.3 Plots: 

Few plots to see the importance of each factors: 

Single Factor: 

Now the impact of each factor towards stability of the system is visualized. Following are 

the 1D plots with X axis as factor. Blue dots correspond to stable system whereas red dots 

correspond to unstable system. 

 

These correspond to a specific SR = 2, N = 196 and alpha = 1. The separating line is obtained by 

using logistic regression. That is output (stability) is regressed with only one factor and it’s 

corresponding separating line is obtained. 

 

 

Fig 2.3.a: Average area 

 

 

Fig 2.3.b: Average neighbors 
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Fig 2.3.c: Effective neighbors 

 

 

Fig 2.3.d: Average radius 

 

 

Two factors: 

Visualizing how combination of factors affect the stability of the system. Following are the 

2D plots with X axis and Y axis as factors. Blue dots correspond to stable system whereas red dots 

correspond to unstable system. 

 

These again correspond to the same set, SR = 2, N = 196 and alpha = 1. Here the output (stability) 

is regressed with two factors and their corresponding separating line is obtained. 
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Fig 2.4.a: Average area vs Average neighbors 

 

 

Fig 2.4.b: Average area vs Effective neighbors 
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Fig 2.4.c: Average neighbors vs Effective neighbors 

 

 

Fig 2.4.d: Average radius vs Effective neighbors 
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Fig 2.4.e: Average neighbors vs Average radius 

 

 

Fig 2.4.f: Average area vs Average radius 
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We can see visually from the graphs that when two variables are used in regression, we get 

a better classifier. This motivates us to proceed with considering all the factors. Before proceeding, 

we need to check for factor importance and correlation. From the average radius vs average area 

plot, it is clear that they are highly correlated. For further clarity we look into correlation matrix. 

 

 

Listing 2.5.a: Plot generation – single factor 
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Listing 2.5.b: Plot generation – two factor 
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CHAPTER 3: FACTOR SELECTION 

 

3.1 Correlation 

The correlation matrix for all the considered factors is as shown as below. 

 Average 

area 

Average 

neighbours 

Effective 

neighbours 

Average 

radius 

NR SR N 

Average 

area 

1 -0.1281 -0.0426  0.9944 -0.0289 -0.0096 -0.9909 

Average 

neighbours 

-0.1281 1 0.8948 -0.1190 -0.5245 -0.3131 0.2024 

Effective 

neighbours 

-0.0426 0.8948 1 -0.0710 -0.4211 -0.0276 0.1193 

Average 

radius 

0.9944 -0.1190 -0.0710 1 -0.0711 -0.0673 -0.9853 

NR -0.0289 -0.5245 -0.4211 -0.0711 1 0 0 

SR -0.0096 -0.3131 -0.0276 -0.0673 0 1 0 

N -0.9909 0.2024 0.1193 -0.9853 0 0 1 

Table 3.1: Correlation matrix 

From the table it can be seen that there is high correlation between: 

1) Average area and average radius 

2) Average area and N 

3) Average radius and N 

4) Average neighbors and effective neighbors 

Now each case has to be taken separately and analyzed. Depending on whether average area is 

included or average radius one of the case 2 and case 3 will be redundant. 
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3.1.1 Correlation between average radius and average area 

From the plots correlation between average radius and average area is very high. Since area and 

radius are related, so will their averages be. Hence one among them can be considered for final 

regression. 

 

Fig 3.1: Average radius and Average area 

  

We plot the error for various size of training dataset and test dataset to obtain the error plot.  

There will be dip in the plot and on comparing the dip we can get the factor with minimum error. 

The factors considered in two cases are: 

Case 1: NR, SR, average area, average neighbors, effective neighbors 

Case 2: NR, SR, average radius, average neighbors, effective neighbors 

 

Currently the error plotted is misclassification error (%), that is, percentage of test data 

misclassified. 
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Fig 3.2: Error plot – average radius & average area 

 

Training data/ Total data Error (Average radius considered) Error (Average area considered) 

10% 0.0949 0.0929 

20% 0.0914 0.0901 

30% 0.0929 0.0924 

40% 0.0934 0.0913 

50% 0.0929 0.0914 

60% 0.0908 0.0891 

70% 0.0904 0.0889 

80% 0.0921 0.0916 

90% 0.0881 0.0853 

Table 3.2: Comparison of error – average radius vs average area 

From the table, both the dips occur when 90% of the data is used for training and 10% is used as 

test data. Clearly average area gives better results, hence only average area is considered. 
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3.1.2 Correlation between N and average area 

Similarly the error plot is visualized. The factors considered in two cases are: 

Case 1: NR, SR, average area, average neighbors, effective neighbors 

Case 2: NR, SR, N, average neighbors, effective neighbors 

 

Fig 3.3: Error plot – N & average area 

 

Training data/ Total data Error (N considered) Error (Average area considered) 

10% 0.0932 0.0929 

20% 0.0907 0.0901 

30% 0.0920 0.0924 

40% 0.0923 0.0913 

50% 0.0921 0.0914 

60% 0.0896 0.0891 

70% 0.0884 0.0889 

80% 0.0907 0.0916 

90% 0.0864 0.0853 

Table 3.3: Comparison of error – N vs average area 
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From the table, both the dips occur when 90% of the data is used for training and 10% is used as 

test data. The error difference is very low, hence any one of the both factors can be considered. 

Since the overall minimum error occurs when average area is considered, we drop out N. 

 

3.1.3 Correlation between effective neighbors and average neighbors 

Similarly the error plot is visualized. The factors considered in two cases are: 

Case 1: NR, SR, average area, average neighbors 

Case 2: NR, SR, average area, effective neighbors 

 

Fig 3.4: Error plot – average neighbors & effective neighbors 

 

From the graph, effective neighbors is the most important factor. But the minimum error 11.78% 

is greater than the error when both the factors are included. Hence no factor is dropped. 
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Fig 3.5: Average neighbors and effective neighbors 

The above plot also supports the decision of not dropping any factor as from visualization 

we can see that classifier performs well. 

 

3.2 Factor importance 

Minimum error occurs when 90% of the total data is considered for training but this can 

also be because of very small test data set. Hence the next minimum at 70% (training data/ total 

data) is also considered. 100% train data is also considered for reference. Logistic regression 

coefficients for both the cases are tabulated to see the factors importance. 

Train data/ 

Total data 

Constant Average 

area 

Average 

neighbours 

Effective 

neighbours 

NR SR 

100% -0.2768 0.7103 5.3425 -23.1086 0.8745 1.1535 

90% -0.2735 0.7129 5.3656 -23.0875 0.8466 1.1451 

70% -0.2648 0.7076 5.5119 -23.0511 1.0648 1.1857 

Table 3.4: Regression coefficients for various cases 
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All the three cases follow the same order of factor importance. That is, 

1) Effective neighbors 

2) Average neighbors 

3) SR 

4) NR 

5) Average area 

3.3    Confusion matrix 

Looking at the confusion matrix for two different cases: 

Case 1: 70% of the total data is training data 

Case 2: 90% of the total data is training data 

 

Train data/ total data = 70% Predicted = stable Predicted = unstable 

Actual = stable True positive = 2682 False negative = 241 

Actual = unstable False positive = 287 True negative = 2730 

Table 3.5.a: Confusion matrix for case 1 

Train data/ total data = 90% Predicted = stable Predicted = unstable 

Actual = stable True positive = 809 False negative = 68 

Actual = unstable False positive = 84 True negative = 821 

Table 3.5.b: Confusion matrix for case 2 

Among the misclassifications, stable system classified as unstable has less cost compared to 

unstable system classified as stable. Precision accounts for this and it is a measure of number of 

unstable system classified as stable. Hence higher the precision, better it is. 

Precision = true positive/(true positive + false positive) 

 (Case 1 - 70% of the total data is training data) Precision: 90.33% 

(Case 2 - 90% of the total data is training data) Precision: 90.6% 
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Listing 3.1: Confusion matrix 
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CHAPTER 4: RESULTS 

 

4.1 Single factor plots 

The plots are plotted for all SR and NR for the following nine cases: 

Alpha = 0.9, 1, 1.1 and N = 144, 196, 225 

 

4.1.1 Average area 

 

 144 196 225 

0.9 

   

1 

   

1.1 

   

Table 4.1: Single factor plots – Average area 
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4.1.2 Average neighbors 

 

 144 196 225 

0.9 

   

1 

   

1.1 

   

 

Table 4.2: Single factor plots – Average neighbors 

 

We can see that distribution of stable and unstable cases depends on both N and alpha. Low 

alpha and low N results in more stable cases and high alpha and high N results in more unstable 

cases. This also implies for fixed alpha as N increases instability in the system increases and 

similarly for fixed N, as alpha increases instability in the system increases. 
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4.1.3 Effective neighbors: 

 

 144 196 225 

0.9 

   

1 

   

1.1 

   

 

Table 4.3: Single factor plots – Effective neighbors 

 

There are also cases where all the possible outcomes are unstable or stable, in such cases 

regression cannot be run since only one class prevails. But a point to note is that if the data is 

generated again by running Monte Carlo simulation we might get different representation of two 

classes. This variation comes because of the randomness in choosing the initial point of trigger 

in each configuration of droplets. 
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4.2 Two factor plots 

Similarly two factor plots are plotted for all SR and NR for the following nine cases: 

Alpha = 0.9, 1, 1.1 and N = 144, 196, 225 

 

4.2.1 Average area vs Average neighbors: 

 

 144 196 225 

0.9 

   

1 

   

1.1 

   

Table 4.4: Two factor plots – Average area vs average neighbors 
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4.2.2 Average area vs Effective neighbors: 

 

 144 196 225 

0.9 

   

1 

   

1.1 

  
 

Table 4.5: Two factor plots – Average area vs effective neighbors 
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4.2.3 Effective neighbors vs Average neighbors: 

 

 144 196 225 

0.9 

   

1 

   

1.1 

   

 

Table 4.6: Two factor plots – Effective neighbors vs average neighbors 

We can see that if stable and unstable area overlaps the classifier performs badly. Same 

conclusions as to single factor plots can be drawn here too. Now considering all the factors 

together we obtain the following results. 
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CHAPTER 5: CONCLUSION 

 

Total number of observations: 20790 

Factors considered: Effective neighbors, average neighbors, NR, SR and average area 

Order of importance: 

1) Effective neighbors 

2) Average neighbors 

3) SR 

4) NR 

5) Average area 

Best accuracy obtained: 8.53% 

Best precision: 90.6% 

 

This is the first time where machine learning technique has been applied in the field of soft matter. 

An error of 8.53% and precision of 90.6% is a good step considering that basic classification 

method was used. This method has its own limitations. Also, it was tried out with limited number 

of factors chosen based on physical knowledge. Given time a better data set can also be generated. 

 

Hence the model can be improved a lot more by increasing the data set size and number of factors. 

Several other classifiers can be applied and tested. This is the first step taken, hoping it to be taken 

forward. 
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