
Department of Electrical Engineering,
Indian Institute of Technology Madras

Neural Machine Translation for Low Resource
Languages

B.Ramasubramanian (ee13b127)

Submitted in partial fulfilment of the requirements for the degree of
Bachelor of Technology

Thesis Certificate

This is to certify that the thesis titled Neural Machine Translation for Low Resource Languages,

submitted by B.Ramasubramanian (ee13b127), to the Indian Institute of Technology, Madras, for

the award of the degree of Bachelor of Technology, is a bona fide record of the research work done

by him under our supervision. The contents of this thesis, in full or in parts, have not been submitted

to any other Institute or University for the award of any degree or diploma.

Prof. S. Umesh
Research Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

i

Abstract

KEYWORDS: Attention Mechanism, Bidirectional LSTMs, BLEU, Embeddings, Encoder-Decoder,

English-Hindi, LSTM, Neural Machine Translation, RNN-LM, Transliteration

Machine Translation (MT) is a task in Natural Language Processing (NLP), where automatic systems

are used to translate the text from one language to another while preserving the meaning of source

language. Statistical Machine Learning and phrase-based methods have been traditionally used for

translation purposes. Neural machine translation approaches that have recently come up hold promise

as some of them have outperformed their SMT counterparts. In this work, we analyze the well-

documented English-French translation task. We then perform the English-Hindi translation task

using an attention-based encoder-decoder model. We analyze the effect of different additions to this

model and document them. We also perform a transliteration task, as well as implement an RNN

language model, which is used for rescoring.

ii

Acknowledgements

I would like to thank Prof. S. Umesh for his constant guidance and support during the course of

the project. He was very approachable and always guided me whenever I dropped by his office. His

inputs during the weekly meetings were very valuable and helped me be on track. The two courses

that I did under him and this project have provided me a proper sense of direction and have motivated

me to pursue masters in the field of Signal Processing and Deep Learning.

A special thanks to Swaroop Kotni for being a great project partner. I learnt a lot of things from him

throughout the course of the project and I am grateful for his constant support, even when I wasn’t

able to get the desired results. I would also like to extend my gratitude to Sandeep Kothinti and

the other lab-mates who were always available to solve my doubts and to discuss the possible future

directions for the project from time-to-time. I would also like to thank Prof. Mitesh Khapra for

providing access to the larger English-Hindi corpora.

iii

Contents

Thesis Certificate i

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Task description . 1

1.1.1 Dataset description . 1

1.1.2 Difficulties in the task . 2

1.2 Preliminaries . 4

1.2.1 Xavier initialization . 4

1.2.2 Dropouts . 5

1.2.3 Optimizers . 5

1.2.4 Peephole connections . 7

1.2.5 Shallow Fusion . 7

iv

CONTENTS v

2 Literature Survey 8

2.1 Related work . 8

3 Neural Machine Translation Model 10

3.1 Attention Mechanism . 11

3.2 Improvisations . 12

3.2.1 Xavier Initialization . 12

3.2.2 Dropouts . 12

3.2.3 NOT Reversing the inputs . 13

3.2.4 Peepholes . 13

3.2.5 Transliteration . 13

3.2.6 Shallow Fusion . 13

4 Documentation 15

4.1 Code Organization . 15

4.2 Data Processing . 16

4.2.1 Hindi text normalization . 16

4.3 Neural Machine Translation Model (NMT) Model 17

4.3.1 translate hinen.py . 17

4.3.2 seq2seq model.py . 18

4.3.3 data utils.py . 19

4.4 RNN LM model for Hindi language . 19

4.4.1 temp rescore.py . 20

4.4.2 reader.py . 20

4.5 Transliteration . 20

4.6 BLEU Score evaluation . 21

4.7 Shell scripts . 22

5 Conclusion 24

5.1 Summary . 24

5.2 Future Work . 25

5.2.1 Problem of repeated tokens . 25

5.2.2 Parameter tuning . 25

5.2.3 Weight sharing . 25

5.2.4 Larger dataset . 25

5.2.5 RNN-LM training on whole corpus . 25

5.2.6 Bi-directional RNNs for translation . 26

5.2.7 Parse trees and transliteration . 26

5.2.8 Deep fusion . 26

Bibliography 28

vi

Chapter 1

Introduction

1.1 Task description

1.1.1 Dataset description

The parallel corpora for the translation task was obtained from the Ninth Workshop on Statistical

Machine Translation, ACL 2014. We got access to both the English-French and the English-Hindi

corpora.

• Translation task

– Training data

The English-French dataset was from multiple sources, such as EuroParl parallel corpus,

which is extracted form the proceedings of the European Parliament. EuroParl contains

2,007,723 sentences with 51,388,643 French words and 50,196,035 English words. It also

contains a French single language dataset with 2,190,579 sentences and 54,202,850 words.

On the whole, we had around 44 million sentences. It requires certain pre-processing steps

such as tokenization, lowercasing, stripping the empty lines, removing the lines with XML

tags etc.

The English-Hindi parallel corpora is from HindEnCorp, a dataset collected by Charles

1

1.1. Task description 2

university. It contained 287,000 sentences, with 3.6 mn English words and 3.97 mn Hindi

words. The HindMonoCorp, which is basically a collection of general web and web news

crawls, has 43.41 mn sentences of monolingual Hindi data, which has around 790.83

Hindi words. This corpus was a part of the WMT14 Shared Translation Task. Similar

pre-processing steps, as was stated for the English-French dataset, are needed here also.

– Development data

At times, we split the training data as 90% training and 10% validation data. At other

times, when the development set was provided, such as the news-test2013 dataset, we

used those for validation.

• Transliteration task

The dataset used for this task was the NEWS 2012 (Named Entities Workshop) shared task

dataset, which has 14122, 997 and 1000 words in the training, validation and the test set respec-

tively.

• Larger dataset for the translation task

Recently, we obtained a dataset from the Workshop on Asian Translation (WAT 2016), which

uses the IITB corpus. The training corpus is a mixed domain corpus. The development and test

set are from the News domain and are exactly the same as the ones in WMT 2014. This training

set has 1.5 mn sentences.

1.1.2 Difficulties in the task

• Non-monotonicity

The first task that we performed was the English-French translation task. The alignment of

words in a sentence between English and French is largely monotonic. Our transliteration

task was also a monotonic one. But, English-Hindi translation is non-monotonic, and hence

we couldn’t simply adapt the work done for the other tasks to this. English is structurally

classified as a Subject-Verb-Object (SVO) language with a poor morphology whereas Hindi

is a morphologically rich, Subject-Object-Verb (SOV) language. These fundamental structural

differences result in large distance verb and modifier movements across English-Hindi. As

1.1. Task description 3

far as morphology is concerned, Hindi is more richer in terms of case-markers, inflection rich

surface forms including verb forms etc. Hindi exhibits gender agreement and syncretism in

inflections, which are not observed in English. As we mention later, a major jump in the BLEU

score was obtained by using this non-monotonicity property.

• Limited literature

Even though we could find considerable amount of literature for Statistical Machine Transla-

tion, the amount of work done on Neural Machine Translation was comparatively less, espe-

cially the work done on Hindi. Workshops such as WMT, WAT etc have started including Hindi

in their translation task only from 2014 and 2016 respectively, and some of the information from

these workshops is only accessible to the participants.

• Non-generalizable behaviour

We suffered from this problem quite often. For example, introduction of peepholes improved

the accuracy in case of the transliteration task, but either didn’t affect or marginally reduced

the BLEU score in case of the translation task. We figure that this could be due to the non-

monotonicity property of the translation task. Even then, we weren’t able to reproduce some of

the results that we obtained on smaller amounts of data, when the whole dataset was used. This

was probably because the smaller dataset wasn’t a good representative and wasn’t capturing all

the variability.

• Limited training data

As is well known, neural network models perform well only when there’s ’sufficient’ data

available for training. We initially suffered from the problem of limited training data, as can be

seen from the dataset description. Hence, it wasn’t a surprise when the SMT gave better results

than the NMT. This difficulty has now been overcome with the availability of a new and larger

dataset.

1.2. Preliminaries 4

1.2 Preliminaries

1.2.1 Xavier initialization

It helps signals reach deep into the network.

• If the weights in a network start too small, then the signal shrinks as it passes through each layer
until its too tiny to be useful.

• If the weights in a network start too large, then the signal grows as it passes through each layer
until its too massive to be useful.

Xavier initialization makes sure the weights are just right, keeping the signal in a reasonable range of
values through many layers. The statistical explanation of Xavier initialization follows:

Suppose we have an input X with n components and a linear neuron with random weights W that
spits out a number Y. Then,

Y = W1X1 +W2X2 + +WnXn

V ar(WiXi) = E[Xi]
2V ar(Wi) + E[Wi]

2V ar(Xi) + V ar(Wi)V ar(ii)

If the inputs and weights both have mean 0, that simplifies to

V ar(WiXi) = V ar(Wi)V ar(Xi)

Moreover, if Xi and Wi are all independent and identically distributed,

V ar(Y) = V ar(W1X1 +W2X2 + +WnXn) = nV ar(Wi)V ar(Xi)

If we want the variance of the input and output to be the same, that means nV ar(Wi) should be 1,
which means the variance of the weights should be

V ar(Wi) = 1/n = 1/nin = 2/(nin + nout)

The last formula can be derived by working through the same steps for the backpropogated signal,
and realizing that nin = nout.

1.2. Preliminaries 5

1.2.2 Dropouts

Dropouts are mainly used as regularization operators to avoid overfitting in LSTMs. Dropout operator
is only applied to the non-recurrent connections. Borrowing the notations from a standard LSTM, we
can write:


i

f

o

g

 =


sigm

sigm

sigm

tanh

T2n,4n
[
D(hl−1t)

hlt−1

]

where D is the dropout operator, and

clt = f � clt−1 + i� g
hlt = o� tanh(clt)

The dropout operator corrupts the information carried by the units, forcing them to perform their
intermediate computations more robustly. At the same time, all the information from the units isn’t
erased. It is especially important that the units remember events that occurred many timesteps in
the past. By not using dropout on the recurrent connections, the LSTM can benefit from dropout
regularization without sacrificing its valuable memorization ability

1.2.3 Optimizers

Here we use the Stochastic Gradient Descent (SGD) optimizer as the starting point and then explain
the other optimizers

• Stochastic Gradient Descent
SGD performs a parameter update for each training example x(i) and label y(i). It is usually
much faster than batch gradient descent. SGD performs frequent updates with a high variance
that cause the objective function to fluctuate heavily. SGD’s fluctuation, on the one hand,
enables it to jump to new and potentially better local minima. On the other hand, this ultimately
complicates convergence to the exact minimum, as SGD will keep overshooting.

θ = θ − ηOθJ(θ;x
(i); y(i))

• Momentum
SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in

1.2. Preliminaries 6

one dimension than in another. Momentum helps accelerate SGD in the relevant direction and
dampens oscillations. It does this by adding a fraction γ of the update vector of the past time
step to the current update vector.

vt = γvt-1 + ηOθJ(θ)

θ = θ − vt

• Nesterov Accelerated gradient It effectively looks ahead by calculating the gradient not w.r.t. to
the current parameters θ but w.r.t. the approximate future position of the parameters:

vt = γvt−1 + ηOθJ(θ − γvt−1)

• Adagrad
It adapts the learning rate to the parameters, performing larger updates for infrequent and
smaller updates for frequent parameters. But, Adagrad accumulates the squared gradients in
the denominator, which keeps growing during training. This in turn causes the learning rate to
shrink and eventually become infinitesimally small.

vt = vt−1 + (OθJ(θ))
2

θt = θt−1 − η√
vt−1+ε

(OθJ(θ))

• RMSProp
Due to Adagrad’s weakness mentioned above, RMSProp was introduced, which avoids the
decay of the denominator.

vt = βvt−1 + (1− β)(OθJ(θ))
2

• Adam
Adaptive Moment Estimation uses a cumulative history of the gradients apart from doing what-
ever RMSProp does. mt and vt are estimates of the first moment (the mean) and the second
moment (the uncentered variance) of the gradients respectively, hence the name of the method.
As mt and vt are initialized as vectors of zeros, they are biased towards zero, especially during
the initial time steps, and especially when the decay rates are small (i.e. β1 and β2 are close to 1).

mt = β1mt−1 + (1− β1)(OθJ(θ)

vt = β2vt−1 + (1− β2)(OθJ(θ))
2

θt = θt−1 − η√
vt−1+ε

mt−1

1.2. Preliminaries 7

1.2.4 Peephole connections

Assuming that the reader is aware of LSTM connections, we now describe a variant of that which was
introduced by Schmidhuber and Gers (2000): peephole connections. During learning, no error signals
are propagated back from gates via peephole connections. Peephole connections are treated like
regular connections to gates (e.g. from the input) except for update timing. The peephole connections
allow all gates to inspect the current cell state even when the output gate is closed. This information
can be essential for finding well-working network solutions. Peepholes can either be added to all
gates (as shown in the figure below) or to some of the gates.

1.2.5 Shallow Fusion

The idea of shallow fusion was proposed by Gulchere et al. At each time step, the translation model
proposes a set of candidate words. The candidates are then scored according to the weighted sum
of the scores given by the translation model and the language model. The score of the new word is
computed by

logp(yt = k) = logpTM(yt = k) + βlogpLM(yt = k)

where β is a hyper-parameter that needs to be tuned to maximize the translation performance on a
development set.

Chapter 2

Literature Survey

2.1 Related work

Though a good amount of literature exists w.r.t translation, here we discuss only the work related to
English-Hindi translation. The English-French model has been described in detail later.

The first work that we describe here was a part of the work submitted to WMT2014 shared task
by IIT Bombay. The core components of their translation system are phrase based (Hindi-English)
and factored (English-Hindi) Statistical Machine Translation systems. They use number, case and
Tree Adjoining Grammar information to improve English-Hindi translation, primarily by generating
morphological inflections correctly. They show improvements to the translation systems using pre-
processing and post-processing components. To overcome the structural divergence between English
and Hindi, they preorder the source side sentence to conform to the target language word order. To
overcome the difficulties faced due to a small parallel corpus, they translate out-of-vocabulary words
and transliterate named entities in a post-processing stage. Their work also investigates ranking of
translations from multiple systems to select the best translation. We used this work as a baseline for
our task, but due to limited training data, their SMT system outperformed our NMT system.

People have looked at supertags, which are elementary trees of Lexicalized Tree Adjoining Grammar
(LTAG) (Joshi and Schabes, 1991). They provide syntactic as well as dependency information at the
word level by imposing complex constraints in a local context. These elementary trees are combined
in some manner to form a parse tree, due to which, supertagging is also known as An approach to
almost parsing(Bangalore and Joshi, 1999). A supertag can also be viewed as fragments of parse trees
associated with each lexical item. Some works have also explored verb chunk reordering and noun
inflection rules.

Another related work comes from IIIT Allahabad. They explore a hybrid approach for English-Hindi
translation. A combined approach of phrase based statistical machine translation (SMT), ex-

8

2.1. Related work 9

ample based MT (EBMT) and rule based MT (RBMT) is proposed to develop a novel hybrid
data driven MT system capable of outperforming the baseline SMT, EBMT and RBMT systems from
which it is derived. In short, the proposed hybrid MT process is guided by the rule based MT after get-
ting a set of partial candidate translations provided by EBMT and SMT subsystems. It is known that
EBMT systems are capable of outperforming the phrase-based SMT systems and RBMT approach
has the strength of generating structurally and morphologically more accurate results. The hybrid
approach that this work proposes increases the fluency, accuracy and grammatical precision which
improve the quality of a machine translation system. They have also compared the proposed hybrid
machine translation (HTM) model with renowned translators i.e. Google, BING and Babylonian and
showed that the proposed model works better on sentences with ambiguity as well as comprised of
idioms than others.

A related work by A Gehlot, V Sharma et al. looks at a transfer based Machine translation system.
Their system takes an input text file and checks its structure through parsing. Reordering rules are
used to generate the text in the target language. They claim it to better than corpus based MTS because
corpus Based MTS require large amount of word aligned data for translation that is not available for
many languages while transfer Based MTS requires only knowledge of both the languages(source
language and target language) to make transfer rules. They are able to get correct translation for
simple assertive sentences and almost correct for complex and compound sentences.

There also exists some literature on using effective selection in multi-model SMT. K. Sachdeva,
R. Srivastava et al. from IIIT Hyderabad have shown that multi-model systems perform better than
the individual models. They have described a Hindi to English statistical machine translation sys-
tem and improved over the baseline using multiple translation models. They have considered phrase
based as well as hierarchical models and enhanced over both these baselines using a regression model.
Their system is trained over textual as well as syntactic features extracted from source and target of
the aforementioned translations. Their system shows significant improvement over the baseline sys-
tems for both automatic as well as human evaluations. Their proposed methodology is quite generic
and they claim that it can be easily extended to other language pairs as well. Other transfer based
approaches, usually for English to other languages, include those by CDAC Pune (MANTRA, MA-
TRA), IISc Bangalore (SHAKTI) and IIIT Hyderabad.

Most of the work on English-Hindi translation is based on SMT based approaches. The following
work by E.Gupta and R.Gupta from IITK explores an NMT-based approach. They start off with the
aim of developing a technique to produce a high quality parallel sentence-aligned corpus from
existing subject/document-aligned comparable corpora, since limited parallel corpus is a major
obstacle for most NMT based tasks. They have tried to build a comparable corpus from non-sentence-
aligned and untranslated bilingual topic-aligned documents. They train a weak translator using limited
parallel corpus. The weak translator and an aligning heuristic (ex: Hunalign) are used to create addi-
tional parallel corpus. They then retrain a neural translator on the generated bigger parallel corpus.

Chapter 3

Neural Machine Translation Model

Let us first recall the sequence-to-sequence LSTM model. The Long Short-Term Memory model of
[8] is defined as follows. Let xt, ht, and mt be the input, control state, and memory state at timestep
t. Given a sequence of inputs (x1, . . . , xT), the LSTM computes the h-sequence (h1, . . . , hT) and the
m-sequence (m1, . . . ,mT) as follows.

it = sigm(W1xt +W2ht−1)

i′t = tanh(W3xt +W4ht−1)

ft = sigm(W5xt +W6ht−1)

ot = sigm(W7xt +W8ht−1)

mt = mt−1 � ft + it � i′t
ht = mt � ot

The operator � denotes element-wise multiplication, the matrices W1, . . . ,W8 and the vector h0 are
the parameters of the model, and all the nonlinearities are computed element-wise.

In a deep LSTM, each subsequent layer uses the h-sequence of the previous layer for its input se-
quence x. The deep LSTM defines a distribution over output sequences given an input sequence:

P (B|A) =

TB∏
t=1

P (Bt|A1, . . . , ATA , B1, . . . , Bt−1)

≡
TB∏
t=1

softmax(Wo · hTA+t)
>δBt ,

The above equation assumes a deep LSTM whose input sequence is x = (A1, . . . , ATA , B1, . . . , BTB),
so ht denotes t-th element of the h-sequence of the topmost LSTM. The matrix Wo consists of the
vector representations of each output symbol and the symbol δb is a Kronecker delta with a dimension

10

3.1. Attention Mechanism 11

Figure 3.1: Encoder- Decoder Model

for each output symbol, so softmax(Wo ·hTA+t)
>δBt is precisely the Bt’th element of the distribution

defined by the softmax. Every output sequence terminates with a special end-of-sequence token which
is necessary in order to define a distribution over sequences of variable lengths. We use two different
sets of LSTM parameters, one for the input sequence and one for the output sequence, as shown in
Figure 3.1. Stochastic gradient descent is used to maximize the training objective which is the average
over the training set of the log probability of the correct output sequence given the input sequence.

3.1 Attention Mechanism

An important extension of the sequence-to-sequence model is the addition of an attention mecha-
nism. We adapted the attention model from [2] which, to produce each output symbol Bt, uses an
attention mechanism over the encoder LSTM states. Similar to our sequence-to-sequence model
described in the previous section, we use two separate LSTMs (one to encode the sequence of in-
put words Ai, and another one to produce or decode the output symbols Bi). The encoder hidden
states are denoted (h1, . . . , hTA) and we denote the hidden states of the decoder by (d1, . . . , dTB) :=

(hTA+1, . . . , hTA+TB).

To compute the attention vector at each output time t over the input words (1, . . . , TA) we define:

uti = vT tanh(W ′
1hi +W ′

2dt)

ati = softmax(uti)

d′t =

TA∑
i=1

atihi

The vector v and matrices W ′
1,W

′
2 are learnable parameters of the model. The vector ut has length TA

3.2. Improvisations 12

Figure 3.2: Model Parameters

and its i-th item contains a score of how much attention should be given to the i-th hidden encoder
state hi. These scores are normalized by softmax to create the attention mask at over encoder hidden
states. In all our experiments, we use the same hidden dimensionality (256) at the encoder and the
decoder, so v is a vector andW ′

1 andW ′
2 are square matrices. Lastly, we concatenate d′t with dt, which

becomes the new hidden state from which we make predictions, and which is fed to the next time step
in our recurrent model.

3.2 Improvisations

The stock code from TensorFlow which was used for training English-French translation model gave
us a BLEU score of 0.33. The following changes were made to the code:

3.2.1 Xavier Initialization

Xavier initialization was employed to initialize the parameters, and the BLEU score increased to 2.45

3.2.2 Dropouts

Dropouts reduce the number of variables to learn and hence would theoretically yield better results
for low resource trainings. Upon implementation, the results agreed with the theoretical expectations
by yielding BLEU scores of 2.61 and 2.66 for introducing input and (input and output) dropout layers
respectively.

3.2. Improvisations 13

3.2.3 NOT Reversing the inputs

In the English-French model, the inputs were reversed and fed for training because doing so estab-
lished short term dependencies between the input and the output sentences. This in turn helped the
model to train better and yield better results. However, such short term dependencies cannot be estab-
lished in the English-Hindi translation model by reversing the inputs. This is because English-Hindi
translation is a non-monotonic task, as opposed to the monotonic English-French translation task.
Hence, we did not reverse the input sentences and as expected, we got better scores. The BLEU
score improved from 2.66 to 3.82.

3.2.4 Peepholes

Peepholes were introduced in the LSTM cells to check whether they would help the model during
training. The motivation behind this was the fact that they helped in improving the accuracy in the
transliteration task. But, the BLEU score reduced from 3.82 to 3.59. Hence, we did not include
peepholes in the final model.

3.2.5 Transliteration

The goal of transliteration is to write a word in one language using the closest corresponding letters
of a different alphabet or language. More formally, the goal of transliteration is to transform a name
(a string of characters) in one language (and corresponding script) to the target language (and corre-
sponding script) while ensuring phonemic equivalence preserving and conforming to the phonology
and conventions of the target language. We built a sequence-to-sequence model for transliteration of
words between English and Hindi languages. We achieved an accuracy (as defined in section 4.5)
of about 48%. This task could help in tackling the problem of UNK tags in the outputs (as has
been discussed in section 5.2.8). Since our translation model jointly learns to align and translate,
we can utilize the alignment details and find out the English word aligned with an unknown tag in
the Hindi output sentence and replace it with the transliteration of the English word. This would aid
us in correctly translating proper nouns which would usually not occur in vocabulary. However, the
transliteration model remains to be integrated with the NMT model and is left for future work.

3.2.6 Shallow Fusion

An RNN language model was trained to improve the syntactic and semantic proficiency of the gener-
ated Hindi sentence. The model was trained on a pilot subset of the available monocorpus to ensure
the end-to-end working of the code. The built RNN model was used to rescore the outputs from the

3.2. Improvisations 14

NMT model. The model also performed better than the baseline established in the lab in terms of
perplexity during training (achieving a validation set perplexity of 105 as comapred to the baseline
of 219). Although, a concrete result cannot be reported, we believe that when the RNN model is
trained on the entire available monocorpus, the system would output much more refined and accurate
sentences (since the 4-gram accuracy is really low now and an RNN-LM can fix that)

Chapter 4

Documentation

This chapter delves deeper into the work done during the course of the project. It also acts as a
documentation of the work done by us, from where someone working on this project in the future can
carry it forward.

4.1 Code Organization

The whole project was carried out under two usernames viz. batch5 and kjjswaroop. Most of the work
was done in kjjswaroop while batch5/kjjswaroop folder was used to train models on bigger datasets.
The code, saved models and the corpora used in the project can be found in the following directories.

• / speech/ kjjswaroop

– translate : contains code for the neural translation model.

* translate hinen.py : Main file containing the TensorFlow graph for the NMT model.

* seq2seq model.py : Describes the NMT model. All changes to the model have to be
done in this file.

* data utils.py : Contains utility functions required for preprocessing corpora before
feeding them into the model.

– ptb print : contains code for the RNN language model

* ptb word lm.py : contains the RNN and TensorFlow graph for the language model.

* reader.py : Contains utility functions that read and process corpora to feed them into
the model.

– BLEU: compares the candidate text files (outputs of the NMT model) with the reference
text file and calculates BLEU score.

15

4.2. Data Processing 16

* calculatebleu betterblue.py : code to calculate BLEU score by calculating the num-
ber of 1,2,3,4-gram matchings and taking a geometric mean of them.

– nmt data : Each of the subdirectories in nmt data contains processed corpus, vocabulary,
test files and model saved checkpoints for a particular model configuration, evident in the
name of the subdirectory.

– transliteration :

* translate.py : Main file containing the TensorFlow graph for the NMT model.

* seq2seq model.py : Describes the transliteration model. All changes to the model
have to be done in this file.

* attention.py : contains the bidirectional RNN implementations. Edit this file to
change the structure of RNNs.

* data utils.py : Contains utility functions required for preprocessing corpora before
feeding them into the model.

– Queue dir : contains the perl scripts to run any job on either CPUs or GPUs in the lab
network.

/ speech /batch5 /kjjswaroop/ contains similar folder organization. The code has been forked into
this directory to train various models on larger datasets due to privilege/resource limitations in kjjswa-
roop account. The NMT model can be run on IITB corpus here. The RNN Hindi language model can
be run on the available 10GB monocorpus.

4.2 Data Processing

4.2.1 Hindi text normalization

Hindi text in all the corpuses were normalized before using them for training translation/language
models. Usually, the normalizer classes do the following:

• Some characters have multiple Unicode code points. The normalizer chooses a single standard
representation

• Some control characters are deleted

• While typing using the Latin keyboard, certain typical mistakes occur which are corrected by
the module

• Performs some common normalization, which includes:

4.3. Neural Machine Translation Model (NMT) Model 17

– Byte order mark, word joiner, etc. removal

– ZERO WIDTH NON JOINER and ZERO WIDTH JOINER removal

– ZERO WIDTH SPACE and NO BREAK SPACE replaced by spaces

In addition to basic normalization, Hindi specific normalization is carried out according to the follow-
ing norms:

• Replace the composite characters containing nuktas by their decomposed form

• replace pipe character ’|’ by poorna virama character

• replace colon ’:’ by visarga if the colon follows a character in this script

4.3 Neural Machine Translation Model (NMT) Model

4.3.1 translate hinen.py

This file contains the TensorFlow graphs for training and decoding the NMT model. Training the
NMT follows the below scheme:

• Create model.

• Read data into buckets and compute their sizes.

• A bucket scale is a list of increasing numbers from 0 to 1 that we’ll use to select a bucket.
Length of [scale[i], scale[i+1]] is proportional to the size if i-th training bucket, as used later.

• while True:

– Choose a bucket according to data distribution. We pick a random number in [0, 1] and
use the corresponding interval in train buckets scale.

– Get a batch and make a step.

– Once in a while, we save checkpoint, print statistics, and run evals.

– Decrease learning rate if no improvement was seen over last 3 times.

– Save checkpoint and zero timer and loss.

– Run evals on development set and print their perplexity.

The pseudo algorithm for decoding a new sentence using trained models is given as follows:

4.3. Neural Machine Translation Model (NMT) Model 18

• Create model and load parameters

• Load vocabularies

• Decode from standard input

• while sentence:

– Get token-ids for the input sentence

– Which bucket does it belong to?

– Get a 1-element batch to feed the sentence to the model

– Get output logits (probabilistic interpretation) for the sentence

– This is a greedy decoder - outputs are just argmaxes of output logits

– If there is an EOS symbol in outputs, cut them at that point

– Print out Hindi sentence corresponding to outputs

4.3.2 seq2seq model.py

This file contains the model used in the NMT system. We have employed an encoder decoder model
with attention mechanism for English-Hindi translation.

• Create Model with the following arguments:

– source vocab size : size of the source vocabulary

– target vocab size: size of the target vocabulary

– buckets: a list of pairs (I, O), where I specifies maximum input length that will be pro-
cessed in that bucket, and O specifies maximum output length. Training instances that
have inputs longer than I or outputs longer than O will be pushed to the next bucket and
padded accordingly. Buckets are used to speed up training. Otherwise, one long sentence
in a batch will cause all the other sentences to have unnecessarily large number of pads at
the end, thus wasting computations. Instead, if all the sentences in a batch are picked from
the same bucket, the overall number of pads can be reduced, thus increasing the efficiency.

– size: number of units in each layer of the model

– num layers: number of layers in the model

– max gradient norm: gradients will be clipped to maximally this norm

– batch size: the size of the batches used during training

– learning rate: learning rate to start with

4.4. RNN LM model for Hindi language 19

– learning rate decay factor: decay learning rate by this much when needed

– use lstm: if true, we use LSTM cells instead of GRU cells

– num samples: number of samples for sampled softmax

– forward only: if set, we do not construct the backward pass in the model

• Create the internal multi-layer cell for our RNN

• Create the seq2seq function: we use embedding for the input and attention

• Create placeholders for inputs

• Our targets are decoder inputs shifted by one

• Calculate training outputs and losses

• Perform gradients and SGD update operation for training the model

• Save the model at checkpoints

The file also contains functions to execute one complete step of the model and to create batches for
training from the datasets.

4.3.3 data utils.py

This file contains all the utility functions required to pre process data. It handles the following tasks:

• Create vocabulary: The function runs through the entire corpus and forms a vocabulary by
listing the N (an input parameter to the function) most frequently occurring words in the corpus.

• Initialize vocabulary: If the vocabulary already exists in the specified folder, it simply loads
the vocabulary file. Else, it raises an error.

• Sentence To Token IDs : Convert all the sentences in the corpus into token IDs based on the
vocabulary. If a word is not found in the dictionary, it replaces the word with UNK ID.

4.4 RNN LM model for Hindi language

The code for the RNN language model is available in the /speech/batch5/kjjswaroop/ptb print.

4.5. Transliteration 20

4.4.1 temp rescore.py

This file contains the TensorFlow graph and the model. The code contains four different models:
Small, Medium, Large and Test. Based on the size of training data available, one can choose the type
of model. The test model, as the name says, should be used to test the code.

• Create LSTM cell of required dimensions and depth

• Add dropout wrapper to the LSTM cell while training the model

• Calculate the cell state and outputs

• Calculate output logits by using output projections

• Jointly train the parameters of the LSTM cell and the output projections by estimating loss
function

• Update cell state, logits and loss

The code also contains rescore() function which evaluates the probability of occurrence of an input
sentence.

4.4.2 reader.py

The file contains data utility functions required during pre-processing the corpus for training. The
code implements the following functions:

• Build vocabulary: The function iterates through the whole corpus and forms a vocabulary of
the N most frequently occurring words in the corpus.

• File To Word IDs : Convert all the sentences in the corpus into token IDs based on the vocab-
ulary. If a word is not found in the dictionary, it replaces the word with UNK ID.

4.5 Transliteration

We trained a sequence-to-sequence model using the encoder-decoder architecture. We used a vocab-
ulary size of 60 for English and 130 for Hindi. The overall structure of the network is as follows:

4.6. BLEU Score evaluation 21

• INEMBED: A feedforward layer of size |Vs| X inembsize, where Vs is the source language
vocabulary (i.e. set of characters) and inembsize is the output size of the layer (Inembsize =
256).

• ENCODER: bidirectional LSTM layer with encsize outputs in either direction (encsize = 256).

• DECODER: LSTM layer with decsize outputs (decsize = 512).

• SOFTMAX: softmax layer for classification, decsize inputs and Vt outputs, where Vt is the
target language vocabulary (i.e. set of characters).

• OUTEMBED: A feedforward layer of size |Vt| X outembsize, where outembsize is the output
size of the layer (outembsize = 256). This layer is used for obtaining the embedding of the
output character and feeding it to the input of the decoder for the next time step.

• ATTENTION: Consists of i) a single feedforward network whose inputs are the previous de-
coder state, previous decoder outputs embedding and the annotation vector (encoder output)
under consideration. It outputs a single attention score. (ii) a softmax layer over the attention
scores from each annotation vector to convert it to a probability value. The attention weights
from the softmax layer are used to linearly interpolate the annotation vectors. The resulting
context vector will be an input to the decoder along with the decoder output in the previous
timestep.

The objective function is to minimize the negative log-likelihood. The primary evaluation metric that
we used for this task was Accuracy (exact match). This means that the output is considered correct
only if it matches the reference transliteration exactly.

As can be inferred from the above description, the folder structure and the code organization of
kjjswaroop/transliteration are similar to kjjswaroop/translation folder. However, the sequence-
to-sequence model has been edited by replacing simple RNNs with bi-directional RNNs.

4.6 BLEU Score evaluation

BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has
been machine-translated from one natural language to another. Quality is considered to be the cor-
respondence between a machine’s output and that of a human: ”the closer a machine translation is
to a professional human translation, the better it is”. BLEU was one of the first metrics to achieve a
high correlation with human judgments of quality, and remains one of the most popular automated
and inexpensive metrics. Scores are calculated for individual translated segments generally sentences
by comparing them with a set of good quality reference translations. Those scores are then averaged

4.7. Shell scripts 22

over the whole corpus to reach an estimate of the translation’s overall quality. Intelligibility or gram-
matical correctness are not taken into account. BLEU is designed to approximate human judgment
at a corpus level, and performs badly if used to evaluate the quality of individual sentences. BLEU
scores are calculated using the file kjjswaroop/Bleu/calculatebleu betterbleu.py. A brevity penalty
ensures that a high-scoring candidate translation matches the reference translations in length, in word
choice, and in word order. It prevents very short candidates from receiving too high a score. Let r be
the total length of the reference corpus, and c be the total length of the translation corpus. If c 6 r

, the brevity penalty applies, defined to be e(1−r/c). The code counts n-gram matchings between the
candidate sentence and the reference sentence for n=1,2,3,4 and maintains the counts in a dictionary.
Once all the n-gram counts are calculated, a geometric mean of all the accuracies (number of correct
n-grams/total number of n-grams) multiplied with the brevity penalty gives the BLEU score.

4.7 Shell scripts

We have used shell scripts to run all our codes on the lab resources. Following are the shell scripts
used throughout the project:

• /batch5/kjjswaroop

– translate script.sh: This script is used to decode test data and calculate the BLEU score
by comparing the candidate file with the reference file.

export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}

export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64

python translate/normalize.py

python translate/translate_hinen.py --decode

--train_dir=data_iitb_corpus --data_dir=data_iitb_corpus

--from_train_data=IITB.en-hi.en

--to_train_data=IITB_norm.en-hi.hi

--from_dev_data=dev_test_tokenized/dev.en

--to_dev_data=dev_test_tokenized/dev_norm.hi

--from_vocab_size=40000 --to_vocab_size=40000 --num_layers=3

--size=256

python Bleu/calculatebleu_betterblue.py ˜output_dev.txt

test_norm_hi.txt

– testcript rescore.sh: This script is used to train the RNN model.

export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}

4.7. Shell scripts 23

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64

python ptb_print/temp_rescore.py --model=small

--data_path=/speech/batch5/kjjswaroop/

--save_path=/speech/batch5/kjjswaroop/rnn_saved_models

--rnn_dir=/speech/batch5/kjjswaroop/rnn_saved_models

In /speech/kjjswaroop/, there are similar shell scripts; train script.sh can be used to train the NMT
model.

Chapter 5

Conclusion

5.1 Summary

The results achieved during the course of the project are tabulated below.

Figure 5.1: Experiment Results

24

5.2. Future Work 25

5.2 Future Work

5.2.1 Problem of repeated tokens

We observed that our model suffered from a problem where the last few tokens kept repeating without
being able to identify the EOS (end-of-sentence) tag. The problem was very prominent when we did
the transliteration task, where its effect on accuracy was much more pronounced than in the translation
task. We haven’t been able to find a reason for that behaviour and hence leave it as future work.

5.2.2 Parameter tuning

It goes without saying that parameter tuning plays a major part in any neural network framework. We
managed to get good results from most models, but there’s always room for improvement, especially
at places wherein we tried several different models in a short span of time (such as RNN-LM), which
restricted the amount of time we could put into playing with the parameters.

5.2.3 Weight sharing

In our model, the encoder and decoder use different set of parameters, which is also the common
practice. But since the training data is limited, weight sharing might help in better learning as the
number of parameters to be learnt is less. But at the same time, there’s no logical reasoning as to why
different languages should share weights, and hence this wasn’t tried.

5.2.4 Larger dataset

Recently, we acquired a parallel corpus that has 7 times as much data as our original one. This dataset
was a part of WAT 2016 (Workshop on Asian Translation). It’s a well known fact that the larger the
training data, the better the performance of neural networks. We ran it for as many epochs as the
smaller dataset and it gave a slightly better BLEU score. We realize that a learning rate decay factor
close to 1 could be used and the model could be trained for many more epochs. The model is currently
under training.

5.2.5 RNN-LM training on whole corpus

The RNN-LM training is very slow. As was pointed out by Mikolov, the very first version of RNN-
LM trained by Bengio et al. without importance sampling took 113 days to train. Our model is very

5.2. Future Work 26

slow in reading the words and tokenizing them, even though we split the task across 40 CPUs. We
have already shown that our RNN-LM performs better than the baseline on a standard dataset (as
mentioned already), but that training set was much smaller.

5.2.6 Bi-directional RNNs for translation

Bi-directional RNNs gave marginal improvements in the transliteration task, which motivated us to
implement it for the translation task as well. But the concatenation of the cell state (memory state)
and the hidden state couldn’t be performed as we expected and we ran into a few other coding errors,
which we couldn’t fix despite help from several others. Hence, this problem remains one of future
curiosity.

5.2.7 Parse trees and transliteration

A parse tree is an ordered, rooted tree that represents the syntactic structure of a string according
to some context-free grammar. Syntax models the knowledge people unconsciously have about the
grammar of their native language. Parsing extracts syntax from a sentence. A basic English sentence
has a subject (noun), a head (verb) and an object (noun). One can run a grammar backwards to find
possible structures for a sentence. Parsing can be viewed as a search problem, a hidden data problem.
Parsing can be top-down or bottom-up. The former is goal-driven, to find the ways of parsing a given
sentence. The latter is data-driven, where you look for small pieces that you know how to assemble,
and work your way up to larger pieces, but this suffers from the problem of creating local structure
that doesn’t benefit the global structure. There are several standard parsing algorithms, for example
Cocke-Kasami-Younger (CKY), which is like Viterbi but for trees. Since we have already done the
transliteration task, one can apply parse trees and get the POS labels (part-of-speech) for both the
languages. One can then find those parts in the English sentence for which the output Hindi token
was UNK, and replace those by their transliteration. This idea works because usually the words that
turn out to be unknown are proper nouns and transliterating them makes sense.

5.2.8 Deep fusion

In deep fusion, the RNNLM and the decoder of the NMT are integrated by concatenating their hidden
states next to each other. The model is then finetuned to use the hidden states from both of these
models when computing the output probability of the next word. The hidden layer of the deep output
takes as input the hidden state of the RNNLM in addition to that of the NMT, the previous word and
the context such that

5.2. Future Work 27

p(yt|y<t, x) ∝ exp(yTt (Wofo(s
LM
t , sTMt , yt−1, ct) + bo))

The structure learned by the LM from the monolingual corpora isn’t overwritten since only the pa-
rameters used for the output are finetuned. A decoder with a controller mechanism could also be used
to dynamically weight the different models depending on the word being translated. In our work,
shallow fusion gave marginally better results when used for rescoring. Gulchere et al. have shown
that deep fusion performs much better, which is a motivation to try this out in the future.

Bibliography

[1] Ilya Sutskever, Oriol Vinyals, Quoc V. Le., ” Sequence to Sequence Learning with Neural

Networks”

[2] Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio, ”Neural Machine Translation by Jointly

Learning to Align and Translate”

[3] Sebastien Jean, Kyunghyun Cho, Roland Memisevic, Yoshua Bengio, ”On Using Very Large

Target Vocabulary for Neural Machine Translation.”

[4] Piyush Dungarwal, Rajen Chatterjee, Abhijit Mishra, Anoop Kunchukuttan, Ritesh Shah, Push-

pak Bhattacharyya, ”The IIT Bombay HindiEnglish Translation System at WMT 2014”

[5] Xavier Glorot,Yoshua Bengio, ”Understanding the difficulty of training deep feedforward neu-

ral networks”

[6] Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loic Barrault, Yoshua Bengio, ”On

Using Monolingual Corpora in Neural Machine Translation”

[7] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk,

and Yoshua Bengio, ”Learning phrase representations using RNN encoder-decoder”

[8] Sepp Hochreiter and Jrgen Schmidhube, ”Long short-term memory”

[9] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, Geoffrey Hinton, ”Gram-

mar as a Foreign Language”

[10] Minh-Thang Luong, Hieu Pham, Christopher D. Manning, ”Effective Approaches to Attention-

based Neural Machine Translation”

[11] Wang Ling, Isabel Trancoso, Chris Dyer, Alan W Black, ”Character-based Neural Machine

Translation”

[12] Rico Sennrich, Barry Haddow, Alexandra Birch, ”Improving Neural Machine Translation Mod-

els with Monolingual Data”

[13] M. Auli, M. Galley, C. Quirk, and G. Zweig, ”Joint language and translation modeling with

recurrent neural networks”

28

[14] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, ”A neural probabilistic language model”

[15] Y. Bengio, P. Simard, and P. Frasconi, ”Learning long-term dependencies with gradient descent

is difficult”

[16] R. Pascanu, T. Mikolov, and Y. Bengio, ”On the difficulty of training recurrent neural networks”

[17] K. Papineni, S. Roukos, T. Ward, and W. J. Zhu, ”BLEU: a method for automatic evaluation of

machine translation”

[18] Thang Luong, Ilya Sutskever, Quoc V Le, Oriol Vinyals, and Wojciech Zaremba, ”Addressing

the rare word problem in neural machine translation”

[19] M. Sundermeyer, R. Schluter, and H. Ney, ”LSTM neural networks for language modeling”

[20] Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y.,” On the properties of neural

machine translation: Encoder-Decoder approaches”

[21] Hochreiter, S. and Schmidhuber, J., ”Long short-term memory”

[22] Kalchbrenner, N. and Blunsom, P., ”Recurrent continuous translation models”

[23] Christian Buck, Kenneth Heafield, and Bas van Ooyen, ”N-gram counts and language models

from the common crawl”

[24] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, ”Efficient estimation of word

representations in vector space”

[25] Schuster, M. and Paliwal, K. K., ”Bidirectional recurrent neural networks”

[26] Omkar Dhariya, Shrikant Malviya and Uma Shanker Tiwary, ”A Hybrid Approach For Hindi-

English Machine Translation”

[27] Understanding LSTM networks – colah’s blog

[28] An overview of gradient descent optimization algorithms, Sebastien Ruder

[29] Deep Learning slides of Prof. Mitesh Khapra, CSE, IIT-M

29

