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ABSTRACT

KEYWORDS: Dynamic Vision Sensor; Human Action recognition; Motion De-

scriptors; Optical Flow

Dynamic Vision Sensors are novel cameras built to overcome several disadvantages

posed by conventional cameras such as low temporal resolution, high memory storage

requirements, high power consumption and computational time. These factors are pri-

marily caused due to the fact that there is huge data redundancy on storing information

frame by frame. DVS cameras instead capture and output only those pixels in a scene

where motion is detected - in the form of a new encoding known as Address Event Rep-

resentation (AER). Also, the events are recognised at the same time as it is happening,

at a temporal scale of microsecond, which is much better than the typical frame rate

of conventional cameras. Realising these advantages of DVS in terms of both space

and time efficiency, this project explores the possibility of better recognising human

actions using DVS when compared to action recognition by conventional cameras. We

look at performance of DVS when compared to conventional videos for Human Activ-

ity Recognition (HAR) using existing feature descriptors in literature. We also propose

a new method for HAR and combine it with an existing descriptor to increase DVS’

overall recognition rate.
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CHAPTER 1

INTRODUCTION

1.1 Dynamic Vision Sensors

Dynamic Vision Sensors are a recent innovation in machine vision, built to provide sev-

eral advantages over the typically used conventional cameras. Unlike traditional vision

that works on frame based data storage, these sensors mimic how neuromorphic retinal

vision happens in humans, using a new encoding scheme that records only transient data

at pixel level. Classical vision cameras produce a constant volume of data in the form

of frames at a fixed rate, irrespective of the extent of scene activity that is taking place.

This mechanism has the inherent disadvantage of data redundancy, as is especially ev-

ident from the information stored in consecutive frames. Dynamic vision sensors, as

the name suggests are built to sense only the moving parts in a video, thereby removing

static and redundant data from the very beginning (Delbruck, 2008).

DVS sensors have several qualities that are worth noting. First of all, in these silicon

retina sensors, information is stored in the form of events at pixel level using intensity

change as the criterion for firing. This ensures that events are recorded only at the ad-

dress of pixels that sense relative change in temporal luminance. Other pixels where

intensity remained constant do not generate events. This helps hugely in data com-

pression since none of the static scenes are recorded. In traditional CMOS cameras,

irrespective of the scene activity, a constant volume of data generated in the form of

frames at a fixed rate. But DVS cameras respond only to relative movement to asyn-

chronously and in real time generate a stream of on-off events.

Based on the transient responses in the video, data from DVS is often sparse and di-

rectly usable. This is because these cameras perform an intrinsic round of preprocessing

during data recording itself. DVS recordings can be considered similar to that obtained

from conventional cameras after preprocessing for silhouette extraction by background

subtraction and contour detection. So DVS can save huge costs in computational effort



and speed when it comes to applications like object tracking and motion detection. For

such scenarios, background data is irrelevant and often an unnecessary distraction.

DVS sensors have an inherent usefulness in its mechanism that it is not the absolute

value of illuminance, but the relative change that fires events. The firing of pixels

in DVS generates two types of events - On and Off - based on whether the intensity

change detected was positive or negative and greater than a certain threshold. This

means that lighting effects are inherently taken care of by the sensor, giving a relatively

robust encoding. The bandwidth of these cameras are lower as well since no absolute

irradiance values are recorded.

Because the pixels operate in parallel, DVS cameras have a very high temporal reso-

lution of one microsecond with very low latency (Cho and Lee, 2015). This would also

mean that they capture new information that cannot be obtained by the classical CMOS

cameras.The scene is captured using the parallelly operating pixels at a frequency res-

olution of Megahertz, making these sensors ideal for real time applications like fast

robotics and visualising vibrations.

Furthermore, DVS cameras have very efficient power consumption, about ten to

hundred times lower than conventional CMOS cameras. This can be effectively used in

sensitive applications where power availability is limited, as is the case in sensors used

in surveillance, security, mobile devices,remote vision systems etc. It is the sparsity of

DVS data and its efficient mechanism for analog to digital conversion, different from

the usual AD converters, that gives it such low power requirement.

Finally, since the value of relative intensity can vary immensely within a scene,

these silicon retina cameras have a huge dynamic range of illumination at about 120

dB. Contrast this with conventional high speed vision systems, where dynamic range is

typically limited to around 50 dB.

1.2 Applications

With the above presented advantages that the bio- inspired DVS data provide, the uses

of DVS cameras are many. They can be effectively used in applications like tracking fast

moving objects, acquiring and analysing traffic data, steering Unmanned Aerial Vehicle
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(UAV) by obstacle detection and avoidance, car collision avoidance system etc. They

can also be used for human action recognition which can have crucial use in e-health

services. DVS data enables low-cost recognition of activities at real-time capacity with

low latency. Also, its low power consumption makes it ideal for use in areas that require

sensors to be always on.

1.3 DVS Data Generation and Representation

An event in a DVS camera is generated when the temporal illuminance change at a

pixel is greater in magnitude than a preset threshold. For this, the logarithm of change

in intensity is measured and is compared with the threshold to decide triggering of

events.

Figure 1.1: Generating Address Events 1

The representation of an event is done as a four-tuple, explaining the location (x

and y pixel address), time stamp (of microsecond resolution), and polarity (positive and

negative) of the event. These sensors are also more similar in working compared to

biological vision, since it channels positive and negative events as separate signals and

outputs them asynchronously.

1.4 Human Action Recognition

Human Action Recognition is an important field in Computer Vision. Several scenar-

ios require recognising and categorising human actions and poses like in gait analysis,
1Taken from the homepage of Inilabs (URL :http://inilabs.com/products/

dynamic-vision-sensors/)
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health care, visual human- machine interfaces such as video game systems and robots,

to name a few. But traditional cameras pose several hindrances to these critical and in-

demand situations. They store too much data that is irrelevant and redundant. Also, the

static background that is stored in conventional video recordings make visual identifi-

cation of the object of interest a computationally intensive task. These additional and

often unuseful pieces of information distract the recognition algorithm from the target

and need to be removed before helpful features can be extracted. In the light of these

requirements, we attempted action recognition using information from DVS with the

focus on tapping its inherently relevant features.
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CHAPTER 2

PREVIOUS WORK

Steps in Action Recognition

For any type of recognition task, the first critical step is object tracking. This is followed

by extraction of useful features after suitable pre processing of raw data. Finally, the

action is identified using appropriate classifier(s). Since the output of DVS generate

only the moving contours in a video, this data can be used directly for feature extraction

and subsequent classification. We will now review some of the existing techniques in

literature for feature extracting techniques.

2.1 Feature Extraction

For a typical video on humans, two types of features are classically extracted - descrip-

tors based on motion and those based on shape. Because DVS video contains both shape

and motion based information, we need to extract features that reflect both of these in

order to predict with good classification accuracy. There are several more descriptors

in literature that work on extracting scene, color/ hue and texture based features in a

video. But texture and hue information is unavailable in DVS data because of its bi-

nary encoding scheme. The scene context based descriptors can also not be used with

DVS videos since scenes usually are static in a video, unless there is significant camera

motion. Nevertheless, volume based features like motion and shape often provide suf-

ficient information required to perform decent recognition and are more popular than

surface features like color and texture .

2.1.1 Motion Based Representations

One common and efficient descriptor for object motion is optical flow. In optical flow

methods, the relative motion in a sequence of scenes is captured by describing velocity



of the apparent motion at every voxel position. The consecutive scene frames are as-

sumed to be sufficiently similar, in order to calculate the differential motion by Taylor

Series aproximation. We assume the displacement of image is small and constant, such

that over a small time ∆t the brightness of the displaced pixel remains same. That is,

if ∆t is the time between consecutive frames and a voxel at location (x, y, t) having

intensity I(x, y, t) has moved by (∆x,∆y), then the brightness constancy assumption

gives us:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t) (2.1)

The right hand side of this equation can be aproximated in terms of first order terms

in its Taylor Series Expansion.

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) + ∂I
∂x

∆x+ ∂I
∂y

∆y + ∂I
∂t

∆t

These two equations imply that:

∂I
∂x

∆x+ ∂I
∂y

∆y + ∂I
∂t

∆t = 0

⇒ ∂I
∂x

∆x
∆t

+ ∂I
∂y

∆y
∆t

+ ∂I
∂t

= 0

⇒ ∂I
∂x
Vx + ∂I

∂y
Vy + ∂I

∂t
= 0

where Vx and Vy represent the x and y components of velocity. So we have:

IxVx + IyVy + It = 0 (2.2)

where Ix , Iy and It are the partial derivatives of intensity with respect to x, y and t.

Since there are two unknowns Vx and Vy in this equation, we need an additional

constraint to solve for the optical flow. We describe two methods for estimating it - viz.

Lucas-Kanade and Horne Schunk algorithm.

Lucas - Kanade Optical Flow

In this method, we assume that displacement of a point p is the same as that of other

points within a small neighbourhood around it (Lucas et al., 1981). So we use equation

6



(2.2) keeping Vx and Vy constant for all points within a window around p. This gives us

n simultaneous equations in Vx and Vx, changing the problem from an under-determined

system to an overdetermined one. If q1, q2, ...qn are the n pixel points within the window,

then we have:

Ix(q1)Vx + Iy(q1)Vy + It(q1) = 0

Ix(q2)Vx + Iy(q2)Vy + It(q2) = 0

...

Ix(qn)Vx + Iy(qn)Vy + It(qn) = 0

where Ix(qi) , Iy(qi) and It(qi) are the three partial derivatives of intensity evaluated at

point (qi).

Since this is an overdetermined system of linear equations, we can solve it be least

squares principle.

Denote:

A =


Ix(q1) Iy(q1)

Ix(q2) Iy(q2)
...

...

Ix(qn) Iy(qn)

 v =

Vx
Vy

 B =


It(q1)

It(q2)
...

It(qn)


Thus, we have

Av = B

So

ATAv = ATB

i.e

v = (ATA)
−1
ATB

Hence, at each pixel location, the flow is found using Eq.(2.2) on all the pixels

within a window centred at the point of interest. For solving the system, we can also

have weighted least squares instead of ordinary least squares by using an nXn weight

matrix that gives more importance to the pixels that are closer to the central pixel.
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Horn - Schunck Method for Optical Flow

This method combines Equation (2.2) with an additional constraint that imposes smooth-

ness of the computed flow. It is a global constraint that assumes optical flow to be

smooth over the entire image (Horn and Schunck, 1981).

The value of flow is computed by minimising the objective function:

f =

∫ ∫
[(IxVx + IyVy + It)

2 + α2(‖∇Vx‖2 + ‖∇Vy‖2)]dxdy

Here, the second term within the integral is forced to be small using the smoothness

regularisation parameter α. Larger values of α force the flow to be smoother and vice

versa. To find the optimal Vx and Vy values, we differentiate the objective function with

respect to these two variables. This gives us two equations, namely:

(IxVx + IyVy + It)Ix − α2∆Vx = 0

(IxVx + IyVy + It)Iy − α2∆Vy = 0

Here, ∆ is the Laplacian operator given by:

∇ =
∂2

∂x2
+

∂2

∂y2

To implement the Laplacian operate, we approximate it using the formula:

∇Vx(x, y) = V̄x(x, y)− V (x, y)

where V̄x is the average velocity in x direction computed at location (x, y) using its

neighbourhood. So, the smoothness constraint helps in filling missing flow values using

its surrounding pixels. But this makes it less robust and more sensitive to noise (Bruhn

et al., 2005). In the DVS recordings that we used (details of which are given in Chapter

4), often contain spurious events were fired in the static background. Hence we noted

that performance of Horn Schunck on our DVS datasets was slightly lower than that

given by Lucas - Kanade method where only local neighbourhood is considered for

flow estimation.
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Motion Boundary Histograms

In optical flow method, local motion is captured in terms of absolute value of velocity.

This implies that a flow value would be attributed to even static background objects if

there is camera motion present in the video. This is the case with the dataset we used as

well, where videos were shot in an unconstrained setting with significant camera mo-

tion. Since camera motion is often a simple translational movement, one easy method

to remove it is by taking the derivative of optical flow in the horizontal and vertical di-

rections (Dalal et al., 2006). This would remove any simple background movement in

the data which is often a source of distraction and clutter for the recognition algorithm.

What remains is a cleaner encoding that captures only the relative motion, which is then

binned based on the flow’s orientation to give a new feature known as Motion Boundary

Histograms.

2.1.2 Object Shape Representation

A very simple and efficient feature for describing shapes of objects is Histogram Of

Gradients (HoG) (Dalal and Triggs, 2005). In this method the gradient of the inten-

sity image is found in the x and y directions after greyscaling the input video if it has

color. This gives for each input frame, two feature-sets of the same size as the given

frame. Denote the two extracted sets of features as Gx and Gy. Gx and Gy are then

used to find the magnitude and angle of gradients at each pixel location of the frame.

These two frames of features are then subdivided into dense blocks (overlapping or non

overlapping) within which the gradient values are segregated into bins based on their

angles. After binning, the histograms are locally normalised within each block or cell

to account for the effect of illumination. The locally normalised histograms are then

concatenated to create the final feature vector. Performance of HoG descriptors depend

on several parameters like block size, number of bins within a block, percentage overlap

between blocks, type of normalisation (L1 norm, L2 norm, L1- square root norm) etc.

Other features in literature for describing shape include centroid distance features,

Fourier transform Descriptor for closed contours, Cartesian coordinate features etc. We

have used only HoG in our implementation owing to its simplicity and classification

efficiency.

9



2.2 Classification

This is the third and final step of the recognition problem. For image classification,

commonly used classifiers are K nearest neighbours, support vector machines (SVM),

bag of visual words, bag of Features followed by SVM and artificial neural networks.

We will now briefly look into each of these methods.

2.2.1 K Nearest Neighbours (k-NN)

K nearest neighbours - as the name suggests is an algorithm that looks at K most related

neighbours in the training set for a given test instance of features. KNN classifier can be

used for both classification and regression. It outputs a class based on majority voting

in the former case while in case of regression, it gives out a value based on ordinary

or weighted average of the values of the k nearest neighbours. Typically, the weight

used is the inverse of the distance of the neighbour from the test point, so that closer

neighbours are assigned greater weights. So KNN is a non- parametric method where

only local features decide the output. For measuring the closeness between samples,

Euclidean distance is commonly used. Some other closeness measures are Hamming

distance (used in finding overlap in text classification) and correlation (which is used in

gene analysis).

2.2.2 Support Vector Machines

Support Vector Machines are one of the most common classifiers used for image recog-

nition. It is a supervised algorithm where labelled training data is used to build a sepa-

rating boundary or hyperplane between classes. In its simplest form, it is a linear, binary

classifier. The hyperplane is typically constructed by maximising its margin from each

instance of training data. SVMs can also find non -linear classification boundaries by

mapping the original features into a higher dimensional space where the two classes

are linearly separable. Some common kernels used for this mapping are polynomial,

Gaussian and sigmoid. To enable multi-class classification using SVMs, we break the

multiple classes into several binary class problems. That is, if there are N classes in our

recognition task, we either train N separate SVMs (one-vs-all approach) or N(N-1)/2

10



SVMs (one-vs-one method) to determine the class of a given test sample.

2.2.3 Bag of Words

Bag of Visual Words (O’Hara and Draper, 2011) is an image classification method in

which images from the training data are used to create a code-book to encode local

patches in images as codewords. After each image in the train set is abstracted by a set

of local patches, k-means algorithm is run on the patches to extract k mutually exclusive

clusters. Then for a given image, its histogram is generated as the count of its image

patches belonging to each cluster. The histogram is then used as the feature for training

a classifier such as SVM.

11



CHAPTER 3

DATASET USED

Before explaining our proposed method, we describe the dataset we have used for test-

ing. We have taken the UCF11 dataset, also known as UCF YouTube Action Data (Liu

et al., 2009) for human activity recognition. This dataset contains eleven action classes

, viz. basketball shooting, biking/cycling, diving, golf swinging, horse back riding, soc-

cer juggling, swinging, tennis swinging, trampoline jumping, volleyball spiking, and

walking with a dog.

Figure 3.1: YouTube Action Data Set 1

The Data Set has more than 100 videos in each of the classes, which is further

subdivided in to 25 groups. This grouping allows us to perform Leave One (group) Out

cross validation twenty five times on the actions. Unless mentioned otherwise, we have

performed all our experiments under this setting of 25 LOO cross validations as was

suggested by the creators of the data .

We chose the UCF11 dataset for our experiments because it is one of the only few

human action data whose benchmark DVS counterpart is publicly available (Hu et al.,

2016).
1Image source: http://crcv.ucf.edu/data/UCF_YouTube_Action.php

 http://crcv.ucf.edu/data/UCF_YouTube_Action.php


Figure 3.2: Some sample DVS images of the UCF11 data. The actions shown are bik-
ing, golf swing, horse riding, trampoline jumping and soccer

The DVS data was created by the authors Hu et al. (2016) by re- recording the exist-

ing benchmark UCF11 videos played on a monitor using a DAViS240C vision sensor.

Since the data was not directly recorded from the wild, this would mean that time reso-

lution greater than that provided by the UCF11 video is not available in DVS under this

simulated setting. Nonetheless, we proceeded to use this dataset since our focus is not

to tap the temporal resolution that DVS offers, but to analyse its performance on HAR

using its special spatial encoding.
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CHAPTER 4

PROPOSED METHOD

Averaged Motion Maps

In this section, we propose a simple method that that focuses to capture the both move-

ment and shape in video using three averaged slices of frames. The three slices represent

the activities averaged along the three dimensions of the video, to give us xy, xt and ty

slices.

Our method is a simple encoding that relies on the fact that DVS has already cap-

tured mostly the moving foreground object which is our subject of interest. So time

averaging the frames along the length of the video gives the mean pose and stance of

the object as the xy slice. Similarly, to obtain the xt slice, the nth column of xt matrix is

filled by the row sum of the nth frame in the video. Likewise, the ty slice is created by

filling its kth row with the column sum of the kth frame in the video. These two slices

record the manner the object had moved over the video’s duration.

From the three motion maps, we extract Bag of Features where the feature points

taken are speeded up robust features (SURF) extracted through grid search on the slices.

SURF is similar to SIFT (scale invariant feature transform) detector in its overall ap-

proach, but differs in its implementation technique which aims at speeding the feature

detection. This is followed by k-means clustering of the train data’s features to create a

visual vocabulary of k words. Then the features from each video are pooled or binned

into the k clusters and l2 noramlised. Typically SVM classifier is then used on the en-

coded features to predict the activity that was performed. Since the features in the three

slices complement one another, with the xy slice encoding the object’s shape and pose

while the xt and yt slices describing its motion, a fusion of the slices either before or

after BOF- gives the best performance on HAR.

Figures 4.2, 4.3 and 4.5 show the motion maps for 11 randomly picked videos from

the 11 classes.



Figure 4.1: The proposed method: Averaged Motion Maps followed by Bag of Visual
Words

Figure 4.2: Motion map 1 : Time-averaged xy slices

In the xy slice, we note that much of the shape and pose of the object is captured.

Similarly xt and ty slices show rhythmic patterns typical for a given action category.

Notable ones among these are winding river-like ty slice for swinging action in figure

4.3 and the rhythmic up and down spikes in the xt slice for trampoline class in figure

4.5.

Since the number of frames vary per video, bi-linear interpolation was done on the

final xt and ty slices to reshape them to a fixed size from all the training videos. These

slices represent the three motion maps of the video.
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Figure 4.3: Motion map 2 : y-averaged xt slices

Figure 4.4: Motion map 3 : x-averaged ty slices
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In the following section, we note the performance of HAR using individual motion

maps as well as that using existing motion descriptors like HoG and HoF. Then we look

at combining the three motion maps effectively using fusion at three different levels

and improve its HAR further. We will also look at improving the recognition rates of

existing descriptors. Finally we combine the best existing feature descriptor for HAR

with our descriptor and perform activity recognition in DVS as well as conventional

videos. We assess the loss in HAR on using DVS data compared to conventional videos

and conclude whether activity recognition is indeed possible in practice with the sparse

encoding of DVS.

Figure 4.5: Outline of the proposed method
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CHAPTER 5

EVALUATION

The UCF YouTube Action Data is in general considered to be extremely challenging

due to the large amount of variation it provides in appearance and pose of the object

along with several other factors like background clutter, camera motion, scale of object

etc. The methods we used each tackle one more of these issues. DVS data by itself

helps remove most of the background clutter and other distractions present in the ac-

tual scene. Scale of the object is taken care when we extract the SURF features from

averaged motion maps. Optical flow also helps to focus on the foreground object is we

assume most of the movement that happens is due to our object of interest. Histogram

of Gradient captures the pose and overall stance of the subject while Motion Bound-

ary Histograms remove linear camera motion by taking gradient of optical flow in the

horizontal and vertical directions.

For HoG, we used three frames uniformly from the length of the video as our key

frames for feature extraction. The initial 4 frames were excluded before picking key

frames, since not much activity happens in the very beginning of the video

Figure 5.1: Visualisation of Histogram of Gradients on class- Soccer

Similarly, for finding optical flow, we used 3 uniformly chosen frames from the

videos and the flow was computed between the chosen frames and their immediately

preceding ones. For UCF11 data, we observed that Horn-Schunck method gave two



percent lower recognition rate than Lucas Kanade algorithm. From here onwards, all

further flow calculations were made using LK method.

Figure 5.2: Optical flow shown on a biking video from DVS

Finally, for our proposed method, all the frames were used from the videos and the

three averaged motion maps were obtained.

5.1 Results

In this section, we present the recognition rates under Leave One Out Cross validation

method performed 25 times on the above three feature descriptors.

Table 5.1: Results of HoG, HoF and Averaged Motion Maps

Video type HoG HoF xy slice xt slice ty slice
Original UCF11 0.5327 0.5119 0.4573 0.4253 0.3518

DVS data 0.4378 0.3926 0.4943 0.4680 0.4698

Here, bag of features was performed on the 3 slices with a codebook of dimension

500 while the training was done on 100,000 random train features. This was followed

by training one vs one SVM for the multi- class classification. On HoG and HoF, we

trained SVM directly after flattening the feature values into a 1D array from the three

frames. KNN classifier was also used for the final predictions, but it gave consistently

about 5 percent lower HAR rates. The results show that DVS gives a better recognition

rate on using our proposed method, while HoG and HoF perform better on the original
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data. For making the xy map, we noted that taking sum of absolute difference between

consecutive frames gave a better outline of the object instead of simple averaging. So

that is what we have used here. The reason our method worked worse on the actual

UCF11 data is due the fact that it has background clutter and scene information for

distracting bag of features encoding.

5.2 Combining Averaged Motion Maps

Next we looked at combining the features from the three slices appropriately to further

boost HAR. For this we used the three fusion methods that are described in the paper

by Peng et al. (2016). It says that fusion of features is done typically at three different

levels. The first one is at descriptor level, where the desciptors from different algorithms

are concatenated as a single feature before Bag of features is performed. The second

type of fusion is representation level fusion, where BoF is trained separately on each

descriptor and then the encoded representation is used for training the final classifier. So

this fusion happens at the video level, where global representation of each description

is first individually learnt. The final fusion method is score level fusion, where the

BoF framework and also the classifier is trained separately on each descriptor. The

predictions of the classifiers are then combined based on their scores.

The classifiers’ scores are usually the posterior probability of a given test video

to belong to a particular action class. We use three types of score merging methods

for our predictions, which are predicting the class with highest on arithmetic mean of

scores, highest geometric mean and class with maximum individual score among the

classifiers. Reddy and Shah (2013) also suggests similar fusion algorithm and termed

fusion of features before the before the final classifier as early fusion. So descriptor

and representation level fusion are early fusion techniques while score level fusion that

combines results of different classifier is late fusion. We used multi-class linear SVM

with one- vs- one coding scheme as the classifier for all three slice descriptors. The

classification score is computed based on the inverse of distance of the test sample from

the separating hyperplane. The results of the these fusion methods on our three averaged

1Image courtesy- Peng et al. (2016)
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Figure 5.3: Fusion of features at three different levels1

motion maps are listed below (tables 5.2 and 5.3). The fusion method that works best

ofcourse depends on the dataset used.

Table 5.2: Results of different fusion methods on the 3 averaged motion maps with bag
of features of vocabulary size 500

Video type Descriptor
fusion

Representation
fusion

Score
(GM)

Score
(AM)

Score
(maximum)

Original UCF11 0.4447 0.5722 0.5220 0.5069 0.4491
DVS data 0.5459 0.6564 0.6093 0.6030 0.5471

Here we see that representation level learning is what gave the best performance

on HAR. This is followed by late fusion at score level with geometric mean perform-

ing best, followed by arithmetic mean at a slightly lower HAR rate and finally maxi-

mum score of classifier. The simple descriptor level fusion gave the least performance

although its results are comparable with score level fusion using maximum classifier

score. Also we note that simply training a BoF model with a larger vocabulary size had

increased performance by two to three percent in each fusion method.
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Table 5.3: Results of different fusion methods on the 3 averaged motion maps with bag
of features of vocabulary size 4000

Video type Descriptor
fusion

Representation
fusion

Score
(GM)

Score
(AM)

Score
(maximum)

Original UCF11 0.4793 0.5716 0.5509 0.5364 0.4950
DVS data 0.5992 0.6790 0.6501 0.6426 0.6055
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CHAPTER 6

IMPROVING HAR RATE - FURTHER ANALYSIS

As the next step, we look at improving the performance of average motion maps as well

as existing motion descriptors using further detection techniques. Then we combine the

best result of the proposed method with most discriminating feature in existing literature

to get an overall better HAR rate.

Our use of HoG and HoF descriptors in the previous section was not optimal since

we did not make use of all the frames in the video. A simple method of improving their

performance is by using key frames instead of uniform ones. However, the framework

that has most dominated research in action recognition is Bag of Visual Words on lo-

cal features. For finding local features, the most successful extractors are Space Time

Interest Points (STIPs) and Dense Trajectories. In STIP method, motion descriptors

such as HoG, HoF and MBH are taken from a cuboid around the extracted points. This

is followed k-means clustering to generate the code-book, feature encoding, pooling

and normalisation and finally classification. Space Time Interest Points itself could be

found using several methods such as Dollar detector (Dollár et al., 2005), Laptev de-

tector (Laptev, 2005), selective STIPs (Chakraborty et al., 2012) etc. Dense trajectories

on the other hand, tracks interest points across frames to give a path of interest. So in

this method, the descriptors are extracted from a volume around the detected path. The

volume is hence no longer a cuboid, but a winding tube along time.

In the following sections, we report the performance of using STIP with average

motion maps as well as that of using dense trajectory on HoF, HoG and MBH. Finally

we combine the best features given by our proposed method with the best existing

feature descriptor to give an overall improved recognition rate.

6.1 Combining Averaged Motion Maps with STIPs

We used selective STIP as our detector on UCF11 data, where STIP points found by

basic Harris Detectors are further selected to avoid redundancy in the local descriptors



by suppressing unnecessary points obtained from the background of the scene, impos-

ing local and temporal constraints and adapting to scale. Selective STIPa are shown to

have better recognition rates compared to other STIP detectors like Dollar and Laptev.

Figure 6.1: Illustration of selective STIPs on a biking video

For each STIP point , the surrounding cuboid of size 13 X 13 X 13 pixels was

taken. Bag of features was trained with a 500 dimension codebook and number of

nearest neighbours used for clustering was kept at one. For building the vocabulary we

used 100,000 random cuboids from the train set and leave one out cross validation was

performed 25 times. The results of the same are given in tables 6.1 and A.1.

Table 6.1: Results of using average motion maps with selective STIPs

Video type xy slice xt slice ty slice
Original UCF11 0.4026 0.3995 0.3719

DVS data 0.3825 0.3832 0.3907

Here we again note the same order of performance on using different fusion methods

with selective STIP. Descriptor level fusion was not performed this time based on the

previous trend. Since STIP did not improve performance any more than the initial
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Table 6.2: Results of fusion methods on the 3 averaged motion maps with selective
STIP

Video type Representation
fusion

Score
(GM)

Score
(AM)

Score
(maximum)

Original UCF11 0.5161 0.4472 0.4454 0.4391
DVS data 0.4413 0.4290 0.4271 0.4133

framework, we will use the previous feature vector without cuboids for average motion

maps for the final combination.

6.2 Using Motion Descriptors with Dense Trajectories

Dense trajectories are created by dense sampling of image which is shown to have better

performance when compared to sparse interest points (Wang et al., 2011). In contrast to

interest points, dense tracking provides trajectories that trace the point of interest over

time.

Figure 6.2: Illustration of tracking dense trajectory followed by feature extraction.
(Wang et al., 2013)

Along the the path tracked, descriptors like HoG , HoF or MBH are computed using

an NXN neighbourhood of pixels. The points are tracked from one frame to another

using dense optical flow field and the trajectory length is limited to 15 frames to avoid

drifting of tracked points.

In our experiments, we took the tracking volume to be 32 X 32 pixels X 15 frames.

This volume is further divided into cells of size 16 X 16 pixels X 5 frames. So each

tracked tube gives 2X2X3 cells. Within each cell, the histograms of descriptors are

1Image source : Wang et al. (2013)
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Figure 6.3: Illustration of difference in volume used for feature extraction by dense
trajectory (dark blue) and interest point (light blue) 1

Figure 6.4: Dense tracking of 2 people on a trampoline. The red dots are the densely
tracked points while the green arrows show their optical flow or trajectory

found. For HoG and MBH, we used 8 orientation bins per cell and the magnitude of the

feature values was used for weighting. For HoF, an additional bin was added to account

for pixels whose flow value was smaller than a threshold. All the descriptors were also l2

normalised before performing bag of features. So in total, HoG gave feature descriptors

of size 96 per tracked volume (2X2X3cells per tracked path times 8 bins) while HoF

produced 108 features (2X2X3cells times 9 bins). MBH also gave 96 features similar

to HoG, but in both horizontal and vertical directions. Thus, overall it had twice the

number of features for a chosen trajectory. Bag of features was individually performed

on each descriptor. Since each video produced about 500000 dense tracks, most of them

in close proximity to one another, BoF was done on a subset of training features on one

lakh trajectories randomly selected. The codebook dimension was kept at 500. After
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learning the cluster centers, all features of the video are used to generate the histograms

of same 500 bins. Finally the pooled features are l2 normalised and SVM was classifier

is trained. The results for 25 cross validations under Leave One Out method for the

UCF11 dataset are given below:

Table 6.3: Results of HoG, HoF and MBH with Dense Trajectories using BoF of size
500

Video type HoG HoF MBH
Original UCF11 0.6375 0.5528 0.6866

DVS data 0.5126 0.5810 0.6212

So we see that dense trajectories indeed outperform the same descriptors when used

with uniform frames. Also, we note that motion boundary histograms give the best

performance out of the three descriptors on HAR. This is a result known for HAR in

conventional videos, and the same inference is seen here for DVS data as well. To

improve performance further, we trained bag of features for codebook of vocabulary

size 4000. Again Leave One Out cross validation was performed, this time on a single

fold, on the UCF11 dataset. The results are enlisted in table 6.4

Table 6.4: Results of HoG, HoF and MBH with Dense Trajectories with BoF of size
4000

Video type HoG HoF MBH
Original UCF11 0.6935 0.6452 0.7742

DVS data 0.6290 0.7097 0.6613

The HAR rates have improved by 5 to 10 percent in each case, due to the in-

creased feature size. It is interesting to note that optical flow gave better recognition

rate with DVS data wth dense trajectories when compared to actual UCF11 videos,

while MBH which is based on the derivative of optical flow performed better with the

original videos. This can be explained based on the fact that there is less clutter in DVS

data aiding in flow calculations, but the irrelevant flow values that was computed for the

background image in the original videos were mostly uniform and got removed on com-

puting MBH. Since MBH consistently outperformed the other two motion descritpors,

we use this feature from now on to combine with our proposed descriptor.
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6.3 HAR on DVS at different frame rates

In an attempt to boost the performance of DVS even with existing motion descriptors,

we created frame based videos out of DVS’ events stream at different frame rates. Then

the performance of MBH with dense trajectories was recorded on 25 fold leave one out

cross validation. Three different frame rates were used for this setup, viz. 30, 20 and 10

fps. For lower frame rates, we observed that the transition from one frame to next was

too abrupt for dense trajectories to track any point. Although in theory, higher frame

rate videos can also be created out of DVS events, we did not attempt this since the

DVS data we used was created by shooting its original videos played at 30 fps. Thus

there is no further information that can bw captured by making videos of greater frame

rate. This is ofcourse not a limitation of DVS, but of the dataset we had and could have

been a study in itself if the data was directly created using a DVS camera from the wild.

Nonetheless, we report the results of MBH using dense tracking on the 3 frame rates

mentioned. BOF framework was used on the MBH features for a codebook size of 500

words. Table

30 fps 20 fps 10 fps

0.6212 0.6759 0.6564

So, we can gained a 5 percent increase in HAR rate by simply changing the frame

rate of DVS videos. As a final setup, we combine this MBH descriptor with dense tra-

jectory at 20 fps with our proposed average motion map descriptor under representation

level fusion. Since MBH with dense tracking tracks a large number of points per video

(around 60,000 on average), its bag of features was trained for only 500 dimension

codebook. For each of the 3 averaged motion maps, BoFs of size 4000 was built.
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6.4 Final Fusion - Representation level learning of MBH

with Averaged Motion Maps

Figure 6.5: Illustration of Final Fusion

The table below shows our final results. For a more elaborate analysis on this

combining, please refer the appendix.

Video type HAR rate
Original UCF11 0.7299

DVS 0.7387

Table 6.5: Final Fusion : MBH with Dense trajectory combined with Averaged Motion
Maps under Representation level learning

We conclude this section by noting that DVS had performed just as well as actual

videos in HAR based on the feature descriptors that are available for its encoding. Fur-

ther features based on scene, texture and hue have enabled better recognition rates with

actual videos. But these are more complex and unavailable for use from the very be-

ginning with DVS data. Hence if we respect the limitations that come with DVS, we

note that within the framework of its possible descriptors it is just as useful for HAR as

conventional videos and could efficiently used in place of the latter.
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CHAPTER 7

CONCLUSION AND FUTURE WORKS

In this project, we analysed the performance of DVS data in Human Activity Recogni-

tion (HAR) compared to its conventional frame-based counterpart using traditional fea-

ture extraction techniques. We also proposed a new encoding technique that is suited

especially for DVS data in light of its sparse and concise recording scheme. Finally

we evaluated how DVS data’s performance gets affected on using different frame rates

for segregating events. Our results have showed how DVS for HAR is a promising

application.

However looking beyond the results, there were some fundamental questions that

we left unaddressed in our approach. In every recognition algorithm we tried, we have

used bag of features as the final step before classifying the actions as is the state of the

art norm today. But the question still remains whether BOF really is the best method

to be used, for pooling features or even otherwise. Although our algorithm performed

better with BOF followed by SVM approach as opposed to directly training SVM, there

are some inherent limitations to BOF that are worth noting. Location based relations

are not preserved in BOF, since pooling destroys all spatial information between the

extracted features in the image. Valuable relations - such as a person standing on top of

the diving board - that would directly allow us to classify the action as diving is lost on

using BOF. This can be further worked upon, using methods like spatial correlogram

and matching. Also, some of the features extracted by BOF from the slices have no

semantic meaning to it. They cannot be inherently explained by a cursory examination

by humans, nor could we attach them to any particular human activity. If BOF had learnt

features that are in actuality irrelevant -then this is something that needs to be looked

into for further improving its performance. Interestingly, DVS has the advantage with

BOF that its image itself has mainly the moving, foreground object. Hence there are

lesser incorrect features that BOF could learn. Nevertheless, improving BOF in general

is a challenge that still remains unsolved.

Also, we noted that similar to recognition rates shown by conventional videos, dense

trajectories gave the best results on using traditional features in DVS as well. Much of



the success of dense tracking comes from the fact that it generates too many interest

points given any video sample. A visualisation of the interest points found by dense

sampling showed that some of these are randomly fired noisy events in DVS unrelated to

the object in foreground. A simple median filtering pre-processing before finding dense

interest points however did not improve recognition rate. Decreasing the frame rate to

an extent helped us bypass this issue. However, in order to truly address the problem,

perhaps a new method specifically for finding and tracking DVS interest points should

itself be invented. This would act as the initial step for improving the performance of

HAR on using optical flow, MBH as well as Dense trajectories with dynamic vision

sensors.
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APPENDIX A

FINAL FUSION METHOD ELABORATED

We have put the final fusion results for only representation level combining in the main

section. This was based on the previous analysis where representation level learning

consistently outperformed all other fusion methods. Although lower than representation

fusion, here we list the HAR rate for the remaining fusion methods as well.

Table A.1: Early and late fusion of MBH with averaged motion maps

Video type Representation
fusion

Score fusion
(GM)

Score fusion
(AM)

Score fusion
(maximum)

Original UCF11 0.7299 0.7167 0.6847 0.6859
DVS data 0.7387 0.7299 0.7280 0.7041

So indeed representation level fusion best discriminates UCF11 dataset. Then the

expected trend of score level fusion follows with Geometric Mean performing better

than Arithmetic Mean.

The confusion matrices for representation fusion in both UCF11 and its DVS ver-

sion are shown in figure A.1. We note how the accuracy figures for each class are very

similar in both cases, once again reinforcing our idea that DVS can be used successfully

to replace conventional videos for HAR.



Figure A.1: Confusion matrix for representation fusion in original UCF11 and its DVS
counterpart

33



REFERENCES

1. Bruhn, A., J. Weickert, and C. Schnörr (2005). Lucas/kanade meets horn/schunck:
Combining local and global optic flow methods. International journal of computer
vision, 61(3), 211–231.

2. Chakraborty, B., M. B. Holte, T. B. Moeslund, and J. Gonzàlez (2012). Selective
spatio-temporal interest points. Computer Vision and Image Understanding, 116(3),
396–410.

3. Cho, D.-i. D. and T.-j. Lee (2015). A review of bioinspired vision sensors and their
applications. Sensors and Materials, 27(6), 447–463.

4. Dalal, N. and B. Triggs, Histograms of oriented gradients for human detection. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 1. IEEE, 2005.

5. Dalal, N., B. Triggs, and C. Schmid, Human detection using oriented histograms of
flow and appearance. In European conference on computer vision. Springer, 2006.

6. Delbruck, T., Frame-free dynamic digital vision. In Proceedings of Intl. Symp. on
Secure-Life Electronics, Advanced Electronics for Quality Life and Society. 2008.

7. Dollár, P., V. Rabaud, G. Cottrell, and S. Belongie, Behavior recognition via sparse
spatio-temporal features. In Visual Surveillance and Performance Evaluation of Track-
ing and Surveillance, 2005. 2nd Joint IEEE International Workshop on. IEEE, 2005.

8. Horn, B. K. and B. G. Schunck (1981). Determining optical flow. Artificial intelli-
gence, 17(1-3), 185–203.

9. Hu, Y., H. Liu, M. Pfeiffer, and T. Delbruck (2016). Dvs benchmark datasets for
object tracking, action recognition, and object recognition. Frontiers in Neuroscience,
10.

10. Laptev, I. (2005). On space-time interest points. International journal of computer
vision, 64(2-3), 107–123.

11. Liu, J., J. Luo, and M. Shah, Recognizing realistic actions from videos âĂIJin the
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