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ABSTRACT 

 

KEYWORDS: Clustering Analysis, K-means algorithm, Deterministic Annealing, 

Maximum Entropy Principle, Shannon Entropy, Kernels 

 

Clustering analysis is extensively used to partition data into different sets such that data 

points in the same set are more similar to each other than data points from different sets. 

From a mathematical point of view, clustering is a non-convex optimisation problem. K-

means clustering is one of the simplest algorithms used for partitioning data that is linearly 

separable in the input space. But it is sensitive to initialisation, and often returns sub-optimal 

solutions. The deterministic annealing (DA) approach to clustering demonstrates substantial 

improvement over K-means method. It is derived within a probabilistic framework from 

basic information theoretic principles (e.g. maximum entropy principle). The application 

specific cost is minimised subject to a constraint on the randomness (Shannon entropy) of the 

solution, which is gradually lowered. We emphasize on intuition gained from analogy to 

physical chemistry, where the annealing process avoids many shallow local minima of the 

specified cost and, at the limit of zero “temperature”, produces a non-random (hard) solution. 

We further look into a modification of deterministic annealing approach called weighted 

kernel deterministic annealing (WKDA). This algorithm combines the kernel trick with 

distributed aspect of the deterministic annealing algorithm to produce effective clustering 

solutions that are independent of initialisation and has the ability to partition data that is not 

linearly separable in the input space in the desired way. Finally, we test the WKDA algorithm 

on several standard test cases to check its performance. 
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NOTATIONS 

 

𝑁  Number of input points 

𝑀  Dimension of each input point 

𝐾  Number of clusters 

𝒳  Set of all input points 

𝒴  Set of all cluster centroids 

𝑝(𝑥𝑖)  Relative significance of point 𝑥𝑖 

𝑑(𝑥, 𝑦) Squared Euclidian distance between points 𝑥 and 𝑦 

𝑝(𝑦|𝑥) Association probability of input vector 𝑥 to the code vector 𝑦  

𝐻(𝒳, 𝒴) Shannon entropy of the system 

𝑇   Initial Temperature of the system 

𝑇𝑚𝑖𝑛   Minimum Temperature allowed in the system 

α  Cooling rate of the system  

< 𝑥, 𝑦 >  Inner product of vectors 𝑥 and 𝑦  

𝜎   Standard deviation of the Gaussian kernel  
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CHAPTER 1 

INTRODUCTION 

 

Cluster analysis or clustering is a type of unsupervised learning method and has emerged as 

one of the fundamental problem in data mining in recent years. An unsupervised learning 

method is a method in which we draw references from datasets consisting of input data 

without labelled responses. Generally, it is used as a process to find meaningful structure, 

explanatory underlying processes, generative features, and groupings inherent in a set of 

examples. The complementary category of supervised learning involves a “teacher” who 

provides, during the training phase, the desired output for each input sample. 

Clustering is a task of dividing the population or data points into a number of 

groups/partitions such that data points in the same partition are more similar to each other and 

dissimilar to the data points in other partitions. The similarity measures are based upon 

metrics such as Euclidean, Manhattan and Bergman divergences. They represent distances of 

data points from their corresponding cluster centroids, or pairwise distances between any two 

data points in the input space. 

For example: We can distinguish the data points given in the figure below into three 

different clusters and can say that the points which belong to the same cluster are more 

similar to each other than points that belong in different clusters. 

 

 

Figure 1 – Basic example of clustering 

 

The task of clustering is computationally difficult and the design of a practical system 

must take into account its complexity. Thus, typically, we restrict the complexity of the 
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clustering algorithms by specifying 𝐾, i.e. the number of partitions that we want to create in 

the input data a priori. Mathematically, clustering is a non-convex optimisation problem. 

A particularly well known and simplest approximation method for clustering is 

known as the “k-means algorithm”. It was first proposed by Macqueen [1] in 1967. It is an 

unsupervised, non-deterministic, numerical, iterative method of clustering.  The main idea of 

this algorithm is to, initially, randomly define 𝐾 centroids, one for each cluster, and associate 

all the data points to their nearest centroid. Then, iteratively improve the location of the 

centroids so as to reach a local optimum. One of the main drawbacks of this algorithm is that 

it is sensitive to the selection of initial centroids and often gets stuck at local optimums. Thus, 

we run this algorithm multiple times and return the best solution. 

To overcome this curse of initialisation, Rose [4] proposed an annealing based 

algorithm in 1998, well described in terms of laws, such as, maximum entropy principle 

(MEP) in statistical physics literature, and showed that the solutions obtained using this 

approach are totally independent of the choice of initial configurations. This algorithm is 

referred as “Deterministic Annealing (DA) algorithm” and is aimed to provide high quality 

solutions to clustering problems with only marginal increase in computational complexity. 

The observation of annealing process in physical chemistry motivated the use of similar 

concepts to avoid local minima of the cost function. 

A major drawback of both K-means and DA algorithms is their incapability to 

separate clusters that are not linearly separable in the input space. Figure 2 shows the 

performance of DA algorithm in identifying the natural clusters for two distinct sets of data 

points. 

 

(a) Linearly Separable Data        (b) Non-linearly Separable Data  

 

Figure 2 – Example of clustering by DA algorithm on (a) linearly separable data, and (b) non-linearly 

separable data 
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While the data points in Figure 2(a) can be separated using hyper planes in ℝ2 (line), 

there is no such line that can separate data points distributed along two concentric circles in 

Figure 2(b). Thus, while the DA algorithm finds the optimal linear separation of data points 

in Figure 2(b), such separations are indeed not natural and often undesired. 

 To overcome these limitations of K-means and DA algorithms, a novel “Weighted 

Kernel Deterministic Annealing” approach is presented by Mayank Banarwal [8] in his 

paper. The WKDA algorithm is based on the Deterministic Annealing algorithm presented by 

Rose but also uses the kernel-trick to map data points to higher dimensional space and then 

clusters data points using linear separators in the new space. The WKDA algorithm enjoys 

the best of both worlds. On one hand, the algorithm is independent of initialisation like the 

basic DA algorithm; and on the other hand, WKDA does not require a lot of computational 

power. Furthermore, by modifying the algorithm suitably, we can easily implement must-link 

and cannot-link constraints between any two points. 

(a) Clustering by DA algorithm  (b) Clustering by WKDA algorithm 

  

Figure 3 – Example of clustering by (a) DA algorithm, and (b) WKDA algorithm on non-linearly separable data 

 As it as be seen from Figure 3, the WKDA algorithm divides the data points in a more 

desired way (as in Fig. 3b) as compared to the basic DA algorithm (as in Fig. 3a). 

 This thesis is organised as follows. Chapter 2 explains the mathematical formulation 

of the clustering problem and goes on to explain the k-means algorithm and the results 

obtained from it. Chapter 3 introduces the basic deterministic annealing algorithm, wherein 

we first introduce the mathematical formulation of the clustering problem in a slightly 

different way from chapter 2 and go on to solve the formulated problem to reach to a basic 

algorithm. Chapter 4 further modifies the previously introduced DA algorithm by using the 

kernel trick for shape clustering applications and introduces the WKDA algorithm. Chapter 5 

wraps up this thesis by evaluating the WKDA algorithm on few example scenarios and giving 

conclusions and results.  
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CHAPTER 2 

K-MEANS CLUSTERING 

 

2.1 INTRODUCTION 

K-means is one of the simplest unsupervised learning algorithm that solves the clustering 

problem. The procedure follows a simple and easy way to classify a given data set through a 

certain number of clusters (assuming K clusters) fixed a priori. The main idea is to randomly 

initialise K centroids, one for each cluster. After initialisation, the next step is to take each 

point belonging to the given data set and associate it to the nearest centroid. When no point is 

pending, the first step is completed and early grouping is done. At this point, we need to re-

calculate K new centroids as barycentre of the clusters resulting from the previous step. After 

we have these K new centroids, a new binding has to be done between the same data set 

points and the nearest new centre. A loop has been generated. As a result of this loop we 

may notice that the k centres change their location step by step until no more changes are 

done or in other words centres do not move any more. 

 

2.2 MATHEMATICAL FRAMEWORK 

Given a set of 𝑁 ∈ ℕ points 𝒳 = { 𝑥𝑖 ∶ 𝑥𝑖 ∈ ℝ𝑀 , 1 ≤  𝑖 ≤ 𝑁 } , the objective is to find the 

optimal locations of 𝐾 ∈ ℕ cluster centroids denoted by 𝒴 = { 𝑦𝑗 ∶ 𝑦𝑖 ∈ ℝ𝑀 , 1 ≤ 𝑗 ≤ 𝐾 }  

such that the aggregated sum of distances of each point from its nearest cluster centroid is 

minimized. The objective function (also known as the squared error function or the cost 

function) that this algorithm aims to minimize is given as follows:  

𝐽 =  min
{𝑦},{𝑡}

∑ ∑ 𝑡𝑖𝑗 . 𝑝(𝑥𝑖). 𝑑(𝑥𝑖, 𝑦𝑗)

𝑁

𝑖=1

𝐾

𝑗=1

 

 

Here, 𝑡𝑖𝑗 =  {
1     𝑖𝑓 𝑝𝑜𝑖𝑛𝑡 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗
0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

             𝑝(𝑥𝑖) 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝑥𝑖  ( ≈  
1

𝑁
 , 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑙𝑦) 

             𝑑(𝑥𝑖, 𝑦𝑗) =  ∑ (𝑥𝑖
𝑞

− 𝑦𝑗
𝑞

)
2

𝑀
𝑞=1  , 𝑖. 𝑒.  𝑖𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑞𝑎𝑢𝑟𝑒𝑑 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
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2.3 PSEUDO CODE FOR THE ALGORITHM 

Step 1: Randomly select K cluster centroids. 

Step 2: Calculate the distance between each data point and all cluster centroids using: 

𝑑(𝑥𝑖, 𝑦𝑗) =  ∑(𝑥𝑖
𝑞

− 𝑦𝑗
𝑞

)
2

𝑀

𝑞=1

  ⍱  𝑖 ∈ {1, … , N}, j ∈ {1, … , K}  

Step 3: Assign the data points to the cluster centre whose distance from the cluster centre is 

minimum of all cluster centres. 

Step 4: Recalculate the new cluster centres using: 

𝑦𝑗 =  
1

𝐶𝑗
∑ 𝑥𝑞

𝐶𝑗

𝑞=1

  ⍱  j ∈ {1, … , K}  

ℎ𝑒𝑟𝑒, 𝐶𝑗 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗 𝑎𝑛𝑑  

𝑥1, … . . , 𝑥𝐶𝑗
 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑒𝑝. 

Step 5: Recalculate the distance between each data point and new obtained cluster centres. 

Step 6: If no values change then stop, otherwise repeat from step 3. 

 

2.4 ANALYSIS OF THE ALGORITHM 

The K-means algorithm is fairly easy and intuitive to understand. It is quite efficient with the 

time complexity of the order 𝑂(𝑞. 𝑘. 𝑛. 𝑚), where n is the number of data points, k is the 

number of clusters, m is the dimension of each data point and q is the number of iterations. It 

can be easily shown that the K-means algorithm converges by proving that its cost function 

monotonically decreases. The figure below demonstrates the same by plotting value of the 

cost function against the number of iterations, and it can be observed that the cost 

monotonically decreases until we reach a local minimum. 

 

Figure 4 – Plot of value of the cost function against number of iterations 
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Despite having many advantages, there are several limitations of k-means algorithm 

which makes it unsuitable for complex cases. One of main limitation of this algorithm is that 

it fails to obtain desired partitions of the input space when the clusters are not linearly 

separable.  

Also, it can be easily seen that the objective function for k-means is a non-convex 

function. Thus, the cost surface of the objective function is riddled with several local 

optimums and since, there is no prescribed way of initialising the algorithm, upon random 

initialisation, it frequently happens that suboptimal partitions are found. Thus, we need to run 

the algorithm multiple times to reach the solution with optimal partitions. An example of the 

above described limitation is given below: 

 

a) Result after the first run                                 (b) Result after the second run 

 

Figure 5 – Results of K-means clustering after the (a) first run, and (b) second run of the algorithm 

 

As it can be seen from the figure 5(a), after the first run of the code, the k-means 

algorithm gets stuck at a local minimum which has high error and the clusters obtained are 

sub-optimal .We reach the global minimum after the second run of the code as can be seen in 

figure 5(b). The mean squared error of the partitions in figure 5(a) is also higher than the 

mean squared error of the partitions in figure 5(b). 

To overcome this curse of random initialisation, Rose [4] proposed an annealing 

based algorithm called Deterministic Annealing which is discussed in the next chapter. 
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CHAPTER 3 

DETERMINISTIC ANNEALING 

 

3.1 INTRODUCTION 

The deterministic annealing (DA) method is used for solving several non-convex 

optimisation problems because of its ability to avoid shallow local minimums of a given cost 

function even when there are several local optimums. It has demonstrated substantial 

performance improvements over standard learning methods in a variety of important 

applications including compression, clustering estimation, classification and statistical 

regression. It is established in a probabilistic framework through basic information-theoretic 

techniques such as Maximum Entropy Principle (MEP) and random coding. 

The observation of the annealing processes in physical chemistry motivated the use of 

similar concepts to avoid local minimums of the optimisation cost. Certain chemical systems 

can be driven to their low energy state by annealing, which is a process wherein we start at 

very high temperatures and gradually reduce it, spending a lot of time at the vicinity of the 

phase transition points to reach the desired state. In the corresponding probabilistic 

framework, a distribution is defined over the set of all the possible configurations which 

assigns higher probability to configurations of lower energy. This distribution is 

parameterized by “temperature”, and as the temperature is lowered, it becomes more and 

more discriminating (concentrating most of the probability in a smaller subset of low energy 

configurations). At the limit of low temperature, it assigns non-zero probability only to global 

minimum configurations. 

Basic clustering methods suffer from the problem of poor local minima that riddle the 

cost surface. A variety of heuristic approaches have been proposed to tackle this difficulty, 

and they range from repeated optimisation with different initialisation, and heuristics to 

obtain good initialisation, to heuristic rules for cluster splits and merges etc. But DA looks at 

the clustering problem from a different viewpoint and takes a very different approach for 

solving the problem. The approach is based on information theory and probability, and 

consists of minimising the clustering cost at prescribed levels of randomness (Shannon 

entropy). It provides clustering solutions at different scales, where the scale is directly related 

to the temperature parameter. 
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3.2 MATHEMATICAL FRAMEWORK 

We use the following terminology that applies to both signal processing and clustering 

setups. We assume that we have a source that produces a sequence of independent and 

identically distributed input vectors 𝑥1 , 𝑥2 , 𝑥3 , … . . , 𝑥𝑁 (𝑥𝑖 ∈ ℝ𝑀 , 1 ≤  𝑖 ≤ 𝑁 ) according to 

some probability distribution 𝑝(𝑥). We also assume that there exists an encoding function 

𝑦(𝑥) that maps the input vector 𝒳 to the best reproduction code vector in some finite set 𝒴. 

In the clustering setup, the input vectors correspond to the training set, while 𝒴 corresponds 

to the set of some appropriately defined cluster centroids. The distance between an input 

vector and code vector assigned to it is called as distortion. The aim is to minimize the 

average distortion for a given set of input vectors. Thus, the objective function is given by: 

𝐷 =  ∑ 𝑝(𝑥𝑖). 𝑑(𝑥𝑖, 𝑦(𝑥𝑖))

𝑁

𝑖=1

 

ℎ𝑒𝑟𝑒, 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛  𝑑(𝑥, 𝑦) =  ∑ (𝑥𝑞 − 𝑦𝑞)2𝑀
𝑞=1  , 𝑖. 𝑒.  𝑖𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑞𝑎𝑢𝑟𝑒𝑑 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. 

Most algorithms for clustering (such as the K-means algorithm) start with some initial 

values of the code vector 𝒴 and iteratively optimize over them as the algorithm proceeds. 

However, such approaches as sensitive to the choice of initial values and primarily die due to 

the distributed aspect of the clustering problem, where any change on the coordinates of 𝑥𝑖 

affects the distortion 𝑑(𝑥𝑖, 𝑦(𝑥𝑖)) only with respect to the nearest code vector. The DA 

algorithm overcomes this sensitivity by allowing fuzzy association of every data point to each 

code vector. 

 A probabilistic frame work for clustering is defined here by randomisation of the 

partition, or equivalently randomisation of the encoding rule. The input vectors (or the input 

data points) are assigned to clusters in probability, which is called as the association 

probability. This viewpoint bears similarity to “fuzzy” clustering, where each data point has 

partial membership of clusters. This is different from K-means clustering, which is similar to 

“hard” clustering, where each data point is associated to only one cluster at a time. 

 However, this formulation is purely probabilistic. While it considers clusters as 

regular (non-fuzzy) sets whose exact membership is the outcome of a random experiment, 

one may also consider the fuzzy sets obtained by equating the degree of membership with the 

association probability in the probabilistic model. Thus, the traditional frame work for 

clustering is the marginal special case where all association probabilities are either zero or 

one. 

For randomisation part, the modified average distortion function can be written as: 
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𝐷 =  ∑ ∑ 𝑝(𝑥, 𝑦). 𝑑(𝑥, 𝑦)

𝑦𝑥

 

ℎ𝑒𝑟𝑒, 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛  𝑑(𝑥, 𝑦) =  ∑(𝑥𝑞 − 𝑦𝑞)2

𝑀

𝑞=1

 , 𝑖. 𝑒.  𝑖𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑞𝑎𝑢𝑟𝑒𝑑 𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. 

𝑎𝑛𝑑  𝑝(𝑥, 𝑦) 𝑖𝑠 𝑡ℎ𝑒 𝑗𝑜𝑖𝑛𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑛 𝒳 ∗ 𝒴. 

We can rewrite the above expression as: 

 

𝐷 =  ∑ 𝑝(𝑥) ∑ 𝑝(𝑦|𝑥). 𝑑(𝑥, 𝑦)

𝑦𝑥

 

ℎ𝑒𝑟𝑒, 𝑝(𝑦|𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑒𝑙𝑎𝑡𝑖𝑛𝑔 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑥 𝑤𝑖𝑡ℎ 𝑐𝑜𝑑𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑦 

The probability distribution {𝑝(𝑦|𝑥)} assesses the trade-off between decreasing local 

influence and the deviation of the modified average distortion function from the original 

average distortion function. 

At the limit where the association probabilities are “hard” (either 0 or 1) and each input 

vector is assigned to a unique code vector with probability one, the DA distortion expression 

given above becomes identical to the hard clustering distortion function. 

 Minimisation of 𝐷 with respect to the free parameters {𝑦, 𝑝(𝑦|𝑥)} would immediately 

produce a hard clustering solution, as it is always advantageous to fully assign an input vector 

with probability one, to the nearest code vector. However, we recast this optimisation 

problem as that of seeking the probability distribution which minimises 𝐷 subject to a 

specified level of randomness. The level of randomness is, naturally, measured by Shannon 

entropy. It captures the uncertainty in associating input data points with the code vectors. The 

expression of entropy for our system is given as: 

 

𝐻(𝒳, 𝒴) =  − ∑ ∑ 𝑝(𝑥, 𝑦). 𝑙𝑜𝑔(𝑝(𝑥, 𝑦))

𝑦𝑥

 

Now, the optimisation is conveniently reformulated as minimisation of the Lagrangian: 

𝐹 = 𝐷 − 𝑇. 𝐻 

Here, 𝑇 is the Lagrange multiplier, 𝐷 is the average distortion and 𝐻 is the Shannon entropy. 

To further analyse this Lagrangian 𝐹 in the above stated equation, we note that the joint 

entropy of the system can be further decomposed into two terms: 
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𝐻(𝒳, 𝒴) =  𝐻(𝒳) + 𝐻(𝒴|𝒳) 

𝐻(𝒳, 𝒴) =   − ∑ 𝑝(𝑥). log(𝑝(𝑥))

𝑥

 −  ∑ 𝑝(𝑥) ∑ 𝑝(𝑦|𝑥). log (𝑝(𝑦|𝑥))

𝑦𝑥

 

Here, note that the first term is the source entropy, which is independent of clustering, thus, 

we can ignore that term while optimisation and focus on conditional entropy. Thus, the 

Lagrangian that we need to minimise becomes 

 

𝐹 =  ∑ 𝑝(𝑥) ∑ 𝑝(𝑦|𝑥). 𝑑(𝑥, 𝑦)

𝑦𝑥

  − 𝑇. (− ∑ 𝑝(𝑥) ∑ 𝑝(𝑦|𝑥). log(𝑝(𝑦|𝑥))

𝑦𝑥

 )  

 

Clearly, for large values of 𝑇 we mainly attempt to maximize the entropy. As 𝑇 is lowered, 

we trade entropy for reduction in distortion, and as 𝑇 approaches zero, we minimise 𝐷 

directly to obtain a hard (non-random) solution. 

At this point, let us consider an equivalent derivation of the above obtained 

Lagrangian based on the principle of maximum entropy. Suppose we fix the level of expected 

distortion 𝐷, and seek to estimate the underlying probability distribution. The objective is to 

characterise the random solution at gradually diminishing levels of distortion until minimum 

distortion is reached. The maximum entropy principle states that “Among all the probability 

distributions that satisfy a given set of constraints, choose the one that maximizes the entropy 

(uncertainty)”. The informal justification is that while this choice agrees with what is known 

(the given constraints), it maintains maximum uncertainty with respect to everything else. 

Had we chosen another distribution satisfying the constraints, we would have reduced the 

uncertainty and would have therefore implicitly made some extra restrictive assumption. 

 For the problem described above, we seek a distribution that maximises the Shannon 

entropy while satisfying the expected distortion constraint. The corresponding Lagrangian to 

maximize is 𝐻 −  𝛽. 𝐷 , with 𝛽 as the Lagrangian multiplier. The equivalence of the two 

derivation is obvious, and both Lagrangians are simultaneously optimised by the same 

solution configuration for 𝛽 = 1/𝑇.  

 Maximising the entropy is commensurate with decreasing the local influence. The 

trade-off between maximising the entropy and minimising the modified distortion function is 

addressed by seeking the probability distribution {𝑝(𝑦𝑗|𝑥𝑖)} that minimises the Lagrangian. 

Solving the Lagrangian and thus minimising 𝐹 with respect to the association probabilities 

𝑝(𝑦|𝑥) gives us the Gibbs distribution (which is the partition function of statistical physics): 
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𝑝(𝑦𝑗|𝑥𝑖) =  
exp (

−𝑑(𝑥𝑖,𝑦𝑗)
𝑇 

⁄ )

𝑍𝑥𝑖

 

Where, the normalisation is 

𝑍𝑥𝑖
=  ∑ exp (

−𝑑(𝑥𝑖, 𝑦𝑗)
𝑇 

⁄ )

𝐾

𝑗=1

 

The corresponding minimum of 𝐹 is obtained by plugging in the expression of association 

probabilities back in the Lagrangian. 

𝐹∗ =  min
{𝑝(𝑦|𝑥)}

𝐹 

                             =  −𝑇. ∑ 𝑝(𝑥). log (𝑍𝑥)

𝑥

 

                                                                  =  −𝑇. ∑ 𝑝(𝑥).

𝑥

log (∑ exp (
−𝑑(𝑥, 𝑦)

𝑇 
⁄ )

𝑦

) 

To find the optimal locations of the centroids, we minimise the Lagrangian with respect to the 

code vector locations {𝑦}, its gradients are set to zero yielding the condition 

∑ 𝑝(𝑥, 𝑦)
𝑑

𝑑𝑥
𝑑(𝑥, 𝑦) = 0

𝑥

                        ⍱𝑦 ∈  𝒴 

After normalisation by 𝑝(𝑦) =  ∑ 𝑝(𝑥, 𝑦)𝑥 , the condition can be written as a centroid 

condition 

∑ 𝑝(𝑥|𝑦)
𝑑

𝑑𝑥
𝑑(𝑥, 𝑦) = 0

𝑥

                        ⍱𝑦 ∈  𝒴 

Here, 𝑝(𝑥|𝑦) denotes the posterior probability calculated by using the Bayes’ rule, which for 

the squared error distortion function gives the results 

𝑦𝑗 =  
∑ 𝑝(𝑥𝑖). 𝑝(𝑦𝑗|𝑥𝑖). 𝑥𝑖

𝑁
𝑖=1

∑ 𝑝(𝑥𝑖). 𝑝(𝑦𝑗|𝑥𝑖)𝑁
𝑖=1

 

The above equation has a form similar to computing centroids in the K-means clustering 

algorithm. However in K-means clustering, the associations between 𝑥𝑖 and 𝑦𝑗  as hard (0-1). 

The DA algorithm alternates between the two steps of calculating the association 

probabilities {𝑝(𝑦𝑗|𝑥𝑖)} and calculating the code vectors {𝑦𝑗} at each 𝑇 until convergence. In 

fact, the convergence of the algorithm is guaranteed as a consequence of coordinate decent on 

the Lagrangian. 
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3.3 PSEUDO CODE FOR THE ALGORITHM 

Step 1: Initialise all the input parameters of the algorithm, namely – Number of clusters (𝐾), 

Initial Temperature (𝑇), Minimum Temperature (𝑇𝑚𝑖𝑛 ), Cooling rate (α), Convergence 

margin (𝑒𝑟𝑟𝑜𝑟).  

 

Step 2: Let 𝑁 be the number of data points, 𝑀 be the dimension of each data point, and 𝐾 be 

the number of clusters. Initialise the – association probability matrix (size: NxK) with zeros, 

and randomly assign 𝐾 input data points to code vectors 𝒴. Unless specifically stated, 

assign 𝑝(𝑥𝑖) =  1
𝑁⁄ ⍱  i ∈ {1, … , N}. 

 

Step 3: Run the loop given below: 

  

While ( 𝑇 > 𝑇𝑚𝑖𝑛) { 

 While (true) { 

  Step 3(a): Calculate all association probabilities using   

𝑝(𝑦𝑗|𝑥𝑖) =  
exp (

−𝑑(𝑥𝑖,𝑦𝑗)
𝑇 

⁄ )

𝑍𝑥𝑖

 

   Where, 𝑍𝑥𝑖
=  ∑ exp (

−𝑑(𝑥𝑖, 𝑦𝑗)
𝑇 

⁄ )𝐾
𝑗=1 ⍱  i ∈ {1, . . , N}  , j ∈ {1, . . , K}  

   And 𝑑(𝑥𝑖 , 𝑦𝑗) =  ∑ (𝑥𝑖
𝑞 − 𝑦𝑗

𝑞)
2𝑀

𝑞=1  

 

  Step 3(b): Calculate the new values of code vectors using 

𝑦𝑗 =  
∑ 𝑝(𝑥𝑖). 𝑝(𝑦𝑗|𝑥𝑖). 𝑥𝑖

𝑁
𝑖=1

∑ 𝑝(𝑥𝑖). 𝑝(𝑦𝑗|𝑥𝑖)𝑁
𝑖=1

 

⍱  j ∈ [1, … , K] 

  

 If (Converged) break; 

 } 

 𝑇 = 𝑇 ∗ α ;  /* the cooling process */ 

} 

 

Step 4: Assign clusters to data points using the association probability matrix. 
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3.4 ANALYSIS OF THE ALGORITHM 

The DA algorithm consists of minimising 𝐹∗ with respect to the code vectors, starting at high 

value of 𝑇 and tracking the minimum while lowering 𝑇. The central iteration consists of two 

steps: 

(a) Fixing the code vectors and computing the association probabilities. 

(b) Fixing the association probabilities and optimising the code vectors. 

Clearly, the procedure is monotone non-increasing in 𝐹∗ and converges to a minimum. At 

high levels of 𝑇, the cost is very smooth and, under mild assumptions, can be shown to be 

convex, which implies that the global minimum of 𝐹∗ is found. As 𝑇 tends to zero the 

association probabilities become binary and a hard clustering solution is obtained. 

Some intuitive notion of the workings of the system can be obtained from observing the 

evolution of the association probabilities. At infinite 𝑇, these are uniform distributions, i.e., 

each input vector is equally associated with all code vectors. These are extremely fuzzy 

associations. As 𝑇 is lowered, the distributions become more discriminating and the 

associations less fuzzy. At the temperature tends to zero, the classification is hard with each 

input sample assigned to the nearest code vector with probability one. This is the condition in 

which traditional techniques such as K-means algorithm work. From the DA viewpoint, 

standard methods are “zero temperature” methods. It is easy to visualize how the zero 

temperature system cannot “sense” a better optimum farther away, as each data point 

exercises its influence only on the nearest code vector. On the other hand, by starting at a 

higher temperature and slowly “cooling” the system, we start with each data point equally 

influencing all code vectors and gradually localize the influence. This gives us some intuition 

as to how the system senses, and settles into, a better optimum. 

There are several input parameters for this algorithm such as 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑇𝑚𝑖𝑛 etc. that one 

must carefully select according to the input data to run the algorithm successfully. For 

clustering analysis, we have focused on the geometric cooling law 𝑇(𝑡) =  𝛼. 𝑇(𝑡 + 1), 0 <

 𝛼 < 1, where 𝑇(𝑡) is the temperature at iteration 𝑡 and we must also be very careful with the 

annealing schedule, i.e., the rate at which the temperature is lowered. 

The DA algorithm has the worst case time complexity of 𝑂(𝑛. 𝑘2. 𝑚. 𝑝. 𝑞), where n is the 

number of data points, k is the number of clusters, m is the dimension of each data point, p is 

the number of iterations in the outer loop, and q is the maximum number of iterations in the 

inner loop. 
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Although the DA algorithm has a higher time complexity as compared to the K-means 

algorithm, it proves out to be advantageous over simpler algorithms in cases where the 

complexity (number of data points, dimension, or number of clusters) of the input data set is 

higher. DA algorithm reaches the optimum in one run whereas algorithm like K-means tend 

to take several runs to hit the global minimum. For a 2-dimensional data set with 𝑁 = 500 

data points and K = 15 clusters, the results of both the algorithms can be seen below: 

 

  (a) Clustering by DA algorithm                            (b) Clustering by K-means algorithm (1st Run) 

 

          (c) Clustering by K-means algorithm (2nd Run)   (d) Clustering by K-means algorithm (3rd Run) 

Figure 6 – Results of DA and K-means clustering  

As it can be seen from the figure 6(a), whereas the DA algorithm hits the global minimum of 

the cost surface just after its first run and makes the desired partitions of the input space, the 

K-means algorithm tends to get stuck at the local minimums of the cost surface as in figure 

6(b), 6(c) and 6(d), thus giving sub-optimal clustering results. 

 Although the DA algorithm has overcome the curse of initialisation, it is still limited 

by linear decision boundaries and can’t partition the data that is not linearly separable in the 

desired way. To overcome this limitation, Mayank Banarwal [8] proposed a modification in 

the DA algorithm which is presented in the next chapter. 
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CHAPTER 4 

WEIGHTED KERNEL DETERMINISTIC ANNEALING 

 

4.1 INTRODUCTION 

The Weighted Kernel Deterministic Annealing (WKDA) algorithm is an extension of the 

basic DA algorithm for shape clustering scenarios as shown in Figure 3(b).It has slightly 

higher worst case time complexity than the basic DA algorithm but is capable of partitioning 

data that is not linearly separable in the input space. This is achieved by mapping the data 𝒳 

in the input space to a higher dimensional feature space where the data becomes linearly 

separable through an appropriate choice of kernel functions. The mapping allows the use of 

linear separators to extract clusters in the implicit feature space. Thus, using kernels along 

with the basic DA algorithm enables it to operate in a higher dimensional feature space 

without ever explicitly computing the coordinates of the input data points in that space. This 

approach is referred as “kernel trick” and is often used in several machine learning 

applications such as support vector machine (SVM), kernel perceptron, clustering, ridge 

regression, principle component analysis (PCA) etc.  

  

4.2 MATHEMATICAL FRAMEWORK 

Before we start working on the mathematics for the WKDA algorithm, let us look into two 

new concepts, namely – inner products and kernels, which will later help us in understanding 

the WKDA algorithm better. 

Inner Product: It is an algebraic operation that takes two equal length sequences of numbers 

and returns a scalar number which is the sum of the products of the corresponding entries of 

the two sequences of numbers. For example, let 𝑥, 𝑦 be two vectors of size M each. Then the 

inner product of these two vectors is given by: 

< 𝑥, 𝑦 > =  ∑ 𝑥𝑖 . 𝑦𝑖

𝑀

𝑖=1

 

Kernels: The kernel functions, also called the similarity functions are used to calculate how 

similar to two input vectors are. They are used to calculate the inner product of vectors in a 

higher dimensional input space without explicitly calculating the vectors in the higher 

dimensional space.  
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Let 𝑥𝑖  , 𝑥𝑖′  be two input vectors. Rather than first going from the input space (𝒳) to a 

higher dimensional space (𝐻) using some non-linear feature map 𝜙 ∶  𝒳 → 𝐻, and then 

calculating the inner product in the higher dimensional space, we directly compute the inner 

product using a kernel function 𝑘(𝑥𝑖, 𝑥𝑖′), such that 

𝑘(𝑥𝑖, 𝑥𝑖′) = < 𝜙(𝑥𝑖), 𝜙(𝑥𝑖′) >𝐻 

For a given set of data points 𝒳 = {𝑥𝑖 ∶ 𝑥𝑖 ∈ ℝ𝑀 , 1 ≤  𝑖 ≤ 𝑁}, a kernel matrix 𝐾 ∈

ℝ𝑁𝑥𝑁 is given by 𝐾𝑖𝑖′ = 𝑘(𝑥𝑖, 𝑥𝑖′) ⍱  i, i′ ∈ {1, . . , N}. While the explicit representation of 𝜙 

is not necessary, its existence is guaranteed as long as 𝑘 satisfies the Mercer’s condition (The 

condition requires that 𝐾 must be a positive semi-definite matrix). 

Many popular choices of kernel functions exist, and the kernel function that we have 

used here for the implementation of the WKDA algorithm is called the Gaussian kernel. The 

formula for calculating the Gaussian kernel is given below 

𝑘(𝑥𝑖, 𝑥𝑖′) = exp (
−𝑑(𝑥𝑖, 𝑥𝑖′)

2. 𝜎2
) 𝑤ℎ𝑒𝑟𝑒, 𝑑(𝑥𝑖, 𝑥𝑖′) =  ∑(𝑥𝑖

𝑞 − 𝑥
𝑖′
𝑞

)
2

𝑀

𝑞=1

 

Here, 𝜎 is called as the standard deviation and it determines the width of the kernel. 

Now that we have the understanding of all the necessary concepts, we look into the 

modifications done to the basic DA algorithm that enable it to partition non-linearly separable 

data in the desired way.  

 Note that one of the key steps while implementing the DA algorithm is calculating the 

distortion between all the data points and cluster centroids. This is written as: 

𝑑(𝑥𝑖 , 𝑦𝑗) =  ∑(𝑥𝑖
𝑞 − 𝑦𝑗

𝑞)
2

𝑀

𝑞=1

 

We can rewrite the above given expression using the inner-products as: 

𝑑(𝑥𝑖 , 𝑦𝑗) = < 𝑥𝑖 , 𝑥𝑖 >  − 2 < 𝑥𝑖 , 𝑦𝑗 >  + < 𝑦𝑗 , 𝑦𝑗 > 

Now, if we map our input data to a higher dimensional feature space using a non-linear 

feature map 𝜙, and calculate the distortion between the data point 𝜙(𝑥𝑖) and cluster centroid 

𝑦𝑗 in the implicit feature space, the expression for distortion is given as: 

 

𝑑(𝜙(𝑥𝑖), 𝑦𝑗) = < 𝜙(𝑥𝑖), 𝜙(𝑥𝑖) >  − 2 < 𝜙(𝑥𝑖), 𝑦𝑗 >  + < 𝑦𝑗 , 𝑦𝑗 > 

𝑤ℎ𝑒𝑟𝑒, 𝑦𝑗 =  
∑ 𝑝(𝑥𝑖). 𝑝(𝑦𝑗|𝑥𝑖). 𝜙(𝑥𝑖)

𝑁
𝑖=1

∑ 𝑝(𝑥𝑖). 𝑝(𝑦𝑗|𝑥𝑖)
𝑁
𝑖=1

 



17 

 

Each of the three terms in the distortion function given above can be rewritten such that we 

don’t have to explicitly calculate the value of 𝑦𝑗.  

 < 𝜙(𝑥𝑖), 𝜙(𝑥𝑖) >  =   𝐾𝑖𝑖 

 

 < 𝜙(𝑥𝑖), 𝑦𝑗 >  =  <  𝜙(𝑥𝑖) ,
∑ 𝑝(𝑥𝑖).𝑝(𝑦𝑗|𝑥𝑖).𝜙(𝑥𝑖)𝑁

𝑖=1

∑ 𝑝(𝑥𝑖).𝑝(𝑦𝑗|𝑥𝑖)𝑁
𝑖=1

> 

                                     =      
∑ 𝑝(𝑥𝑙).𝑝(𝑦𝑗|𝑥𝑙).𝐾𝑖𝑙𝑙

∑ 𝑝(𝑥𝑙).𝑝(𝑦𝑗|𝑥𝑙)𝑙
 

 

 < 𝑦𝑗 , 𝑦𝑗 >  =  <
∑ 𝑝(𝑥𝑖).𝑝(𝑦𝑗|𝑥𝑖).𝜙(𝑥𝑖)𝑁

𝑖=1

∑ 𝑝(𝑥𝑖).𝑝(𝑦𝑗|𝑥𝑖)𝑁
𝑖=1

 ,
∑ 𝑝(𝑥𝑖).𝑝(𝑦𝑗|𝑥𝑖).𝜙(𝑥𝑖)𝑁

𝑖=1

∑ 𝑝(𝑥𝑖).𝑝(𝑦𝑗|𝑥𝑖)𝑁
𝑖=1

> 

                   =     
∑ 𝑝(𝑥𝑙).𝑝(𝑥𝑚).𝑝(𝑦𝑗|𝑥𝑙).𝑝(𝑦𝑗|𝑥𝑚).𝐾𝑙𝑚𝑙,𝑚

(∑ 𝑝(𝑥𝑙).𝑝(𝑦𝑗|𝑥𝑙))𝑙
2  

 

Thus, the value of the distortion between a data point and cluster centroid in the higher 

dimensional space can be computed using the expression: 

𝑑(𝜙(𝑥𝑖), 𝑦𝑗) =  𝐾𝑖𝑖 −  2.
∑ 𝑝(𝑥𝑙). 𝑝(𝑦𝑗|𝑥𝑙). 𝐾𝑖𝑙𝑙

∑ 𝑝(𝑥𝑙). 𝑝(𝑦𝑗|𝑥𝑙)𝑙

+  
∑ 𝑝(𝑥𝑙). 𝑝(𝑥𝑚). 𝑝(𝑦𝑗|𝑥𝑙). 𝑝(𝑦𝑗|𝑥𝑚). 𝐾𝑙𝑚𝑙,𝑚

(∑ 𝑝(𝑥𝑙). 𝑝(𝑦𝑗|𝑥𝑙))𝑙
2  

⍱  i ∈ [1, … , N] , j ∈ {1, . . , K}  

 

The expression for computing the association probabilities remain the same as in DA 

algorithm and is given by: 

𝑝(𝑦𝑗|𝑥𝑖) =  
exp (

−𝑑(𝜙(𝑥𝑖),𝑦𝑗)
𝑇 

⁄ )

𝑍𝑥𝑖

 

 Where, 𝑍𝑥𝑖
=  ∑ exp (

−𝑑(𝜙(𝑥𝑖), 𝑦𝑗)
𝑇 

⁄ )𝐾
𝑗=1 ⍱  i ∈ {1, . . , N}  , j ∈ {1, . . , K}  

 

We now have a method for calculating association probabilities and distortion function in the 

higher-dimensional feature space. The rest of the annealing process remains the same for 

WKDA algorithm as derived for the DA algorithm. 
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4.3 PSEUDO CODE FOR THE ALGORITHM 

Step 1: Initialise all the input parameters of the algorithm, namely – Number of clusters (𝐾) 

Initial Temperature (𝑇), Minimum Temperature (𝑇𝑚𝑖𝑛 ), Cooling rate (α), Convergence 

margin (𝑒𝑟𝑟𝑜𝑟), standard deviation (𝜎).  

Step 2: Let 𝑁 be the number of data points, 𝑀 be the dimension of each data point, and 𝐾 be 

the number of clusters. Initialise - the distance matrix (size: NxK) with zeros, and the 

association probability matrix (size: NxK) with random numbers ∈ (0,1) such that the sum of 

all the association probabilities in every row is equal to 1. Unless specifically stated, 

assign 𝑝(𝑥𝑖) =  1
𝑁⁄ ⍱  i ∈ {1, … , N}. 

Step 3: Calculate the Gaussian kernel matrix (size: NxN) using the formula: 

𝑘(𝑥𝑖 , 𝑥𝑗) = exp (
−𝑑(𝑥𝑖 , 𝑥𝑗)

2. 𝜎2
) ⍱  i, j ∈ {1, … , N} 

𝑤ℎ𝑒𝑟𝑒, 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛  𝑑(𝑥𝑖 , 𝑥𝑗) =  ∑(𝑥𝑖
𝑞 − 𝑥𝑗

𝑞)
2

𝑀

𝑞=1

. 

Step 4: Run the loop given below:  

While ( 𝑇 > 𝑇𝑚𝑖𝑛) { 

 While (true) { 

  Step 4(a): Calculate all distance matrix using 

𝑑(𝜙(𝑥𝑖), 𝑦𝑗) =  𝐾𝑖𝑖 −  2.
∑ 𝑝(𝑥𝑙). 𝑝(𝑦𝑗|𝑥𝑙). 𝐾𝑖𝑙𝑙

∑ 𝑝(𝑥𝑙). 𝑝(𝑦𝑗|𝑥𝑙)𝑙

+  
∑ 𝑝(𝑥𝑙). 𝑝(𝑥𝑚). 𝑝(𝑦𝑗|𝑥𝑙). 𝑝(𝑦𝑗|𝑥𝑚). 𝐾𝑙𝑚𝑙,𝑚

(∑ 𝑝(𝑥𝑙). 𝑝(𝑦𝑗|𝑥𝑙))𝑙
2  

⍱  i ∈ [1, … , N] , j ∈ {1, . . , K}  

 

  Step 4(b): Calculate the new values of association probabilities using 

𝑝(𝑦𝑗|𝑥𝑖) =  
exp (

−𝑑(𝜙(𝑥𝑖),𝑦𝑗)
𝑇 

⁄ )

𝑍𝑥𝑖

 

   Where, 𝑍𝑥𝑖
=  ∑ exp (

−𝑑(𝜙(𝑥𝑖), 𝑦𝑗)
𝑇 

⁄ )𝐾
𝑗=1 ⍱  i ∈ {1, … , N} , j ∈ {1, . . , K}  

 

 If (Converged) break; 

 } 

 𝑇 = 𝑇 ∗ α ;   /* the cooling process */ 

} 

Step 5: Assign clusters to data points using the association probability matrix. 
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4.4 ANALYSIS OF THE ALGORITHM 

The WKDA algorithm works similar to DA algorithm except that we do not explicitly 

compute the code vectors here, and alternate between calculating the distance matrix and 

association probability matrix in the central iterations. The most computationally intensive 

step during each iteration is the calculation of the distance matrix [𝑑(𝜙(𝑥𝑖), 𝑦𝑗)]. The worst 

case time complexity of this step is 𝑂(𝑁4𝐾). Here, 𝑁 is total number of input data point and 

𝐾 is the number of desired clusters. Thus, if 𝑟 is the total number of iterations for which the 

algorithm runs, then the worst case time complexity of the WKDA algorithm is 𝑂(𝑁4. 𝐾. 𝑟). 

Similar to the DA algorithm, there are several input parameters for WKDA namely -  

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 𝑇𝑚𝑖𝑛 , α, 𝑒𝑟𝑟𝑜𝑟 and 𝜎 that one must carefully select according to the input data to run 

the algorithm successfully.  

 A slight modification to the WKDA algorithm enables us to implement the must-link 

(the selected data points must be in the same cluster) or cannot-link (the selected data points 

cannot be in the same cluster) constraints between selected data points. For every cannot-link 

constraint between 𝑥𝑖  and 𝑥𝑖′ , the corresponding entries in the kernel matrix should manually 

set to zero, i.e. 𝐾(𝑖, 𝑖′) = 0. For every must-link constraint between𝑥𝑖and𝑥𝑖′ , we must 

manually enforce that their association probabilities are equal, i.e. 𝑝(𝑦𝑗|𝑥𝑖) =  𝑝(𝑦𝑗|𝑥𝑖′) 

during each outer iteration of the WKDA algorithm. 

 The WKDA algorithm is tested on several test cases and the results compared with the 

results of the DA algorithm are given below: 

 

 

(a) Clustering by DA algorithm                                    (b) Clustering by WKDA algorithm  

Figure 7 – Result of clustering on data set (N=240, M=2, K=2) by different algorithms 
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(a) Clustering by DA algorithm                                    (b) Clustering by WKDA algorithm  

Figure 8 – Result of clustering on data set (N=300, M=2, K=2) by different algorithms 

 

 

(a) Clustering by DA algorithm                                    (b) Clustering by WKDA algorithm  

Figure 9 – Result of clustering on data set (N=400, M=2, K=3) by different algorithms 

 

As it can be observed from the figure 7(a), 8(a), and 9(a), while the DA algorithm fails to 

partition the input space in the desired way, the WKDA algorithm successfully partitions the 

space with non-linear separators as in figure 7(b), 8(b), and 9(b). 

 The WKDA algorithm overcomes both the limitations posed by the simpler clustering 

algorithms. Although it is computationally expensive, but it requires only one initialisation 

and is able to partition the data with non-linear separators.  
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CHAPTER 5 

CONCLUSION 

 

In this thesis, we first introduce the idea of clustering analysis which is a type of 

unsupervised learning method used to partition data with the help of an example. Then, we go 

on to explain the simplest algorithm used for clustering, namely, the k-means algorithm. The 

main idea of this algorithm is to, initially, randomly define 𝐾 centroids, one for each cluster, 

and then iteratively improve the location of the centroids so as to reach a local optimum. 

Although intuitive and computational efficient, the algorithm has several drawbacks, such as 

the curse of initialisation and its inability to partition data that is not linearly separable in the 

desired way, thus limiting us from using this algorithm in complex cases. This motivates us 

to look into other approaches used for clustering.  

We then look into deterministic annealing algorithm, generally used for non-convex 

optimisation in several fields. The deterministic annealing approach to annealing is slightly 

computationally expansive over the k-means method but demonstrates substantial 

performance improvement over it. It has the ability to avoid shallow local optima of the cost 

function and has the ability to reach the global optimum in a single run of the code. It is 

derived within a probabilistic framework from basic information theoretic principles, such as, 

maximum entropy principle, and has the ability to reach the solutions that are totally 

independent of the choice of initial configurations. Although the DA algorithm overcomes 

the curse of initialisation, it can’t separate data that is not linearly separable in the input 

space.  

We finally look into the innovative WKDA algorithm for shape clustering. The 

algorithm combines the kernel trick with distributed aspect of the deterministic annealing 

algorithm to produce effective clustering solutions that are independent of initialisation and 

has the ability to partition data that is not linearly separable in the input space in the desired 

way. We test the WKDA algorithm on several non-linear shape clustering scenarios and 

obtain the desired results. 

 In the future, we would like to try using the concept of Tsallis entropy instead of 

Shannon entropy in the WKDA algorithm to see if it results in any performance 

improvements. Also, we would like to optimise the WKDA algorithm further so that we can 

work with faster annealing schedules and thus reducing its worst case time complexity.  
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