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ABSTRACT

KEYWORDS: Two state Markov chain ; Minimax risk.

Markov chains are used in a broad variety of academic fields, ranging from biology to

economics. Markov chains are commonly used for modeling complex systems due to

its simplicity and effectiveness. The objective is to bound the minimax risk of estimat-

ing the parameters of a two state Markov chain. We propose various risk metrics and

bounded the minimax risk for these metrics. Firstly, the most popular quadratic risk

metric is consider for all parameters of the Markov chain distribution and its minimax

risk is shown to be lower bounded by a constant making it less insightful. We then

define two other risk metrics and present both lower and upper bounds. We modify the

Le Cam’s method into a more generalized version in order to determine lower bounds.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

NOTATION iv

1 INTRODUCTION 1

1.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Various Risk functions used . . . . . . . . . . . . . . . . . . . . . . 1

2 Le Cam method modification 4

2.1 Le Cam’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Modified Le Cam’s method . . . . . . . . . . . . . . . . . . . . . . 4

3 Minimax risk for the first risk metric 8

3.1 KL distance for two state Markov chain distribution . . . . . . . . . 8

3.2 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Minimax risk for the second risk metric 12

4.1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Minimax risk for the third risk metric 19

5.1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Conclusions and Scope for Future Work 24



NOTATION

α Transition probability from state(0) to state(1)

β Transition probability from state(1) to state(0)

P Set of all distributions of n observation form 2 state ergodic Markov chain

P A particular distributions for n observation form 2 state ergodic Markov chain. P ∈ P
α̂ Estimator of α

β̂ Estimator of β

P̂ Estimator for {α, β}
R∗

n Minimax risk

π0 Steady state probability of state(0)

π1 Steady state probability of state(1)

iv



CHAPTER 1

INTRODUCTION

This study focus on the rate at which Markov chain can be learned. We define the rate

in terms of number of samples required for the worst case error to be less than some

value.

1.1 Problem setting

Consider the following ergodic two state Markov chain (α 6= 0, β 6= 0).

Figure 1.1: Two state Markov chain

We are interested in finding the minimax risk associated with the estimation of

parameters α and β given n observations.

Let α̂ = α̂(X1, ..., Xn) denotes an estimator for αwhereX1, ..., Xn are the n continuous

observations from the two state Markov chain. Similarly β̂ = β(X1, ..., Xn) denotes an

estimator for β and P̂ be the set of all estimators for {α, β}
Let Rn(P, P̂ ) be the risk function for n observations, then the minimax risk is

R∗
n = inf

p̂
sup
P∈P

Rn (1.1)

1.2 Various Risk functions used

Firstly, quadratic loss function is considered. The risk is defined as follows:

Rn = E
[

∣

∣α̂− α
∣

∣

2
+
∣

∣β̂ − β
∣

∣

2
]

(1.2)



The minimax risk is

R∗
n = inf

p̂
sup
P∈P

E
[

∣

∣α̂− α
∣

∣

2
+
∣

∣β̂ − β
∣

∣

2
]

(1.3)

The bounds on R∗
n are found and shown below

0.005 ≤ R∗
n ≤ 0.5 (1.4)

The lower bound is found using Le Cam method and the upper bound is found by taking

a constant estimator i.e. α̂ = β̂ = 1
2

The minimax risk does not approach to zero as n approach to infinity. This suggest

that worst case performance of every estimator is poor. The distributions which have

very small α or β are the one which are very difficult to estimate, this is because if α is

very small then probability of entering state(1) is very small which makes estimating β

very difficult. Similarly, if β is very small then probability of entering state(0) is very

small which makes estimating α very difficult.

Next a new risk metric is proposed defined as follows:

Rn = E
[

β
∣

∣α̂− α
∣

∣+ α
∣

∣β̂ − β
∣

∣

]

(1.5)

This risk metric take care of the problem faced previously, i.e. when β is very less then

estimating α is difficult which gives high error. So we have scaled the error term of α

by β.

Minimax risk corresponding to this error metric is defined as follows:

R∗
n = inf

p̂
sup
P∈P

E
[

β
∣

∣α̂− α
∣

∣+ α
∣

∣β̂ − β
∣

∣

]

(1.6)

The bounds found on R∗
n are

1

16
√
6n

− o

(

1√
n

)

≤ R∗
n ≤ 4√

n
+ o
( 1√

n

)

(1.7)

For lower bound the Lecam method cannot be used directly due to α and β terms present

outside the mod terms in the risk metric E
[

β
∣

∣α̂ − α
∣

∣ + α
∣

∣β̂ − β
∣

∣

]

. Le Cam’s method

2



is modified to accommodate this change. For upper bound, empirical estimator is used.

The last risk metric is defined as

Rn = E

[

1
∑

xn+1=0

∣

∣p(xn+1|xn)− p̂(xn+1|xn)
∣

∣

2

]

(1.8)

where p(Xn+1|Xn) is the conditional probability of Xn+1 given Xn the n observations.

Note that for a two state Markov chain p(Xn+1|Xn) = p(Xn+1|Xn)

The minimax risk for this risk metric is defined as

R∗
n = inf

p̂
sup
P∈P

E

[

1
∑

xn+1=0

∣

∣p(xn+1|Xn)− p̂(xn+1|Xn)
∣

∣

2

]

(1.9)

and the bounds for the above risk are

2

81n
− o
( 1

n

)

≤ R∗ ≤ log
(

log(n)
)

n
+ o

(

log log(n)

n

)

(1.10)

The upper bound and lower bound are not of the same order. Hence there is scope of

improvement.
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CHAPTER 2

Le Cam method modification

Le Cam method is a popular method used for finding lower bounds on minimax risks.

Le Cam method cannot be applied directly on the risk functions we have considered. A

more generalized version of Le cam method is found and used to find the lower bounds

on the risk functions we have considered. First we will describe the Le Cam method.

2.1 Le Cam’s method

Let P be a set of distributions and letX1, ..., Xn be a sample from some distribution P ∈
P . Let θ = θ(P ) be some function of P . Let θ̂ = θ̂(X1, ..., Xn) denotes an estimator

and d is some metric distance satisfying triangular inequality and Φ : IR+ → IR+ be a

non decreasing function with Φ(0) = 0, then the minimax risk is

R∗
n = inf

θ̂

sup
P∈P

EP

[

Φ( d
(

θ̂, θ)
)

]

(2.1)

Le Cam method states that:

For any pair P0, P1 ∈ P , Let ∆ =
d

(

θ(P0),θ(P1)
)

2
then

R∗
n ≥ 1

2
Φ(∆)

[

1− ||P0 − P1||TV

]

(2.2)

We cannot directly use Le Cam method to calculate the lower bounds for the risk func-

tions which we have defined as they are not of the form (2.1). Therefore we need to

modify the Le Cam method.

2.2 Modified Le Cam’s method

Let P be a set of distributions and let X1, ..., Xn be a sample from some distribution

P ∈ P . Let θ1 = θ1(P ), θ2 = θ2(P ), γ1 = γ1(P ) and γ2 = γ2(P ) be some func-

tions of P . Let θ̂1 = θ̂1(X1, ..., Xn) and θ̂2 = θ̂2(X1, ..., Xn) are the estimators for



θ1 and θ2 respectively. d is some metric distance satisfying triangular inequality and

Φ : IR+ → IR+ be a non decreasing function with Φ(0) = 0, then the minimax risk is

R∗
n = inf

θ̂

sup
P∈P

EP

[

γ1 Φ( d
(

θ̂1, θ1)
)

+ γ2 Φ( d
(

θ̂2, θ2)
)

]

(2.3)

The lower bound on R∗
n is give by

Theorem 1: For any pair P0, P1 ∈ P , Let ∆1 =
d

(

θ1(P0),θ1(P1)
)

2
and ∆2 =

d

(

θ2(P0),θ2(P1)
)

2

then

R∗
n ≥ 1

2
min

(

γ1(P0), γ1(P1)
)

Φ(∆1)

[

1−
√

1

2
DKL(P0||P1)

]

+
1

2
min

(

γ2(P0), γ2(P1)
)

Φ(∆2)

[

1−
√

1

2
DKL(P0||P1)

] (2.4)

Proof: Most of the steps are taken directly from Wasserman (2010) and John.

An estimator θ̂1 defines a test static ψ1, namely,

ψ1(X1, ..., Xn) =











1, if d(θ̂, θ1(P0)) ≥ d(θ̂, θ1(P1))

0, if d(θ̂, θ1(P0)) < d(θ̂, θ1(P1))

(2.5)

Similarly, estimator θ̂2 defines a test static ψ2,

ψ2(X1, ..., Xn) =











1, if d(θ̂, θ2(P0)) ≥ d(θ̂, θ2(P1))

0, if d(θ̂, θ2(P0)) < d(θ̂, θ2(P1))

(2.6)

If P = P0 and Ψ1 = 1 then

2∆1 = d(θ1(P0), θ1(P1)) ≤ d(θ1(P0), θ̂1(P1))+d(θ1, θ̂) ≤ 2d(θ0, θ̂) =⇒ d(θ1(P0)), θ̂) ≥ ∆1

5



and so Φ
(

d(θ1(P0), θ̂)
)

≥ Φ(∆). Hence

EP0

[

γ1(P0) Φ
(

d(θ̂, θ1(P0))
)

]

≥ EP0

[

γ1(P0) Φ
(

d(θ̂, θ1(P0))
)

I(Ψ1 = 1)
]

≥ γ1(P0) Φ(∆1)EP0

[

I(Ψ1 = 1)
]

= γ1(P0) Φ(∆1)P0(Ψ1 = 1)

(2.7)

similarly,

EP1

[

γ1(P1) Φ
(

d(θ̂, θ1(P1))
)

]

≥ γ1(P1)Φ(∆1)P1(Ψ1 = 0) (2.8)

EP0

[

γ2(P0) Φ
(

d(θ̂, θ2(P0))
)

]

≥ γ2(P0)Φ(∆2)P0(Ψ2 = 1) (2.9)

EP1

[

γ2(P1) Φ
(

d(θ̂, θ2(P1))
)

]

≥ γ2(P1)Φ(∆2)P1(Ψ2 = 0) (2.10)

From (2.7) and (2.9)

RP1
= EP0

[

γ1(P0) Φ
(

d(θ̂, θ1(P0))
)

+ γ2(P0) Φ
(

d(θ̂, θ2(P0))
)

]

≥γ1(P0) Φ(∆1)P0(Ψ1 = 1)

+ γ2(P0)Φ(∆2)P0(Ψ2 = 1)

(2.11)

From (2.8) and (2.10)

RP2
= EP1

[

γ1(P1) Φ
(

d(θ̂, θ1(P1))
)

+ γ2(P1) Φ
(

d(θ̂, θ2(P1))
)

]

≥γ1(P1)Φ(∆1)P1(Ψ1 = 0)

+ γ2(P1)Φ(∆2)P1(Ψ2 = 0)

(2.12)

6



Taking the maximum of (2.11) and (2.12), we have

sup
P∈P

RP ≥ max
P∈P0,P1

RP

≥ RP1
+RP2

2

≥ 1

2

(

γ1(P0) Φ(∆1)P0(Ψ1 = 1) + γ2(P0)Φ(∆2)P0(Ψ2 = 1)
)

+

1

2

(

γ1(P1)Φ(∆1)P1(Ψ1 = 0) + γ2(P1)Φ(∆2)P1(Ψ2 = 0)
)

≥ min(γ1(P0), γ1(P1))Φ(∆1)
[ P0(Ψ1 = 1) + P1(Ψ1 = 0)

2

]

+

min(γ2(P0), γ2(P1))Φ(∆2)
[ P0(Ψ2 = 1) + P1(Ψ2 = 0)

2

]

(2.13)

Taking the infimum over all estimators, we have

R∗
n = inf

θ̂

sup
P∈P

RP ≥ min(γ1(P0), γ1(P1))Φ(∆1) inf
Ψ1

[

P0(Ψ1 = 1) + P1(Ψ1 = 0)

2

]

+

min(γ2(P0), γ2(P1))Φ(∆2) inf
Ψ2

[

P0(Ψ2 = 1) + P1(Ψ2 = 0)

2

]

(2.14)

Using the result from John

inf
Ψ

(

P0(Ψ = 1) + P1(Ψ = 0)
)

= 1− ||P0 − P1||TV (2.15)

We get

R∗
n ≥ 1

2
min

(

γ1(P0), γ1(P1)
)

Φ(∆1)
[

1− ||P0 − P1||TV

]

+
1

2
min

(

γ2(P0), γ2(P1)
)

Φ(∆2)
[

1− ||P0 − P1||TV

]

(2.16)

We know

||P0 − P1||2TV ≤ 1

2
DKL(P0||P1) (2.17)

Therefore

R∗
n ≥ 1

2
min

(

γ1(P0), γ1(P1)
)

Φ(∆1)

[

1−
√

1

2
DKL(P0||P1)

]

+
1

2
min

(

γ2(P0), γ2(P1)
)

Φ(∆2)

[

1−
√

1

2
DKL(P0||P1)

] (2.18)

7



CHAPTER 3

Minimax risk for the first risk metric

The first risk metric which we have used is quadratic loss. Minimax risk is defined as

follows:

R∗
n = inf

p̂
sup
P

E
[

∣

∣α̂− α
∣

∣

2
+
∣

∣β̂ − β
∣

∣

2
]

(3.1)

We will first find the lower bound using modified Le Cam method and then derived the

upper bound.

For applying (2.4), KL distance between two distributions is required. We will now find

KL distance between two general distributions for two state Markov chain.

3.1 KL distance for two state Markov chain distribution

Let P0, P1 ∈ P
P0 : is defined by α0, β0, q00 and q01

Where α0, β0 are the transition probabilities as shown in Figure 1.1, q00 is the initial

probability of state(0) and q01 is the initial probability of state(1).

Similarly, P1 : is defined by α0, β0, q10 and q11

DKL(P0||P1) =
∑

xn∈{0,1}n
p0(x

n) log
(p0(x

n)

p1(xn)

)

(3.2)

where p0(x
n) = p0(x1)

n
∏

k=2

p0(xk|xk−1), similarly for p1(x
n)

DKL(P0||P1) =
∑

xn∈{0,1}n
p0(x1)

n
∏

k=2

p0(xk|xk−1) log

(p0(x1)
n
∏

k=2

p0(xk|xk−1)

p1(x1)
n
∏

k=2

p1(xk|xk−1)

)

=
∑

x1∈{0,1}
p0(x1) log

(

p0(x1)

p1(x1)

)

+

n
∑

k=2

∑

xk−1,xk∈{0,1}
p0(xk−1)p0(xk|xk−1) log

(

p0(xk|xk−1)

p1(xk|xk−1)

)

(3.3)



We get the second step in (3.3) by writing the product inside log function as sum and

by summing over the variables which are not inside the log function.

The first term in the above expression is the KL distance between P0(x1) and P1(x1).

Since, p0(xk|xk−1) can be written in terms of α and β depending on the value of xk−1

and xk, the second term on R.H.S in 3.3 can be written as
n
∑

k=2

p0(xk−1 = 0)DKL(α0||α1)+

p0(xk−1DKL(β0||β1))
Therefore

DKL(P0||P1) = DKL(p0(X1)||p1(X1)) +
n
∑

k=2

p(Xk−1 = 0)DKL(α0||α1) +

n
∑

k=2

p(Xk−1 = 1)DKL(β0||β1)
(3.4)

Let π00 and π01 be the steady state probabilities for the distribution P0 and λ0 be the

second eigen value of state probability transition matrix of P0, i.e π00 = β0

α0+β0
, π01 =

α0

α0+β0
and λ0 = 1− α0 − β0, then we can show that

p0(Xk−1 = 0) = p0(X1 = 0)(π00 + π01λ
k−2
0 ) + p0(X1 = 1)(π00 − π00(λ0)

k−2) (3.5)

p0(Xk−1 = 1) = p0(X1 = 0)(π01 − π01λ
k−2
0 ) + p(X1 = 1)(π01 + π00(λ0)

k−2) (3.6)

From (3.4), (3.5) and (3.6) we get

DKL(P0||P1) = DKL(p0(X1)||p1(X1))+

n
∑

k=2

(

p0(X1 = 0)(π00 + π01λ
k−2
0 ) + p0(X1 = 1)(π00 − π00(λ0)

k−2)
)

DKL(α0||α1)

+
n
∑

k=2

(

p(X1 = 0)(π01 − π01λ
k−2) + p(X1 = 1)(π01 + π00(λ)

k−2)
)

DKL(β0||β1)

(3.7)

Here DKL(α0||α1) = α0 log(
α0

α1
) + (1− α0) log(

1−α0

1−α1
), similarly for DKL(β0||β1)

If the initial distribution of P0 is steady state distribution, i.e. p0(X1 = 0) = π00

and p0(X1 = 1) = π01 then the KL distance becomes

DKL(P0||P1) = DKL(p0(X1)||p1(X1)) +
n
∑

k=2

π00DKL(α0||α1) +
n
∑

k=2

π01DKL(β0||β1)

(3.8)

9



Now we will use these results to find the lower bound.

3.2 Lower bound

Now we consider 2 distributions P0 and P1 required for Le Cam lower bound.

The initial distribution of P0 is chosen as steady state distribution, i.e. p0(X1 = 0) =

π00 and p0(X1 = 1) = π01. Taking α0 = 0.9, β0 =
1

n−1

Also for distribution P1 we take α1 = 0.1, β1 = 1
n−1

, p1(X1 = 0) = p0(X1 = 0) and

p1(X1 = 1) = p0(X1 = 1).

With these choices we get

DKL(p0(X1)||p1(X1)) = 0, DKL(β0||β1) = 0 and DKL(α0||α1) = 1.7578 Using the

above values and (3.8), we get

DKL(P0||P1) =
1.7578

0.9 + 1
n−1

< 1.9531

Comparing (3.1) with (2.1), we get

γ1(P ) = γ2(P ) = 1, d(x, y) = |x− y|, Φ(x) = x2

Here δ1 =
|α0−α1|

2
= 0.4 and δ2 =

|β0−β1|
2

= 0

Now using (2.4), we get

R∗
n ≥ 1

2
(0.4)2(1−

√

1

2
1.94) = 0.005 (3.9)

3.3 Upper Bound

Let R(P, θ̂) be the risk when the estimator is θ̂ and the distribution is P , then

inf
θ̂

sup
P

R(P, θ̂) ≤ sup
P

R(P, θ̂) (3.10)

The above equation means that the minimax risk is less than the worst case risk of any

given estimator. We will use this result to find the upper bound.

We define estimator α̂ = 1
2

and β̂ = 1
2
. Notice these estimator always estimate the value

10



of α and β as 1
2
. Now we will find the worst case Risk for this estimator.

inf
p̂
sup
P∈P

E
[

∣

∣α̂− α
∣

∣

2
+
∣

∣β̂ − β
∣

∣

2
]

≤ sup
P∈P

E
[

∣

∣α̂− α
∣

∣

2
+
∣

∣β̂ − β
∣

∣

2
]

= sup
P∈P

E
[

∣

∣

1

2
− α

∣

∣

2
+
∣

∣

1

2
− β

∣

∣

2
]

≤ sup
P∈P

(1

2

)2
+
(1

2

)2

=
(1

2

)2
+
(1

2

)2

=
1

2

(3.11)

|1
2
− α| ≤ 1

2
is used in the third step of the above equation. This is true because

α ∈ (0, 1]. Similarly |1
2
− β| ≤ 1

2
for β ∈ (0, 1].

Using (3.9) and (3.11)

0.005 ≤ inf
p̂
sup
P∈P

E
[

∣

∣α̂− α
∣

∣

2
+
∣

∣β̂ − β
∣

∣

2
]

≤ 0.5 (3.12)

The above result shows that the minimax risk is Θ(1) for the quadratic risk. This

suggest that worst case performance of every estimator is poor. The distributions which

have very small α or β are the one which are very difficult to estimate, this is because if

α is very small then probability of entering state(1) is very small which makes estimat-

ing β very difficult. Similarly, if β is very small then probability of entering state(0) is

very small which makes estimating α very difficult.
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CHAPTER 4

Minimax risk for the second risk metric

The next risk function considered is

Rn = E
[

β
∣

∣α̂− α
∣

∣+ α
∣

∣β̂ − β
∣

∣

]

(4.1)

and the minimax risk is defined as

R∗
n = inf

p̂
sup
P∈P

E
[

β
∣

∣α̂− α
∣

∣+ α
∣

∣β̂ − β
∣

∣

]

(4.2)

The motivation behind this risk function is to adjust the problem faced by previous

risk function, i.e. if β is very less then probability staying in state(0) is also less which

estimation of α very difficult. Now the idea is: when β is very less then estimating α is

difficult which gives high error, so we have scaled the error term of α by β.

The risk function is of the form (2.3) so we can use (2.4) to find the lower bound.

4.1 Lower Bound

For using Modified Le Cam method, we need to convert (4.1) into (2.1) by choosing

appropriate γ, d, θ and Φ functions. By comparing (4.1) with (2.1) we get

γ1(P ) = β, γ2(P ) = α, θ1(P ) = α, θ2(P ) = β, d(x, y) = |x− y| and Φ(x) = x

The 2 distributions required for Le Cam method are as follows:

Let P0 be the distribution of X1, ..., Xn when α0 = 1 − β0 = 1+δ
2

and P1 be the

distribution when α1 = 1− β1 =
1−δ
2
.

α = 1 − β =⇒ X1, ..., Xn are i.i.d samples from Bernoulli distribution with P (X =

0) = 1 − α and P (X = 1) = α. Therefore, P0 and P1 are Binomial distributions with

p0 = 1+δ
2

and p0 = 1−δ
2

respectively. This choice of α and β simplifies the calculation

of Dkl(P0||P1).



Dkl(P0||P1) = n

[

1 + δ

2
log(

1 + δ

1− δ
) +

1− δ

2
log(

1− δ

1 + δ
)

]

= nδ log
(1 + δ

1− δ

)

(4.3)

Noting that δ log(1+δ
1−δ

) ≤ 3δ2 for δ ∈ [0, 1
2
], we obtain

Dkl(P0||P1) ≤ 3nδ2

Therefore, γ1(P0) = 1−δ
2
, γ1(P1) = 1−δ

2
, γ2(P0) = 1+δ

2
, γ2(P1) = 1−δ

2
, θ1(P1) =

1+δ
2
, θ2(P2) =

1−δ
2
, ∆1 =

|θ1(P1)−θ1(P2)|
2

= δ and ∆2 =
|θ2(P1)−θ2(P2)|

2
= δ

Using (2.2) we get

R∗
n ≥ 1

2
min

(1− δ

2
,
1 + δ

2

)δ

2

[

1−
√

3nδ2

2

]

+
1

2
min

(1 + δ

2
,
1− δ

2

)δ

2

[

1−
√

3nδ2

2

]

=
(1− δ)

2

δ

2

[

1−
√

3nδ2

2

]

(4.4)

For δ =
√

1
6n

we get

R∗
n ≥ 1

8
√
6n

− o

(

1√
n

)

(4.5)

4.2 Upper Bound

Let X1, ..., Xn be the observations form the two state markov chain. Let N00 represents

the number of transitions form state(0) to state(0), N01 represents the number of transi-

tions from state(0) to state(1) and k0 represents the number of times state(0) was visited

in n observations. Then we have

N00 +N01 ≤ k0 ≤ N00 +N01 + 1 (4.6)

So k0 is either N00 + N01 or N00 + N01 + 1 depending on the transitions. For e.g. if

X0 = state(0) and Xn = state(1) then k0 = N00 + N01 and if X0 = state(0) and

Xn = state(0) then k0 = N00 +N01 + 1

13



Similarly

N10 +N11 ≤ k0 ≤ N10 +N11 + 1 (4.7)

Let S0 be the steady state probability of state(0) and S1 be the steady state probability

of state(1), then

S0 =
β

α + β
(4.8)

S1 =
α

α + β
(4.9)

Consider an estimator Ŝ0 =
k0
n

for estimating S0 and Ŝ1 =
k1
n

for estimating S1

The following results are taken form Xue and Roy (2011), it will be used to prove the

upper bound on R∗
n

E(Ŝ0) = S0 (4.10)

E(Ŝ1) = S1 (4.11)

var(Ŝ0) ≤
1

2n(1− λ2)
− 1

4n
+

1

n2(1− λ2)2
(4.12)

var(Ŝ1) ≤
1

2n(1− λ2)
− 1

4n
+

1

n2(1− λ2)2
(4.13)

where λ1 = 1 and λ2 are the eigen values of the transition matrix of the Markov

chain in Fig. 1.1

Using λ2 = 1− β − α

and (4.12)

var(Ŝ0) ≤
1

2n(α + β)
− 1

4n
+

1

n2(α + β)2
(4.14)

var(Ŝ1) ≤
1

2n(α + β)
− 1

4n
+

1

n2(α + β)2
(4.15)

Now we will upper bound the worst case risk for the estimators α̂ and β̂ defined as

14



follows

α̂ =











N01

N00+N01
, if N00 +N01 6= 0

0, if N00 +N01 = 0

(4.16)

β̂ =











N10

N10+N11
, if N10 +N11 6= 0

0, if N10 +N11 = 0

(4.17)

Now we will upper bound the risk for these estimators

E
[

β|α− α̂| + α|β − β̂|
]

≤
√

E
[

β2|α− α̂|2
]

+

√

E
[

α2|β − β̂|2
]

(4.18)

Now we will find the upper bound on E
[

β2|α− α̂|2
]

Using (4.8) we get

E
[

β2(α̂− α)2
]

= E
[

(α + β)2S2
0(α̂− α)2

]

(4.19)

By manipulation we can write

E
[

(α + β)2S2
0(α̂− α)2

]

= (α + β)2

[

E
[ (

S0 −
k0

n

)2
(α̂− α)2

]

+ E
[

2 S0
k0

n
(α̂− α)2

]

− E
[ ( k0

n

)2
(α̂− α)2

]

]

≤ E

[

(α + β)2
(

S0 −
k0

n

)2
(α̂− α)2

]

+ E

[

2(α + β)2 S0
k0

n
(α̂− α)2

]

(4.20)

Consider the first term in R.H.S of (4.20)

15



Using (α̂− α)2 ≤ 1 and ((4.14) we can write

E

[

(α + β)2
(

S0 −
k0

n

)2
(α̂− α)2

]

≤ E

[

(α + β)2
(

S0 −
k0

n

)

2

]

= (α + β)2E

[

(

S0 −
k0

n

)

2

]

= (α + β)2var(Ŝ0)

≤ (α + β)

2n
− (α + β)2

4n
+

1

n2

(4.21)

For a given value of N00 +N01 = n00 + n01 6= 0 we can write

E
[

(α̂− α)2
∣

∣

∣
n00 + n01

]

=
α(1− α)

n00 + n01

(4.22)

Now Consider the second term in R.H.S of (4.20)

Using (4.8) we can write

E

[

2(α + β)2 S0
k0

n
(α̂− α)2

]

= E

[

2(α + β)2
β

α + β

k0

n
(α̂− α)2

]

= 2β(α + β) E

[

k0

n
(α̂− α)2

] (4.23)

To get the upper bound on (4.23), we will now find the upper bound on E

[

k0
n
(α̂−α)2

]

E

[

k0

n
(α̂− α)2

]

= E

[

k0

n
(α̂− α)2

∣

∣

∣
n00 + n01 = 0

]

p(n00 + n01 = 0)+

E

[

k0

n
(α̂− α)2

∣

∣

∣
n00 + n01 6= 0

]

p(n00 + n01 6= 0)

(4.24)

The RHS of the above equation has 2 terms, we will prove that the both terms decays

are order n

Consider the first term on R.H.S of (4.24)

E

[

k0

n
(α̂− α)2

∣

∣

∣
n00 + n01 6= 0

]

p(n00 + n01 6= 0) ≤ E

[

k0

n
(α̂− α)2

∣

∣

∣
n00 + n01 6= 0

]

(4.25)
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E

[

k0

n
(α̂− α)2

∣

∣

∣
n00 + n01 6= 0

]

≤ E

[

E

[

k0

n
(α̂− α)2

∣

∣ n00 + n01 6= 0

]

]

≤ E

[

E

[

(n00 + n01 + 1)

n
(α̂− α)2

∣

∣ n00 + n01 6= 0

]

]

≤ E
[2(n00 + n01)

n

α(1− α)

n00 + n01

∣

∣ n00 + n01 6= 0
]

= 2
α(1− α)

n

(4.26)

The second step in the above equation uses (4.6), third step uses (4.22) and n00 +n01 +

1 ≤ 2(n00 + n01) Consider the second term on R.H.S of (4.24)

Using (4.6) we know k0 ≤ n00 + n01 + 1 =⇒ k0 ≤ 1 when n00 + n01 = 0

E

[

k0

n
(α̂− α)2

∣

∣

∣
n00 + n01 = 0

]

p(n00 + n01 = 0) ≤ E

[

k0

n
(α̂− α)2

∣

∣

∣
n00 + n01 = 0

]

≤ E

[

1

n
(0− α)2

∣

∣

∣
n00 + n01 = 0

]

=
α2

n

(4.27)

From (4.24), (4.26) and (4.27) we get

E

[

k0

n
(α̂− α)2

]

≤ 2
α(1− α)

n
+
α2

n

≤ 2α− α2

n

(4.28)

From (4.23) and (4.28) we get

E

[

2(α + β)2 S0
k0

n
(α̂− α)2

]

≤ 2β(α + β)
(2α− α2)

n
(4.29)

Using (4.20), (4.21) and (4.29) we get

E
[

β2(α̂− α)2
]

≤ (α + β)

2n
− (α + β)2

4n
+ 2β(α + β)

(2α− α2)

n
+

1

n2
(4.30)

Maximizing the above equation with respect to alpha and beta, we get

E
[

β2(α̂− α)2
]

≤ 4

n
+

1

n2
(4.31)
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The maximum is attained when alpha is 1 and beta is 1.

From (4.31) we get

E
[

β|α̂− α|
]

≤
√

4

n
+

1

n2

≤ 2√
n
+ o
( 1√

n

)

(4.32)

Similarly we can show that

E
[

α|β̂ − β|
]

≤
√

4

n
+

1

n2

≤ 2√
n
+ o
( 1√

n

)

(4.33)

From (4.18), (4.32) and (4.33) we get

E
[

β|α− α̂| + α|β − β̂|
]

≤ 4√
n
+ o
( 1√

n

)

(4.34)

The above equation is true for all α, β ∈ (0, 1], Hence

sup
P∈P

E
[

β|α− α̂| + α|β − β̂|
]

≤ 4√
n
+ o
( 1√

n

)

(4.35)

Since

inf
P̂

sup
P∈P

E
[

β|α− α̂| + α|β − β̂|
]

≤ sup
P∈P

E
[

β|α− α̂| + α|β − β̂|
]

(4.36)

From (4.35) and (4.36) we get

inf
P̂

sup
P∈P

E
[

β|α− α̂| + α|β − β̂|
]

≤ 4√
n
+ o
( 1√

n

)

(4.37)

Therefore the bounds on R∗
n are

1

8
√
6n

− o

(

1√
n

)

≤ inf
P̂

sup
P∈P

E
[

β|α− α̂| + α|β − β̂|
]

≤ 4√
n
+ o
( 1√

n

)

(4.38)

The above equation shows that the minimax risk is Θ( 1√
n
)
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CHAPTER 5

Minimax risk for the third risk metric

Let xn be a sample form this Markov chain, p̂ is an estimator consisting of p̂(0|xn) and

p̂(1|xn) . p̂(0|xn) is an estimator for p(Xn+1 = 0|xn) and p̂(1|xn) is an estimator for

p(Xn+1 = 1|xn)
For n samples of Markov chain the minimax risk is defined as

R∗
n = inf

p̂
sup
P∈P

E

[

1
∑

xn+1=0

∣

∣p(xn+1|xn)− p̂(xn+1|xn)
∣

∣

2

]

(5.1)

The motivation behind this risk function is that the following risk is considered in

Falahatgar et al. (2016)

R∗
n = inf

p̂
sup
P∈P

E

[

DKL

(

P (Xn+1|Xn)
∣

∣

∣

∣

∣

∣
P̂ (Xn+1|Xn)

)

]

(5.2)

Where P̂ (Xn+1|Xn) is an estimator for P (Xn+1|Xn).

We have replaced the KL distance in the above equation by quadratic distance to get the

new risk function.

5.1 Lower Bound

In the risk function

Rn = E

[

1
∑

xn+1=0

∣

∣p(xn+1|xn)− p̂(xn+1|xn)
∣

∣

2

]

(5.3)

Notice that the parameter which we are trying to estimate p(Xn+1|Xn) is a function of

distribution as well as observations.

If xn = 0 then p(0|xn) = 1− α and p(1|xn) = α.

Similarly, if xn = 1 then p(0|xn) = 1− β and p(1|xn) = β.

The Le Cam method works only when the parameter is just a function of distribution.



To overcome this problem we will condition the risk for given xn.

Let pXn be the distribution of xn

We are interested in the estimators for which p̂(0|xn) + p̂(1|xn) = 1 holds.

Let’s define p̂(1|xn) = α̂ and p̂(0|xn) = 1− α̂ when xn = 0

Similarly p̂(1|xn) = β̂ and p̂(0|xn) = 1− β̂ when xn = 1

R = EpXn

[

1
∑

xn+1=0

∣

∣p(xn+1|xn)− p̂(xn+1|xn)
∣

∣

2

]

= p(xn = 0)EpXn|xn=0

[

1
∑

xn+1=0

∣

∣p(xn+1|xn)− p̂(xn+1|xn)
∣

∣

2

]

+

p(xn = 1)EpXn|xn=1

[

1
∑

xn+1=0

∣

∣p(xn+1|xn)− p̂(xn+1|xn)
∣

∣

2

]

= 2p(xn = 0)EpXn|xn=0
|α− α̂|2 + 2p(xn = 1)EpXn|xn=1

|β − β̂|2

(5.4)

Now the risk is almost of the form (2.1), the only difference is that the expectation here

is conditional.

Following the steps of proof of theorem 1, we can show that

R∗
n ≥ min

(

p0(xn = 0), p1(xn = 0)
)( |α0 − α1|

2

)2
[

1−
√

1

2
DKL(P0|Xn=0||P1|Xn=0)

]

+min
(

p0(xn = 1), p1(xn = 1)
)( |β0 − β1|

2

)2
[

1−
√

1

2
DKL(P0|Xn=1||P1|Xn=1)

]

(5.5)

Here, P0|Xn=0 is the conditional distribution of Xn given Xn = 0 under P0, P0|Xn=0 is

the conditional distribution of Xn given Xn = 1 under P0, P1|Xn=0 is the conditional

distribution of Xn given Xn = 0 under P1 and P1|Xn=1 is the conditional distribution of

Xn given Xn = 1 under P1

For finding the lower bound the following two distributions are considered

P0 : α0 = 1− β0 =
1+δ
2

P1 : α1 = 1− β1 =
1−δ
2

P0 be the distribution of X1, ..., Xn−1 when α0 = 1− β0 =
1+δ
2

and P1 be the distribu-

tion when α1 = 1− β1 =
1−δ
2
.

α = 1 − β =⇒ X1, ..., Xn−1 are iid samples from Bernoulli distribution with
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P (X = 0) = 1− α and P (X = 1) = α

Therefore, P0 and P1 are Binomial distributions with p = 1+δ
2

and p = 1−δ
2

respectively.

Now since both the distributions considered are Bernoulli, therefore P (Xn|Xn) =

P (Xn−1). Using this we can write the KL distribution as

DKL

(

P0(X
n|Xn = 0)||P1(X

n|Xn = 0)
)

= DKL

(

P0(X
n−1)||P1(X

n−1)
)

(5.6)

Similarly

DKL

(

P0(X
n|Xn = 1)||P1(X

n|Xn = 1)
)

= DKL

(

P0(X
n−1)||P1(X

n−1)
)

(5.7)

Now the KL distance is given by

DKL

(

P0(X
n−1)||P1(X

n−1)
)

= (n− 1)δ log
(1 + δ

1− δ

)

(5.8)

Noting that δ log(1+δ
1−δ

) ≤ 3δ2 for δ ∈ [0, 1
2
], we obtain

DKL

(

P0(X
n−1)||P1(X

n−1)
)

≤ 3(n− 1)δ2 (5.9)

Using (5.5), (5.6), (5.7) and (5.9) we get

R∗
n ≥ min

(1− δ

2
,
1 + δ

2

)(δ

2

)2
[

1−
√

3(n− 1)δ2

2

]

+

min
(1 + δ

2
,
1− δ

2

)(δ

2

)2
[

1−
√

3(n− 1)δ2

2

]

≥ 1

4
(1− δ)δ2

(

1− δ

√

3(n− 1)

2

)

(5.10)

For δ = 2
3

√

2
3(n−1)

R∗ ≥ 2

81n
− o(

1

n
) (5.11)
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5.2 Upper Bound

We know that, for any two distributions P0 and P1

||P0 − P1||2TV ≤ 1

2
Dkl(P0||P1) (5.12)

Consider P0 = P (Xn+1|Xn) and P1 = P̂ (Xn+1|Xn), then

||P0 − P1||2TV =
[

∣

∣p(0|xn)− p̂(0|xn)
∣

∣+
∣

∣p(1|xn)− p̂(1|xn)
∣

∣

]2

≥
∣

∣p(0|xn)− p̂(0|xn)
∣

∣

2
+
∣

∣p(1|xn)− p̂(1|xn)
∣

∣

2

=
1
∑

xn+1=0

∣

∣p(xn+1|xn)− p̂(xn+1|xn)
∣

∣

2

(5.13)

Using (5.12) and (5.13) we get

1
∑

xn+1=0

∣

∣p(xn+1|xn)− p̂(xn+1|xn)
∣

∣

2 ≤ 1

2
D(pxn+1|xn ||p̂xn+1|xn) (5.14)

Therefore

inf
p̂
sup
α,β

E

[

1
∑

xn+1=0

∣

∣p(xn+1|xn)−p̂(xn+1|xn)
∣

∣

2

]

≤ 1

2
inf
p̂
sup
α,β

E

[

D(pxn+1|xn ||p̂xn+1|xn)

]

(5.15)

Taking this result from Falahatgar et al. (2016)

inf
p̂
sup
α,β

E

[

D(pxn+1|xn ||p̂xn+1|xn)

]

≤ 2
log
(

log(n)
)

n
+O(

1

n
) (5.16)

Using (5.15) and (5.16) we get

R∗
n ≤ log

(

log(n)
)

n
+O(

1

n
) (5.17)

Hence we can conclude

2

81n
− o(

1

n
) ≤ R∗ ≤ log

(

log(n)
)

n
+O(

1

n
) (5.18)

Notice, the upper bound and the lower bound are not of the same order however
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log(log(n)) changes very slowly with n. There is a scope of improvement in bounds.
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CHAPTER 6

Conclusions and Scope for Future Work

We have proposed various risk metrics for estimating the parameters of a two state

Markov chain and bounded the minimax risk for these metrics. We have modified

Le Cam’s method into more generalized version which was used to find lower bounds.

The generalized KL distance for two state Markov chain was derived which helped

in finding a constant lower bound for quadratic risk function. For the risk function

Rn = E
[

∑1
xn+1=0

∣

∣p(xn+1|xn)− p̂(xn+1|xn)
∣

∣

2
]

, the upper and lower bound found are

not of the same order, and hence can be improved. Future work includes extension of

this theory on k state Markov chain.
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