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ABSTRACT

KEYWORDS: Resource Allocation, Performance Region, User Performance, Dynamic

Cell, Single Objective Optimization, Multi Objective Optimization, Directional Com-

munications

Nowadays, the adoption of multiple antennas at base stations has become a very crucial

factor in the architecture of the cellular communication systems in order to meet the

large capacity demands of the user equipments. The enhancement in the gain achieved

by employing this much needed scheme of multiple transmit antennas at base stations

is quite well-identified. The performance of the multi-cell systems depends largely on

resource allocation; that is basically defining the way in which the frequency, power

and spatial resources are divided among the many users being served in the network.

This problem of resource allocation can be posed as a constrained multi objective opti-

mization problem and can be solved through various optimization algorithms. Also, the

usage of large number of antenna elements gives rise high directivity gains and fully

directional communication; and thus gives birth to the concept of dynamic cell which

provides a fairly new user-centric cell formation design.

This thesis work analyses the work done by Björnson and Jorswieck (2013) on the prob-

lem of optimal resource allocation in multi-cell communication system in depth, by

using the system utility metric to achieve practical feasibility. We solve the presented

optimization problem using an optimization algorithm known as Polyblock Outer Ap-

proximation Algorithm. Also, in the later part, we dig deeper into the concept of dy-

namic cell presented in Shokri-Ghadikolaei et al. (2015) to analyze the performance

gain of the dynamic cell network due to the availability of new degrees of freedom.

Finally, we present the simulation results in order to support the improvement of the

performance of the dynamic cell system over the traditional cell system.
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CHAPTER 1

INTRODUCTION

We all are well familiar with the basic purpose of communication, that is to transfer

the data between devices through a physical medium known as the channel. Now, this

transfer of data can take place through numerous mediums. However, here we would

just like to focus on the wireless transfer of the data as the electromagnetic waves prop-

agating through the environment between the devices, which is well known by the term

wireless communications. The frequency spectrum, as we all know, being limited, is

a universal resource. This spectrum is quite crowded as it is used for a large number

of applications such as computer networks, cellular communications, radio/television,

satellite communications, military applications and many more. And hence, the licenses

are very expensive, especially for the frequency bands suited for the long range appli-

cations. Thus, the architecture design of the wireless communication systems should

be such that the frequency resources are used as efficiently as possible. And this is the

part where the concept of efficient resource allocation becomes a very important factor.

The process of optimal resource allocation consists of various crucial steps such as ac-

curate modelling of different types of multi-cell communication systems and measuring

their performance, not just the system utility but also the individual user performance

because its not just the whole system utility we are interested in, but also the individ-

ual user satisfaction is also equally important in this concept. And hence there arises a

tradeoff between the use of these two performance measures to efficiently allocate the

available resources among the users.

Here, in this thesis, we take the work presented by Björnson and Jorswieck (2013)

where the concept of resource allocation is defined as allocating the transmit power

among the user equipments(UEs) and spatial directions, while satisfying a set of power

constraints having regulatory, physical and economic significance. In our case, the

process of resource allocation becomes fairly complex in nature when more than one

antennas are installed at each base station, and it becomes really necessary to deeply un-

derstand the nature of multi-cell system resource allocation and come up with efficient

ways to exploit the spatial domain resources in order to improve the system throughput,



user satisfaction and revenue of the multi-cell communication systems to the maximum

extent. Talking mathematically, the resource allocation corresponds to the selection of

a signal correlation matrix for each of the UEs and this facilitates the calculation of

the SINR corresponding to each UE. While formulating the problem for the resource

allocation in multi-cell systems, we face the conundrum of choosing one of the very

different ways to measure the performance experienced by each of the UEs and the

inherent conflict between maximizing the performance experienced by different UEs.

For this purpose, we define the concept of performance region (PR). This performance

region acts a brigde between the individual performance and the system utility. And

hence, the resource allocation problem can be formulated as a multi objective optimiza-

tion problem where the boundary of the performance region represents all the efficent

solutions to the above mentioned optimization problem.

The above discussed usage of the multiple antennas at each base station also gives

rise to high directivity gains, directional communication and possible noise limited op-

erations. This enhancement in the directivity gains and the ability of communicating

with the users in fully and semi directional modes gives birth to a new concept called

dynamic cell. In contrast to the traditional definition of the cell where the user associa-

tion is decided using the simple association metric derived from a rule called minimuml

distance rule based on reference signal received power (RSRP) and RSSI, the dynamic

cell presents a new user centric user association paradigm. The traditional RSRP/RSSI

based association leads to an unbalanced number of UEs in a cell, and hence limits the

amount of resources available for each UE in densely populated cells while a lot of un-

used resources going to waste in case of sparsely populated cells. This is even infuriated

by the use of directionality in communication feature of the multi-cell systems. As a

result of the directionality, the whole system becomes a noise-limited system instead of

interference-limited system. Hence, it is totally meaningless to use the minimum dis-

tance rule derived association metric, which is suited for interference-limited systems

and definitely not for the noise-limited systems. This results in a number of disadvan-

tages of the current static cell definition over the definition of dynamic cell. The main

disadvantage is that the static cell formation is independent of the load of the cell as

well as the capabilities of the UEs because of the predetermined coverage area of a BS.

The three main parameters which should affect the formation of the cell in a cellular

network are:
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• UE traffic demand

• channel between UE and BSs

• BSs loads

The RSRP/RSSI based minimum distance association metric only considers the sec-

ond parameter, and a re-association is needed whenever this parameter is changed in the

network, which is highly inefficient in the mmWave systems, as the mmWave technol-

ogy enables the systems to incorporate a large number of antennas both at the BS as

well as UE. So, clearly the definition of a dynamic cell seems very appropriate for the

scenario in the discussion, which takes care of all the three parameters while deciding

the user association in the multi-cell systems.

We start by discussing in detail about the work done by Björnson and Jorswieck

(2013) on the topic of resource allocation in the multi-cell systems, clearly present the

formulation of the constrained optimization problem for the allocation of the resources

as presented in the research paper and then try to solve the stated optimization prob-

lem using the Polyblock Outer Approximation Algorithm(PA), and present the results.

In the later part of this thesis work, we dig into the concept of dynamic cell as pre-

sented by Shokri-Ghadikolaei et al. (2015) and then demonstrate dynamic cell defined

system clearly outperforming the traditional static cell defined system. We realize that

the problem presented in the research paper[2] can not be solved as it is due to high

computational complexity, so we make some necessary modifications keeping this fact

in mind, and then determine the solution.
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CHAPTER 2

SYSTEM MODEL

2.1 Introduction

Here in this chapter, we aim to gradually build the system model presented in Björnson

and Jorswieck (2013) used for the purpose of resource allocation. This section presents

conceptual and theoretical insights regarding the optimization of general multi-cell sys-

tems. For a good understanding, we first start with the single cell scenario and present

the mathematical system model for the single cell communication system. Then, we

aim to extend this single cell mathematical system model to present the mathematical

model for the multi-cell communication system. To sum up the section, the necessary

foundation work for the resource allocation is laid which is to be discussed and solved

in the next chapter.

2.2 System Model: Single Cell Scenario

Let us consider a single cell scenario in which a base station operating with N antennas

communicates with Kr UEs. We denote the kth user by the symbol MSk and we as-

sume that it has only one antenna. We do not consider the scenario where the UEs are

equipped with multiple antennas in this work. We assume single antenna UEs because

it reduces the hardware complexity to a significant extent, it requires less knowledge of

the channel at the transmitter end and is quite close to the optimal scenario in realistic

situations.

We assume the channel to MSk to be flat fading and the dimensionless vector hk ∈

CN represents the channel in the complex baseband. The complex valued element [hk]n

represents from nth transmit antenna, the channel gain is represented by the magnitude

of the element while the argument represents the phase-shift caused by the channel in

description. The whole collection of all the channel vectors is know as the channel state



Figure 2.1: Illustration of multi user system with a base station (equipped with N
antennas) and Kr users. [Source: Björnson and Jorswieck (2013)]

information (CSI) and we assume the the base station knows about the CSI perfectly.

We take a few more assumptions into consideration such as the hardware is ideal and

without any impairment so as to simplify the conceptual understanding of the problem

that will be presented in the subsequent sections. It is a well known fact that it is

generally impossible to model a real system perfectly. So, our goal in this work is to

formulate a model that helps us to analyze the system but also at the same time is correct

enough to provide valuable insights.

With respect to the linear input-output model taking these assumptions into considera-

tion, the received signal at MSk is yk which is given by

yk = hHk x+ nk (2.1)

where nk ∈ C is the combined vector of additive noise and interference from the neigh-

bouring systems. nk is modeled as circularly symmetric complex Gaussian distributed,

nk CN (0, σ2), where σ2 is the noise power. The input-output model is depicted in

Figure 2.2.

Figure 2.2: Block diagram for of the basic single cell model with N antennas serving
Kr single-antenna UEs. [Source: Björnson and Jorswieck (2013)]

The data meant for each of the UEs is contained by the transmit signal x ∈ CN and is
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given by

x =
Kr∑
k=1

sk (2.2)

where sk is the signal meant for the UE MSk. These signals are modeled as zero-mean

with signal correlation matrices given by

Sk = E{sksHk } ∈ CNXN (2.3)

The selection of the signal correlation matrices S1,....,SKr is called as the transmit strat-

egy. The average power allocated to MSk is tr(Sk). Now in the next subsection, we

describe the power constraints that are imposed to the system model and play a crucial

role in determing the transmit strategies.

2.2.1 Power Constraints

We very well know that the power resources available to us for the purpose of transmis-

sion are limited and need to be used judiciously. This motivates us to define constraints

in such a form that it is taken well into the consideration under the system model. We

assume that there are L power constraints, which are described by the model as

Kr∑
k=1

tr(QlkSk) ≤ ql l = 1, ..., L (2.4)

where Qlk ∈ CNXN are Hermitian positive semi-definite weighing matrices and ql ≥ 0

are the limits for all l, k We also need to ensure that the power is constrained in all the

spatial direction, and for this purpose the matrices should satisfy the condition

L∑
l=1

Qlk > 0N

Now, there might a number of reasons these constraints or limitations come into exis-

tence in our current system model such as

• physical limitations e.g. to protect the dynamic range of the power amplifiers;

• regulatory constraints e.g. to limit the power radiated in specific directions;

• interference constraints e.g. to control the interference caused to some UEs;
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• economic decisions e.g. to manage the long term cost and revenue of running a
BS

We can present two examples that can be viewed as the two extremes in the practical

systems.

• Total power constraint i.e. L = 1 and Q1k = IN for all k;

• Per-antenna constraint i.e. L = N and Q1k is only nonzero at the lth diagonal
element.

The L linear power constraints described in (2.4) can also be broken down in order

of describe per-user constraints as

tr(QlkSk) ≤ qlk k = 1, ...Kr, l = 1, ..., L (2.5)

for some limits qlk ≥ 0 for all l, k. In order to satisfy the constraint (2.4), the per-user

power limits have to satisfy the following conditions

Kr∑
k=1

qlk ≤ ql l = 1, ..., L (2.6)

The above mentioned decomposed representation of the linear power constraints turns

out to be very helpful in deriving structural results on optimal transmit strategies. The

selection of the limits qlk is a very important part of the optimization process where it

represents per-user power allocation in the system.

2.3 System Model: Multi-Cell Scenario

Now that we have defined the system model for the single cell scenario, it will be quite

easy for us to just extend that model for the multi-cell scenario. In case of the multi-cell

scenario, the channel from all the BSs to MSk can be denoted by hk = [hT1k...h
T
Ktk

]T ∈

CN where hjk ∈ CNj denotes the channel from the BSj . We consider a the following

assumptions that are very crucial for defining the model of multi cell system:

• BSj has the channel estimates to UEs in Cj ∈ 1, 2, ...., Kr, while the interference
generated to the UEs i 6∈ Cj is negligible and can be considered as Gaussian
background noise;
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• BSj serves the users in the set Dj ⊂ Cj with the data.

In the multi-cell scenario, only certain channel elements of hk will carry the data.

And these can be selected with the help of the diagonal matrices Dk ∈ CNXN and

Ck ∈ CNXN , which are defined as follows

Dk =


D1k . . . 0

... . . .

0 DKtk

 whereDjk =

INj
, ifk ∈ Dj,

0Nj
, otherwise

(2.7)

Ck =


C1k . . . 0

... . . .

0 CKtk

 whereCjk =

INj
, ifk ∈ Cj,

0Nj
, otherwise

(2.8)

Hence, one can easily notice that the channel thata carries the data to MSk is hHk Dk

and the channel that carries the non-negligible interference is hHk Ck. The purpose of

the matrices Ck and Dk are to ensure that the correct BS transmit to the MSk while

optimizing the resource allocation.

Hence, the complex baseband signal received at MSk is given by

yk = hHk Ck

Kr∑
i=1

Disi + nk (2.9)

where the additive term nk is assumed to model both the noise and weak uncoordinated

interference from all the BSj with k 6∈ Cj . This scenario is illustrated in the Figure 2.3

Figure 2.3: Block diagram of the system model for the multi-cell scenario. [Source:
Björnson and Jorswieck (2013)]

Similar to the single cell scenario, the transmission of data is limited by a set of

power constraints with size L. However, there is an important fact that has to be noted

that in case of the multi cell scenario, the transmitted signals are Dksk and not just sk,

8



and thus each of the weighing matrix Qlk should satisfy an additional constraint that

Qlk − DH
k QlkDk is diagonal for all l, k. This additional constraint on the weighing

matrices makes sure that the power cannot be allocated to unallowed subspaces for the

purpose of reducing the measured power in the subspaces used for transmission, which

is only possible when the weighing matrices Qlk is nondiagonal.

9



CHAPTER 3

RESOURCE ALLOCATION IN MULTI CELL

SYSTEMS

3.1 Introduction

Now that we have presented the whole system model of the multi-cell systems keeping

the practical power constraints into consideration, its time that we proceed forward to

the resource allocation in the system. We start by defining a general means of measuring

the performance of the multi-cell system. There are two separate aspects that have to

be considered when we talk about the measurement of the performance of the system:

• the performance experience by each user in the system;

• the system utility which is a collection of simultaneously achievable user perfor-
mances

We briefly describe these two modes of measuring the system performance as these

play a very important role in the formulation of the resultant optimization problem.

3.2 User Performance

Each user k in the system has its own quality measure which is represented by the user

performance function gk of the SINR experienced by the user while communicating in

the system. This function describes the satisfaction that the system provides to the user

and it generally is dependent on the factors such as throughput and delay constraints.

For the sake of low complexity, we make an assumption that single user detection takes

place i.e. a UE is not decoding and subtracting interfering signals while decoding its

own signals. The SINR experienced by the user MSk is given by



SINRk(S1, ...,SKr) =
hHk CkDkSkD

H
k C

H
k hk

hHk Ck(
∑

i 6=kDiSiDH
i )C

H
k hk + σ2

k

=
hHk DkSkD

H
k hk

hHk Ck(
∑

i∈Ik DiSiDH
i )C

H
k hk + σ2

k

(3.1)

where the simplification in the second equality is a result of CkDk = Dk and CkDi 6= 0

for the UEs i in

Ik =
⋃

{j∈J :k∈Cj}

Dj\{k} (3.2)

The set of UEs Ik is the set of co-UEs that are being served by the same BSs that

contribute to the interference toward the MSk. For our convenience, instead of writ-

ing SINRk(S1, ...,SKr), we just write SINRk for the purpose of talking about SINR

experienced by UE k.

User Performance Function : The user performance function can be defined as

an arbitrary continuous, differentiable and strictly monotonically increasing function

gk(SINR) of the SINR which is used as a metric to measure the performance of MSk.

For notational convinience, the user performance function satisfies gk(0) = 0

Information Rate : The information rate corresponds to the achievable mutual infor-

mation/ achievable rate describing the number of bits that can be conveyed to a user

per channel use with an arbitrarily low probability of decoding error. The achievable

information rate is given by gk(SINR) = log2(1 + SINRk)

3.3 Multi Objective Resource Allocation

Whenever a situation comes where one has to maximize the performance of multiple

users working simultaneously in a system, there always arise conflicts and tradeoffs

between the individual performance and the systems performance as a whole. Each of

the UEs has its own objective function gk(SINRk) that has to be optimized for maxi-

mizing the user satisfaction, and hence there are Kr different objective functions that

are fighting inherently for their optimization. This conflict gives rise to the tradeoff and

11



these problems are formulated mathematically as multi-objective optimization prob-

lems. With everything that we have defined, the resource allocation problem can be

formulated as follows:

maximize
S1≥0N ,...,SKr≥0N

{g1(SINR1), ..., gKr(SINRKr
)}

subject to
Kr∑
k=1

tr(QlkSk) ≤ ql ∀l
(3.3)

The multi-objective problem defined above can be seen as looking for a transmit

strategy S1, ...,SKr which successfully satisfies the constraints and also maximizes the

performance gk(SINRk) of all the UEs. But, as the performance of all the UEs in the

system is coupled by the constraints, generally there is not a single optimal solution to

transmit strategies that simultaneously maximizes the performance of all the UEs. And,

in order to study this conflicting situation of different objective functions fighting for

their optimization, we define the set of all the feasible operating points g = [g1...gKr ]]
T

and call this set as the achievable performance region denoted by the symbol R. The

performance region represents the performance that can be guaranteed to be simulta-

neously achievable by the UEs in the system. The region R is Kr dimensional and is

non-empty as {0KrX1} ∈ R. The shape of the performance region depends on a number

of factors such as the constraints, cooperation in clusters and the channel vectors.

Utopia Point : The utopia point u is the unique solution to the optimization problem

(3.3) in degenerate scenarios i.e. when the optimization decouples and all the users

can achieve their maximal performance simultaneously. The utopia point describes an

unattainable upper bound on the performance and in general, u 6∈ R.

We can only achieve a set of tentative solutions to the problem described in (3.3)

and all of these solutions are operating points inR and are definitely not dominated by

any other feasible point. These operating points are called as Pareto optimal and set of

all the Pareto optimal points is known as the Pareto Boundary. The Pareto boundary

is such that the performance cannot be enhanced for any user without degrading the

performance for at least one of the other UEs.

One of the basic properties of the optimal resource allocation problem described in

(3.3) is sufficiency of single-stream beamforming , that is having the signal correlation

12



matrices Sk that are rank one. This can be seen as intuitive because each of the UEs

have a single receive antenna. This property reformulates the problem defined in (3.3)

by stating that all the tentative solutions can be achieved by Sk = vkv
H
k for some

beamforming vectors vk. The reformulated problem is given by

maximize
S1≥0N ,...,SKr≥0N

{g1(SINR1), ..., gKr(SINRKr
)}

subject to SINRk =
|hHk CkDkvk|

2∑
i 6=k |hHk DiCkvi|

2
+ σ2

k

∀k

Kr∑
k=1

tr(QlkSk) ≤ ql ∀l

(3.4)

The reformulation of the problem in (3.3) reduces the search space for optimal points

to a great extent and makes the implementation a lot easier.

In most of the cases, there are many of the Pareto optimal points and there is no

specific point better than the others objectively. So, in order to compare the merits

and demerits of these Pareto optimal points, the system designer needs to pitch in and

describe his own preference as an aggregate system utility function f : R → R. A sys-

tem utility function is denoted by f(g1(SINR1), ..., gKr(SINRKr
)) and is monotonically

increasing on [0,u]

Now, since we have a concept of a system utility function, the multi-objective opti-

mization problem in (3.4) can be reformulated as a single-objective optimization prob-

lem given by

maximize
S1≥0N ,...,SKr≥0N

f(g1(SINR1), ..., gKr(SINRKr
))

subject to SINRk =
|hHk CkDkvk|

2∑
i 6=k |hHk DiCkvi|

2
+ σ2

k

∀k

Kr∑
k=1

tr(QlkSk) ≤ ql ∀l

(3.5)

Also, a very important point to be noted is that, if f is an increasing function, then the

global optimum is attained on the Pareto boundary. We will use this fact a lot in the

future sections to provide very useful insights we receive from the simulations.
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3.4 Single-Objective Resource Allocation

In this section, refering to the work presented in the research paper[1], we present the

solution of the multi-cell resource allocation problem for any system utility F (.) and

any general user performance function gk(.). Further in the next section, we present the

results of the simulations carried by us in order to solve the resource allocation problem.

Since all the functions that we refer to and take into consideration are increasing in

nature, hence we can the this problem as monotonic optimization problem. The standard

form of the monotonic optimization problem we are trying to solve is given as follows:

maximize
g

f(g)

subject to g ∈ R
(3.6)

Taking a careful look at the above presented problem, its quite evident that now

we have come into different domain. Now, we know that g that we are taking into

consideration already satisfies previous constraints, and this can be used to find the

optimal point. This section basically describes a very useful algorithm presented in the

research paper[1] for solving the monotonic optimization problems: polyblock outer

approximation algorithm (PA).

3.5 Polyblock Outer Approximation(PA) Algorithm

As presented in the research paper[1], we solve the monotonic optimization problem

given in (3.6) by using the Polyblock Outer Approximation (PA) Algorithm. This algo-

rithm is designed to improve the bounds on the optimal value of the objective function

f , and this converges to the final optimal value with an accuracy ε.

fmax − fmin < ε (3.7)

The algorithm in question also finds and ε-optimal solution g∗ to the problem, which

is also the feasible point with fmin = f(g∗). The complexity of this algorithm is NP

hard, as the number of iteration taken by the algorithm increases exponentially with the

increase in number of UEs.
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Determination of the bounds in a box : LetM = [a,b] be a box withM∩M 6= φ

and r(τ) is a strictly increasing curve with r(0) = a and r(τupper) = b for some

τupper > 0. Then the bounds on f can be given by

fmin = f(n);

fmax = f(zk)
(3.8)

where zk = f(b− [b−m]kek) with ek denoting the kth column of IKr , n = r(τ lowerfinal )

and m = r(τupperfinal ). [r(τ
lower
final ), r(τ

upper
final )] are the final resultant interval obtained when

we solve the following problem using any of the line-search algorithms for some accu-

racy δ > 0 of the line search.

maximize
v1,...,vKr ,τ

f(τ)

subject to rk(τ) = gk(SINRk) ∀k
Kr∑
k=1

tr(QlkSk) ≤ ql ∀l

τ ∈ [0, τupper]

(3.9)

Figure 3.1: Illustration of the bounding procedure in the Polyblock algorithm. [Source:
Björnson and Jorswieck (2013)]

As stated in the previous section, the optimal solution to the problem presented

in (3.6) lies on the Pareto boundary of the performance region R. So, what the PA

algorithm does is that it looks for a solution to the problem by approximating the region

itself and iteratively redefines the approximation. The PA algorithm is not directly

applied to the original problem but to the slightly perturbed problem as stated in the

15



research paper Björnson and Jorswieck (2013) given by

maximize
g

f̃(g) = f([g)− s]+ + s)

subject to g ∈ R
(3.10)

The reason we consider this perturbed problem and not the original problem is to pre-

vent numerical convergenve issues like searching close to the axis.

Polyblock : A set P ⊂ R+ is known as a polyblock if it is the union of a finite

number of boxes with lower corners in the origin. There are a number of ways to

write a polyblock using different set of vertices, but here we are concerned only about

minimal set known as proper vertices, where no vertex is dominated by another vertex.

A polyblock constructed with the finite set of vertices V = {b1, ...,b|V|} is denoted by

P(V).

The basic idea behind the working of the PA algorithm is that that the optimal max-

imum point of the problem in (3.10) is achieved at a proper vertex as the system utility

function is increasing. So, if the region R is approximated by a polyblock, then the

resultant Pareto boundary is approximated by the vertices of this polyblock.

Bounding Procedure : Let us consider the boxM(n) = [0,g(n)] using

r(τ) = τ
g(n)

||g(n)||
τ ∈ [0, ||g(n)||] (3.11)

Then we can use the rule for the determination of the bounds in the box as described

earlier ot generate a feasible point n(n) and a set of points {zk} which upper bounds the

performance in the box taken asM(n) Then

Vn+1 = (Vn\{g(n)})
⋃

k:[g(n)]k>0

{z̃k} (3.12)

The rule that is used to remove the improper vertices is described as:

For every g ∈ Vn\{g(n)} such that g ≥m while [g]k < [g(0)]k for exactly one element

k, then z̃k is to be removed from Vn+1

Now that we have the sufficient background for the algorithm, the exact algorithm
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can be summarised as follows

Algorithm 1 Polyblock Outer Approximation (PA) Algorithm
Result: Solves the monotonic optimization problem (3.6)

Input: Feasible solution gfeasible on (3.6)

Input: Solution accuracy ε > 0

and line search accuracy δ > 0 Input: Initial vertex set V1 such that P(V1) ⊃ R

Initialization

Set n(0) = gfeasible, s = δ
Kr

IKr , n = 1

Set fmin = f(n(0)) and fmax = maxb∈V1 f̃(b)

while fmax − fmin > ε do
Set g(0) = argmaxb∈Vn f̃(b)

Compute Vn+1 using the bounding procedure defined earlier using

M(n) = [0,g(n)]. Obtain the resulting feasible point n(n)

if f(n(n)) > fmin then
Set fmin = f(n(n))

Set ffeasible = n(n)

end

Set fmax = maxb∈Vn+1 f̃(b)

Remove all b ∈ Vn+1 with f̃(b) ≤ fmin + ε

Set n = n+ 1

end

Output: Final Interval [fmin, fmax] on the optimal value

Output: Feasible point g∗ε = gfeasible with fmin = f(g∗ε )

3.6 Simulations and Results

In this section, we carry out the simulations for resource allocation using the PA algo-

rithm and then present the results obtained. We maximize the sum information rate by

approximation of the region around the optimal point using the polyblock. The algo-

rithm improves the approximation of the region iteratively by just removing the points

which are not able to contain the optimal point. The simulation setup contains a sce-

nario with number of transmitters, Kt = 2, serving Kr = 2 receivers, where each of the

transmitter is equipped with 2 antennas and the per-array power constraint on the trans-
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mitter is ql = 10dB. The information rate is taken as gk(SINRk) = log2(1+SINRk),

which is considered as the user performance function. We take a realization of random

channel in which the channel between a BS and UE is uncorrelated Rayleigh fading

channel. We consider the line search accuracy, δ = 0.5. We also show the Pareto

boundary of the problem for illustration purposes, and also the optimal point which

maximizes the sum rate in the network, denoted by the symbol ∗ marker in the plots

.The progress of the algorithm under various iterations is shown in the figures presented

in the Figure 3.2. From the below presented figures from the simulations carried out in

the scenario explained earlier, we see that we start by initialising the polyblock to be

have the vertices as origin and the utopia point. As the PA algorithm progresses, we

get to see that the algorithm modifies the polyblock vertices to nearly approximate the

performance region. And as a result of the algorithm, we get the ε - optimal solution

of the problem. The optimal solution from the simulations under the above mentioned

scenario is:

• The optimal network sum rate achieved in the system :

11.2769 bits/channel use

• Optimal User Performance experienced by User 1 :

6.1565 bits/channel use

• Optimal User Performance experienced by User 2 :

5.1204 bits/channel use

We also observe that the PA algorithm takes more iterations to converge to an opti-

mal value as the value of δ is increased. The observed values of the number of iterations

taken corresponding to some values of δ are presented as follows:

• For δ = 0.005, number of iterations taken = 44

• For δ = 0.05, number of iterations taken = 76

• For δ = 0.5, number of iterations taken = 144

A possible explanation of this can be that as the value of the line search accuracy

increases, the algorithm takes more number of outer iterations to reduce the volume of

the polyblock.
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Figure 3.2: Simulation Results illustrating the progress of the Polyblock algorithm

(a) Illustration of initialization iteration in the Polyblock algorithm

(b) Illustration of 1st iteration in the Polyblock algorithm
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(c) Illustration of 2nd iteration in the Polyblock algorithm

(d) Illustration of 10th iteration in the Polyblock algorithm
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(e) Illustration of 60th iteration in the Polyblock algorithm

(f) Illustration of 140th iteration in the Polyblock algorithm

We can easily observe that the region of the boundary around the optimal point has

been approximated by the polyblock vertices successfully.
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CHAPTER 4

DYNAMIC CELL

We know that the mmWave networks provide lots of degrees of freedom due to the

directionality as compared to the traditional networks. With this massive number of

degrees of freedom that the fully-directional communication offers and possibly MAC

layer analog beamforming, a concept of dynamic cell can be defined as a set of UEs that

are served by the same analog beamformer of the base station which are not necessarily

co-located. This association/selection of the UEs to the BSs is done dynamically to

improve some objective function which is maximum network sum rate in this case.

When there are compelling fluctuations in the three parameters discussed above, there

should be a requirement of a redefinition of the dynamic cell. There are mainly three

criteria according to which the microcell BSs group the UEs together dynamically and

form the new cells. These can be listed as follows:

• individual demands of the UEs must be met (Quality of Service, QOS provision-
ing)

• the trade off between the macro-level fairness and the spectral efficiency is im-
proved through fair allocation of the resources also known as maximum utility
maximization

• in order to guarantee the robustness due to blockage, every UE is grouped into at
least two groups.In this proposed structure, any two colocated UEs may belong
to different cells in case their demands are not met with resources available inside
a cell and there exist proper spatial channels to form two independent cells in the
cellular network.
In addition to the above differences over the traditional cell definition, a new
UE is not necessarily bound to be served by a BS which is geographically close
to the UE, if this violates the Quality of Service of a UE that is already been
associated with that particular BS. We know that serving a UE with farther BS
which are less loaded as compared to the geographically close ones, is not a
very good choice in the interference-limited traditional cellular networks, but it
is quite feasible in the fully directional communication which is heavily based on
the concept of proper resource allocation in the cellular network. We know that
the microwave systems with omnidirectional operations are interference-limited
systems, so the directionality feature in the mmWave systems with pencil-beam
operations proves to be a very unique advantage in favor of the mmWave systems
over the microwave networks.



4.1 Optimization Model for Cell Formation

In this section, we present the formulation of an optimization problem to get the optimal

cell formation in cellular networks. We first present the formulation of the optimal cell

for the fully-directional communications, and then later we will see that by some minor

simplifications, we will be able to present the formulation for the semi-directional and

omnidirectional communications.

Let the number of RF chains i.e the number of analog beams at the ith BS be ni. So ba-

sically what we intend to do is replace the BS i with ni virtual BSs at the same position

where each of there new virtual BS have one RF chain. These virtual BS are treated in

the same way as the other BSs are treated. Some of the notations that we use throughout

the report are mentioned below:

• B: set of UEs

• U : set of BSs

• p: transmission power of a BS

• σ : power of white Gaussian noise

• gcij: channel gain between BS i and UE j capturing both the path loss and and
shadowing effects

• θbi : operating bandwidth of the BS i

• θuj : operating bandwidth of UE j

• ζbij: angle between the positive x-axis and the direction in which BS i sees UE j

• ζuij: angle between the positive x-axis and the direction in which UE j sees BS i

• φbi : boresight angle of BS i relative to the x-axis

• φuj : boresight angle of UE j relative to the x-axis

• gbij: directivity gain BS i adds to the link between UE j and BS i (transmission
gain)

• guij: directivity gain UE j adds to the link between BS i and UE j (reception gain)
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Using the sectored antenna model presented in the paper by the authors, we have

gbij =


ε, if θbi

2
< |φbi − ζbij| < 2π − θbi

2

2π − (2π − θbi )ε
θbi

, otherwise

guij =


ε, if

θuj
2
< |φuj − ζuij| < 2π − θuj

2

2π − (2π − θuj )ε
θuj

, otherwise

Also, here in this case we make an assumption that because the association will

act on a relatively larger time scale as compared to the instantaneous fluctuations, the

SINR is averaged out. This use of a long term SINR model is very effective for long

term resource allocation.

Coming back to the model, we can say that the power received by UE j from BS i

is pgbijg
c
ijg

u
ij .

So, the SINR at the UE j due to the transmission of BS i can be written as

pgbijg
c
ijg

u
ij∑

k∈B\i pg
b
kjg

c
kjg

u
kj + σ

(4.1)

Each of the UE has its own performance or quality measure represented by some

user performance function of the SINR. This function describes the satisfaction of the

user. Here in this case, we are looking at the performance of the system as a whole.

So, to achieve this goal, we consider the net achievable information rate (or mutual

information) in the system as the performance criterion of the system as a whole. We

denote the achievable rate of the link between BS i and UE j by cij . Also let us denote

the fraction of the resources used by the BS i to serve the UE j by yij . Hence, we can
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say that the long term rate that UE j will receive from BS i should be rj =
∑

k∈B yjcij .

Let Uj be a general utility function of rj . Also let xij be a binary association variable,

which is UE j is being served by the BS i and 0 otherwise. Let θbi ,min and θuj ,min

denote the minimum possible bandwidth of BS i and UE j respectively.

Now we know many of the variables such as ζbij, ζ
u
ij and gcij for every BS i and UE j

as we already know the network topology. we can collect all the control variables xij

and yij in the matrices X and Y, and the others, namely θbi , θ
u
j , φbi and φuj in the vectors

θb, θu, φb and φu respectively. The optimal cell formation can be posed as below:

maximize
X,Y,θb,θu,φb,φu

∑
j∈U

(
∑
i∈B

yijcij)

subject to
∑
j∈U

yij ≤ 1, ∀i ∈ B,

∑
i∈B

xij = 1, ∀j ∈ U ,

0 ≤ yij ≤ xij, ∀i ∈ B,

xij ∈ {0, 1}, ∀i ∈ B,

0 ≤ φbi ≤ 2π, ∀i ∈ B,

0 ≤ φuj ≤ 2π, ∀j ∈ U ,

θbi,min ≤ θbi ≤ 2π, ∀i ∈ B,

θuj,min ≤ θuj ≤ 2π, ∀j ∈ U ,

4.1.1 Implementation Issues with the previous model and the Mod-

ifications

In order to solve the problem formulated in the previous section, we need to choose

a system utility function Uj . Hence, to start with, we choose the identity function to

be the system utility function. This case can be considered to be the simplest case of

the weighted arithmetic mean system utility function. System utility functions such as

the well known weighted arithmetic or geometric means usually give rise to non-convex

monotonic optimization problems and their computational complexity scales exponen-

25



tially with the number of UEs. These problems can be considered to be NP-hard. The

NP-hard problems have a very major characteristic that there are no known algorithms

to solve these problems in polynomial time, and also it is very widely believed that

there exist no such algorithm to solve them in polynomial time. the weighted arithmetic

mean utility function scenario that we are considering here, gives rise to an NP-hard

optimization problem for any number of UEs.

We have stated that the number of variables rise exponentially with the increase in the

number of UEs. Hence, we need to make some modifications in the above mentioned

model in order to solve the optimization problem with the limited amount of resources

that we have at our disposal. There are mainly two major modifications that we propose

here:

1. Instead of carrying out the simulations for a network topology consisting of a
large number of UEs, we consider a network topology with relatively less number
of UEs. We take this suitable value to be equal to 10.

2. We observe that imposing the integer constraints on the variables xij just in-
creases the computational complexity by a large factor, and this effect is directly
reflected in the time taken for a single run of the simulation. Hence, we relax
the integer constraints on the variables xij and then try to round off the values
obtained for these variables to 0 or 1 in order to get near optimal association in
the network.

4.1.2 Implementation of the Modified Model

We implement the above discussed optimal cell formation model along with the men-

tioned modifications in the MATLAB environment and then analyze the results hence

obtained to draw some key observations.

Here, we use the Genetic Algorithm (GA) to solve the constrained relaxed optimiza-

tion problem we have. A major reason to go for the Genetic Algorithm in order to solve

our problem is that this algorithm gives the global optimal solutions and allows us to

solve Mixed Integer Programming problems, which in case, can be used for less num-

ber of UEs as GA can’t handle large number of variables while solving mixed integer

optimization problems. We also tried to solve the problem by some very famous local
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optimization algorithms such as fmincon but we observed that the algorithm got stuck

in the local optima, and better results were obtained by using the Genetic Algorithm.

Genetic Algorithm is an algorithm to solve optimization problems which may be

constrained, unconstrained or may have mixed integer restrictions for some of the vari-

ables and is based on the process of natural selection, the process that derives biological

evolution. The GA repeatedly modifies a population of individual solutions. At each

successive iteration, GA randomly selects individuals from the current population who

are to become the parents of the children for the next generation. In this way, over

successive generations, the population evolves towards an optimal solution.

4.1.3 Simulations and Results

It is quite evident that a considerable number of new degrees of freedom are introduced

to the system by the mmWave networks, that should in turn obviously enhance the per-

formance of the network. In order to evaluate the performance gain due to the presence

of these new degrees of freedom, we simulate a network with various topologies with

2 BSs and 10 UEs, which are distributed in an area of 1 square kilometer. The key

parameters considered for our simulation are mentioned below:

• We consider a mmWave wireless channel with path-loss exponent α = 3.

• The control channel bandwidth is 50kHz, hence the noise power is −127dB.

• The SNR threshold of the typical UE is 0dB.

• All the BSs adopt a transmission power of 30dBm.

The results of the simulations are presented below. There are 8 experiments carried

out in total. In the experiments 1 - 4, we solve the optimization problem for the fully

directional communication mode by varying the number of RF chains per BS. Simi-

larly, the experiments 5 - 7 are for carried to solve the problem for the semi directional

communication mode by varying the number of RF chains per BS. And finally, the last

experiment shows the result for the omni directional communication mode. The perfor-

mance gain results presented in the table are averaged over 5 random topologies.
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Table 4.1: PERFORMANCE OF RESOURCE ALLOCATION IN VARIOUS MODES OF
COMMUNICATION WITH ONE RF CHAIN PER UE. ALL RATES ARE MEASURED

IN bits/s/Hz

Experiment
Communication

Mode
RF Chains

per BS
Network
Sum Rate

Minimum
Rate

Jain’s
Fairness

Index
1

Fully Directional

1 39.904 2.03 0.84
2 2 54.080 2.86 0.897
3 3 79.796 3.17 0.851
4 4 92.454 4.24 0.874
5

Semi Directional
1 23.991 1.11 0.743

6 2 50.385 1.52 0.775
7 3 66.681 1.96 0.859

8
Omni-

Directional
1 5.964 0.13 0.724

4.2 Conclusions

From the results presented in Table 1, we can say that the fully directional mode out-

performs the other modes, especially the traditional omni-directional mode by a large

factor, as the directionality feature enhances the link budget and also reduces the in-

terference. Not only the fully directional mode, but the semi directional mode also

performs very well when compared to the traditional mode of communication. Partic-

ularly, we can see that as compared to the omni directional mode, there is a signifi-

cant enhancement in the network sum rates in the fully-directional and semi-directional

modes of communication. Also, we cannot forget about the fact that the increase in the

number of RF chains introduces new degrees of freedom in the system, which further

leads to the improvement in the sum rates and the minimum rates. Under ideal condi-

tions, the network data throughput increases approximately linearly with the number of

transmitting antennas. And finally, we can also observe that the fully directional mode

of communication clearly outperforms the other modes in terms of fairness in resource

allocation in the system which is verified by the Jain’s Fairness Index.
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CHAPTER 5

SUMMARY

In order to be able to solve the resource allocation problem, we convert the multi-

objective resource allocation optimization problem to a constrained single-objective

optimization problem by the means of a system utility function that is decided by the

system designer in the chapter IV. We, as system designers, choose the sum information

rate as the utility function and then solve the earlier presented single-objective optimiza-

tion problem using Polyblock Outer Approximation (PA) algorithm, which basically

approximates the performance region of the system, and exploiting the fact that the

optimal point lies on the proper vertices of the polyblock, we determine the ε-optimal

point in the system and present the information rate experienced by each of the users

when the resources have been allocated optimally. We support our claims by demon-

strating the progress of the algorithm which clearly shows the process of approximation

of the performance region alongside the illustration of the Pareto boundary in each of

the iterations.

In the later part of the work, we discuss about the concept of dynamic cell in a little

depth. We take the optimal cell formation optimization problem proposed in Shokri-

Ghadikolaei et al. (2015) and carry out the simulations. Since the complexity of the

proposed problem increases exponentially with the increase in the number of variables

in the system, we make some important modifications in the proposed problem during

the implementation, such as relaxing the integer constraints on the user association vari-

ables. We carry multiple experiments under different communication modes, namely

fully, semi and omni-directional communication modes with 2 BS and 10 UEs varying

the number of RF chains per BS to determine the network sum rate achieved in the sys-

tem, minimum rate of UE and Jain’s Fairness Index to show the fairness in the system.

The results of each experiment is determined by averaging out the results obtained in 10

sample experiments with varying network topologies. From the simulations conducted

in various situation, we clearly infer that the resultant fully directional mode of commu-

nication outperforms the traditional omni-directional mode of communication in terms



of achieved network sum rate, minimum rate and fairness in resource allocation in the

system.
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