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Abstract

Artificial Neural Networks are central to some of the most established Deep learning and AI
techniques. Many applications of deep learning are error resilient and hence there’s value
to bringing down the energy consumed by ANNs. Implemented with Software techniques
alone, a large percent of energy computations can be traded off for an insignificant quality
loss. Here, we present a new approximation strategy for neural networks and demonstrate
it’s implementation on an FPGA platform.
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Chapter 1

Introduction

1.1 Error Resilient Computing

Many algorithms dealing with data manipulation, such as the simple KNN and KMEANS
for image segmentation, JPEG/MPEG encoding and decoding algorithms have a property
special to them in that the output of these algorithms do not get affected by any noticeable
amount when a small part for the data is corrupted or is slightly inaccurate.
This property can be used to our advantage by artificially introducing these inaccuracies for a
fair trade-off of a large number of CPU operations. By compromising the 100% quality of
the output of the algorithm, we could save a lot of computation power. Leveraging this idea
is at the core of the area of approximate computing.

The field of Approximate computing is a new paradigm that utilizes this property of
error resiliency in it’s applications by relaxing the number of uncritical computations in the
algorithm.

1.1.1 Error curves

There is a question of how much approximation is allowed by the application. Our approx-
imation algorithm should allow for us to use hyperparameters to increase or decrease the
output accuracy, while increasing or decreasing power savings respectively. The question of
how much depends on the application.

These hyperparameters are known as performance tuning knobs. There can be multiple
knobs which adjusts the output accuracy-power tradeoff.
Hoffmann et al. [5] gives a detailed control flow view of how the knobs are adaptively
adjusted.
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Fig. 1.1 Quality control knob

1.2 Motivation for Neuromorphic Computing

Over the past few years, deep neural networks have witnessed a huge success in the field
of artificial intelligence and deep learning. These systems are deployed in a number of real
world applications, lie the Google Assistant, Apple’s Siri, FaceLock, etc. However, the deep
networks are very compute intensive. According to Venkataramani et al,[2] SuperVision
[2], a DLN which recently won the Imagenet visual recognition challenge, contains 650,000
neurons and 60 million connections demands compute performance in the order of 2-4 GOPS
per classification.

Energy efficiency is also a factor to consider in the case of mobile devices, as mobile
devices with limited battery could die out because of the high power consumption.

This raises a demand for a more energy optimized architectures for use in real world
devices. The current standard is to run a computation optimized GPU (which are costly)
accessed from a cloud server. All the computation occurs remotely and gets interfaced to the
terminals.
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Fig. 1.2 Intel Nervana chip

Neuromorphic Computing is increasingly gaining traction to address this issue. In the
October of 2017, Intel introduce it’s first Neuromorphic chip, Intel’s "Nervana" specifically
designed and optimized for use of AI and deep neural networks. the optimizations enabled it
to perform faster than the NVIDIA 1080Ti over standard benchmarks.

1.3 Software and Hardware based approaches to approxi-
mate computing

Computation resiliencies can be found at all levels. Approximation at the software levels
can be classified to be in the domain of systems computer engineering, while hardware
approximations come under VLSI and ASIC development.

1.3.1 Software based approximations

These techniques are either algorithmic or operate at the OS level. Full compiler toolchains
have been created as a way to approximate error resilient parts of algorithms. Sidiroglou-
Douskos et al. [7]

1.3.2 Hardware based approximations

: These approximations deal with hardware architectural modifications which produce
inaccurate outputs. For example, approximate Adders: As demonstrated in Gupta et al. [4],
The significant bits are evaluated precisely while the lower significant bits (LSBs) are given
a more inaccurate but efficient adder design.

All hardware ASICs are generally targeted at one specific component of the hardware
accelerator. However, these different systems can be used in conjunction with each other and
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full top-down systems such as the one demonstrated by Raha and Raghunathan [6] can also
be implemented.

1.4 Objectives of this dissertation

The approximations shown here can be classified as clever ways of computation skipping
applicable in neural networks. They are inspired by the works of the AxNN from Venkatara-
mani et al. [2014] and the ApproxNN from Zhang et al. [2015] designs. The AxNN identifies
the the error resilient neurons individually and then apply precision scaling on them. It then
retrains and precision scales further. ApproxNN on the other hand uses an improved metric
to grade neurons for error resilience, and introduces hardware approximations over them.
A direct way of avoiding computations in neural networks is to identify the "extraneous"
neurons present in the network beforehand, then skip over computing their outputs.
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Approximations

2.1 Need for approximations

Most algorithms dealing with the analytics of big data have the property of being error re-
silient. Omitting a few operations or replacing them with inaccurate computations would only
change the output by a small amount. For practical applications, this could be advantageous.

2.2 Standard Strategies

The approximations that we employ must be such that it is able to fit in with the framework
of hardware driver elegantly. Approximations can be done at multiple levels of the chain,
either at the software level or at the hardware level.
Several works have developed novel techniques for approximations in the software level.
However, in the hardware domain, there are mainly 3 techniques where energy efficiency can
be called in for:

• Supply voltage scaling: The DRAM gets a rated supply voltage for powering it. The
power consumed by the DRAM ∝ SupplyVoltage2. A reduction in the supply voltage
will decrease the certainity of the stored value being retained.
The data resilient to errors can be routed to the portion of the DRAM receiving the
lesser supply potential, as demonstrated in detail by Chippa et al. [1].

• Precision scaling: The DRAM cell expends many data cycles while storing it’s data
used for processing. If the application of an algorithm shows resiliency to a particular
value stored in a DRAM cell, the number of bits used to store data for a less critical
value uses up extraneous cycles. this is one area where some corners could be cut.
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• Look-up tables: The multiplier in the CPU takes up a lot of energy for computation
of products. If the products are done over integers and are only few in number, the
numbers can be rounded off and the multiplication can be performed by looking at the
value stored in the multiplication look-up table.

2.3 Relevant Work

: Here we present some comments on some of the previous works and developments in
the area in the context of neural networks leading to more clever approaches to increase
efficiency while still maintaining the quality of output.
The approximations shown here can be classified as clever ways of computation skipping
applicable in neural networks.

• Du et al. [2] shows how the application of the above techniques over neural networks.
Reducing bitwidth over all the storage units alone can give great amount of savings.
However, rather than only pruning the components which can be

• The AxNN from Venkataramani et al. [2014] from identifies the the error resilient
neurons individually and then apply precision scaling on them. It then retrains and
precision scales further.

• ApproxNN from Zhang et al. [2015] on the other hand uses an improved metric to
grade neurons for error resilience, and introduces hardware approximations over them.

• Some novel approaches, like the one in Ujiie et al. [8] utilizes the fact that the maxpool
layer wastes all but one vector computations as all others are set to 0. It tries to
predict which of the inputs is maximum beforehand and saves on the extra left out
computations.

In our study, we present a more lightweight approach to the problem. It is largely inspired
by the works of the AxNN from Venkataramani et al. [2014] and the ApproxNN from Zhang
et al. [2015] designs. In these approaches, the omission of computation is based on the
introduction of a new metric called the criticality of the neurons in the neural network.

2.4 Approximations Introduced

Here, we introduce two lightweight novel approaches to pruning away extraneous computa-
tions in neural networks as a form of approximation.
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2.4.1 Criticality-based approximation

Each layer of the neural network has a number of neurons. These neurons are ranked in the
order of their importance in influencing the output. This quantity is termed as the criticality
of the neuron. The criticality of neurons in a layer is a scalar number defining how much
jitter a neuron’s output causes to the overall output, on average. The less critical neurons
can be "turned off", or rather be replaced by a bias of a value equal to their mean output
over the validation data. This ensures that the output of the neuron is nominal and error to
the output is limited to low enough variance to not change the output by much. Leaving
out computations for few of the neurons reduces the number of computations significantly
as it throws away requirement for the weighted sum computation, especially at populated
layers. This is done by thresholding the less critical neurons. This threshold limit gives a fine
granular knob to control the degree of approximation. Thresholding on multiple layers gives
multiple fine granular knobs.

Criticality

The criticality metric introduced previously is shown below. This is just saying the amount
of impact a neuron has on the output. Notation : z(i,k) is the output of the ith neuron in the
kth layer.

Criticality(Cri,k) = δ zi,k
∂Loss
∂ zi,k

Computation of the metric The sample variance computation is straightforward: com-
pute sum of squares and sum of outputs of each of the neurons and use them to find variance.
The derivative, however requires some effort.

Loss(L) =
1
2
||y− ygolden||2

∂L
∂ zi,k

= ∑
t
(yt − ygold,t)∗

∂yt

∂ zi,k

The derivative term can be found out by back-propagation. Using the loss derivatives of one
layer, loss derivative of the neuron outputs of the previous layers can be found.

yt = f (xt,K)
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∂yt

∂ zi,k
= f ′(xt,K)∗∑

j
wK−1, j ∗

∂ z j,K−1

∂ zi,k

For large networks with different layers, the following can be observed:

1) Notice that every pair of connection i, k between two different layers occurs in this
computation as in the forward propagation case. Hence the same looping structure can be
used to calculate the derivative by backpropagation. It doesn’t matter what type of layer it is.
The derivatives are then averaged over.
2) for ReLU layers:

∂yt

∂ zi,k
= sgn(xt,K)∗∑

j
wK−1, j ∗

∂ z j,K−1

∂ zi,k

where sgn is the 0-1 sign function.
3)For maxpool layers, if y is max of the layers:

∂yt

∂ zi,k
=

∂ z j,K−1

∂ zi,k

otherwise

∂yt

∂ zi,k
= 0

4) For LRN layers: Since the alpha is very low, the derivative is taken to be equal to the
derivative.(Approximately true).

2.4.2 Input Similarity based approximation

Input similarity filter: In the case of image data input for a network, an image is first
windowed individually by the convolutional layers (or fully connected layer in the case of an
MLP). In some of the windows, especially in the case of recognition-images, a lot of windows
have a constant (less varying) pixel intensities. The convolutional layer filtering over it does
a lot of extra multiplications and additions to produce the neuron’s output of a constant . If
it is known beforehand that a given window contains pixels of less varying intensities, the
approximate convolution can be produced in a single multiplication operation. The sum of
filter weights over each window have to be precomputed. The variance of the pixel intensities
is taken as a parameter that can be thresholded, giving rise to a quality configurable knob.
This is a coarse granular knob. Note: The AxNNs proposed have their approximate output
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deriving from a smaller bit-width based computation. Here, the approximate output will be a
bias unit.





Chapter 3

Experiments and Results

3.1 Experimental Setup

The approximation was tested on four standard Neural networks as benchmarks shown in the
table below. The program was set to run on a 3.4GHz Intel Xeon processor. The experiment
can be done only on sequential platforms and not on parallel platforms, as we would want
speedup to be proportional to the number of computations avoided.

On a software platform, the power consumed it taken to be proportional to the time taken
by these algorithms during runtime. This is true when running sequential code on a CPU.
The number of computations performed is proportional to the time taken by the algorithm,
and hence the power consumed.

The most time dominant operation in the whole of the algorithm are the number of
floating point multiplications between every pair of numbers going on.

As we can see, with virtually no loss in quality, selective neuron skipping yields significant
savings and speedup.
For the Lenet-5 and CIFARQuick benchmarks, speedup of close to 2X savings can be seen. It
is also the case that the bigger networks offer more significant savings, due to the extraneous
neurons being more prevalent than on small, under-performing networks.

Table 3.1 Benchmarks considered for testting

Benchmark Dataset Peak Accuracy Application
CIFAR-Quick CNN CIFAR-10 80.6 Object recognition
LENET-5 MNIST 97.54 Handwriting Recognition
Multi-Layer Perceptron MNIST 94.53 Handwriting Recognition
CNN over SVHN SVHN 88.00 House Number Reading
AlexNet ImageNet-2013 84.1 Image scene Classification
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Table 3.2 Benchmarks size

Benchmark Layers Number of neurons Input features
CIFAR-Quick CNN 5 66058 3072
LENET-5 6 8034 1024
Multi-Layer Perceptron 4 1022 784
CNN over SVHN 5 28810 3072
AlexNet 9 1050000 154587

The algorithms picks and identifies the neuron which fall below the threshold of a set
criticality metric. These are then replaced simply by a bias unit, while having to avoid the
extra computation effort of costly computing matrix-vector multiplication. Hence the more
dense layers tend to be the bottleneck and target for the criticality filtering. The neurons
omitted are weeded out only from two of the bottleneck layer in the above cases. Each layer
is chosen because the thresholds would be different in each layer, leading to multiple quality
controlling knobs (one for each layer).

3.2 Quality-Energy graphs obtained

Fig. 3.1 Lenet accuracy compared to ideal
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Fig. 3.2 Lenet runtime

Fig. 3.3 Lenet input similarity
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Fig. 3.4 CIFAR10 accuracy compared to ideal

Fig. 3.5 cifar10 runtime
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Fig. 3.6 mlp accuracy compared to ideal

Fig. 3.7 mlp runtime
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Fig. 3.8 svhn accuracy compared to ideal

Fig. 3.9 svhn runtime
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Fig. 3.10 alexNet runtime

Fig. 3.11 alenNet accuracy compared to ideal

For the case of AlexNet, the accuracy was measured using a GPU with CUDA. However to
measure the number of computations skipped, a smaller subset of the test set was considered
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and the time was measured and extrapolated. Since the number of computations even after
thresholding remains exactly the same for each image, the runtime can be safely assumed to
be proportional to the number of computations, hence proportional to the power consumed.
For a 2 percent quality degradation when compared to ideally computed case, the best
accuracy obtained is as follows:

Table 3.3 Degraded quality to skipped computations

Benchmark Base runtime Enhanced runtime Dataset-size Approximations
AlexNet 1.0(normalized) 0.84 5000 Criticality

3.3 Degradation vs Speedup

For a 2 percent quality degradation when compared to ideally computed case, the best accu-
racy obtained shown below. The only overhead involved is to check whether each neuron
falls below the threshold or not. Another challenge involved to do this is to identify the
ballpark of the variance threshold.

Fig. 3.12 accuracy vs quality loss
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Fig. 3.13 alexnet accuracy vs quality loss





Chapter 4

Implementation on Hardware: FPGA
cell

4.1 Deployment in real systems

Many real world chips that utilize neuromorphic computing have a separate hardware driver
for accelerating runtime performance. A detailed survey on implementation and deployment
of Neural networks has been shown in Implementing this forward pass has been demonstrated
in Guo et al. [3].
We adopt the "Quality configurable Neural processing environment" cell model introduced
in Venkataramani et al. [9].

4.2 QcNPE cell

Introduced in Venkataramani et al. [9] and Zhang et al. [10], this architecture is implementable
on an FPGA. Each NCU evaluator cell performs a dot product of the weight and the input to
the neuron and adds them up.
In every step, it produces simultaneously all the outputs of the neurons in a given layer, and
stores these outputs in the DRAM.

4.2.1 Compliance to approximation scheme

Each NCU(Neural computing unit) performs one multiplication of weight and input parameter.
It takes in control sequences as well. The threshold to omit or perform the multiplications in
each of the NCU are precomputed according to our approximation scheme and stored in the
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Fig. 4.1 QcNPE cell

FIFO units. These can determine if the NCU has to perform or skip the multiplication.
The more multiplications we skip, the more power savings we can get.

[h]

For larger networks like VGG net, the layer with very large number of neurons (> 10000)
are sent and computed batchwise in multiple steps.

4.3 Results

Running this model on s standard Xilinx FPGA running on Amazon AFI FPGA instance.
The number of multiplications that can be saved here have been noted.

Table 4.1 Multiplications performed in the dominant step

Benchmark Number of multiplications
CIFAR-Quick CNN 2228224000
LENET-5 2256000
Multi-Layer Perceptron 2662400000
CNN over SVHN 6553600000
AlexNet 720000000
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Fig. 4.2 cifar: multiplication skipped

Fig. 4.3 mlp: multiplications skipped
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Fig. 4.4 svhn: multiplications skipped
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Conclusion

Significant savings for each of the cases can be observed as above. It is expected that this
technique must work on general neural networks as well. It particularly works well over
structured data rather than unstructured data because some features learned by neurons on
structured data (by CNNs) are local to a region of the image, and it may be potentially so
that some are less important areas in the structured data. Base hardware approximations
on neural networks are described in Gysel et al. [2016]. Further, simple precision scaling
and conventional hardware approximations are presented in Moons et al. [2016]. Other
than this, Ujiie et al. [2016] introduces specific approximations on layers of CNNs, such as
Lazy-convolution layer, where convolution computations before a maxpooling layer can be
avoided.
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