
PRIORITY BASED SCHEDULER IN RUST BASED

REDOX OPERATING SYSTEM

A Project Report

submitted by

ROHIT SAINI

in partial fulfilment of requirements

for the award of the dual degree of

BACHELOR OF TECHNOLOGY AND MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

MAY 2018

THESIS CERTIFICATE

This is to certify that the thesis titled PRIORITY BASED SCHEDULER IN RUST

BASED REDOX OPERATING SYSTEM, submitted by Rohit Saini, to the Indian

Institute of Technology, Madras, for the award of the degree of Bachelor of Technology

and Master of Technology, is a bona fide record of the research work done by him

under our supervision. The contents of this thesis, in full or in parts, have not been

submitted to any other Institute or University for the award of any degree or diploma.

Prof. Chester Rebeiro
Research Guide
Assistant Professor
Dept. of Computer Science and Engg
IIT-Madras, 600 036

Dr. Arun D. Mahindrakar
Research Co-Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 1st May 2018

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to Prof. Chester Rebeiro for guiding

me throughout my dual degree project, without whose undying support and trust, none

of this would have been possible. His guidance kept me motivated and helped me

pursue the area of development of Scheduler in operating system in rust programming

language.

i

ABSTRACT

Since a long time operating system codes were written in C/C++. Writing crictical

codes in C/C++ is never a piece of cake and the developers have to endure with the never

ending problem like segmentation faults, dangling pointers, null pointers and memory

leaks. Thus Rust came along promising all the features of a higher level language

without compromising on the performance, safety and concurrency-features of the low

level languages. Most of the checks performed by other languages during run-time are

performed by Rust during the compile time itself, thus making it blazingly fast. It is

often pitched with the three goals : safety, speed and concurrency. Its ability to seem

like a higher level language for writing even low-level code like Operating systems,

device drivers.

The process scheduling is the activity of the process manager that handles the process

of adding, running and removal of processes from the CPU and the selection of another

process to execute on CPU. Priority scheduling is a method of scheduling processes

based on their priority. In this method, the scheduler chooses the tasks with highest

priority to schedule. Assigning priority to every process, and processes with higher

priorities are carried out first, whereas tasks with equal priorities are carried out on

round robin basis.

The main objective of this paper is to impelement a better approach for CPU schedul-

ing algorithm which improves the performance of CPU in real time operating system.

The proposed Priority based Round-Robin CPU Scheduling algorithm is based on the

integration of round-robin and priority scheduling algorithm. It retains the advantage of

round robin in reducing starvation and also integrates the advantage of priority schedul-

ing. The proposed algorithm also implements the concept of aging by assigning new

priorities to the processes. The proposed algorithm improves all the drawbacks of round

robin CPU scheduling algorithm.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

1 Introduction 1

2 Process Scheduling 2

2.1 Objective . 2

2.2 Round Robin scheduling . 3

2.3 Priority based preemptive scheduling 4

3 Rust Programming Language 6

3.1 About Rust . 6

3.2 Syntax . 6

3.3 Memory Management . 7

3.4 Ownership in rust . 7

3.5 Cargo: Rust Package Manager . 7

4 Redox Operating System 8

4.1 About Redox . 8

4.2 How redox OS looks . 8

4.3 Setup and Compiling Redox . 10

5 Redox Scheduler 11

5.1 Redox Default Scheduler . 11

5.2 Implementing Priority based scheduler in Redox 11

5.3 Performance of new scheduler . 13

iv

LIST OF TABLES

2.1 Table depecting processes and their arrival time in RR 4

2.2 Table depecting processes arrival time and their execution in RR . . 4

2.3 Table depecting processes and their arrival time in PBS 5

2.4 Table depecting processes arrival time and their execution in PBS . . 5

v

LIST OF FIGURES

1.1 A Basic state machine diagram depicting working of scheduler . . . 1

4.1 Screenshot of Redox-os desktop 8

4.2 Screenshot of Redox-os start menu and some programs 9

4.3 Screenshot Redox-os with terminal 9

4.4 Snapshot of Redox-os deployed on Lenovo thinkpad 9

vi

ABBREVIATIONS

IITM Indian Institute of Technology, Madras

CPU Central Processing Unit

FCFS First Come First Serve

RR Round Robin

PBS Priority Based Scheduler

OS Operating System

ML Meta Language

RTFM Read the Fine Manual

vii

CHAPTER 1

Introduction

This thesis is concerned with operating system process scheduling algorithm that sched-

ules different processes according to the assigned criteria and defined algorithm, im-

proving overall throughput by removing processes which are unrunnable, like waiting

for resource aquisition, and pushing runnable process in processer to continue their

execution.

Scheduling is the process by which all processes are given access to system resources

(e.g. processor cycles, memory access, internet usage, etc.). The need for a better

and better scheduling algorithm always arises from the requirement of fast computer

systems to perform multitasking (execute multiple processes at a time) and multiplex-

ing(transmit multiple flows at a time). Scheduling is a fundamental function of oper-

ating system that determines which process to schedule in processor, when there are

multiple runnable processes ready to execute. Process scheduling is important because

it impacts resource utilization and other performance parameters. There exists a number

of CPU scheduling algorithms like First Come First Serve, Shortest Job First Schedul-

ing, Round Robin scheduling, Priority Scheduling etc,.

Figure 1.1: A Basic state machine diagram depicting working of scheduler

CHAPTER 2

Process Scheduling

2.1 Objective

A good scheduling algorithm should be fair, efficient, maximize throughput and re-

source use, minimize response time and overhead, minimize turnaround time, degrade

gracefully, enforce priorities, and free from starvation.

There are multiple factors that a process scheduler should attain.

• Maximize CPU utilization: Ideally the CPU would be busy 100% of the time, so
as to waste 0 CPU cycles. In real time, processor should execute a process for
whole of its burst time.

• Maximize throughput: A scheduling algorithm should be capable of servicing the
maximum number of processes per unit of time.

• Avoid Starvation: A process should not wait for unbounded time before or while
process service.

• Minimize Turnaround time: Time required for a particular process to complete,
from submission time to completion.

• Minimize overhead: Overhead causes wastage of resources. But when we use
system resources effectively, then overall system performance improves greatly.

• Minimize Waiting time: Amount of time a process spend in the ready queue wait-
ing for their turn to get on the CPU for execution

• Minimize Response time: The time taken in an interactive program from the is-
suance of a command to the commence of a response to that command.

• Enforcement of priorities: if system assigns priorities to processes, the scheduling
mechanism should favor the higher-priority processes.

• Achieve Fairness: Each process should receive a fair share of CPU resources or
execution time.

So in conclusion a good scheduling algorithm for a better system resource allocation

and sharing should posses the above characteristics.

2.2 Round Robin scheduling

Round Robin Scheduling is the preemptive FCFS scheduling algorithm. RR scheme

solves the problem faced in FCFS scheduler by providing each process a small unit

of CPU time known as time quantum/time slice which varies depending on its imple-

mentation (from 10 to 100 milliseconds). RR is also one of the simplest scheduling

algorithms for processes in an operating system. In fact, after time slice expires, the

process is preempted and added to the end of the ready queue. The major advantage

of RR is fairness whereby each process gets an equal amount of the CPU time. And

its drawback is the average waiting time. The average waiting time can be bad espe-

cially when the number of processes is large. For example, let N be the number for

processes in ready queue and time slice is T milliseconds, therefore each process gets

1/N of the CPU time. RR offers better performance for jobs with small burst time but

context-switching time adds up for large number of jobs.

Disadvantages of Round Robin Scheduler

• Larger waiting time and Response time: In RR architecture, waiting time is rel-
atively large as most of the time a process spends in ready queue waiting for its
chance to get executed, which inturn increases process completing time. Larger
waiting and response time are clearly a drawback in round robin structure as it
leads to degradation of system performance.

• Context Switches: When the time slice of the task ends and the task is still execut-
ing on the processor the scheduler forcibly preempts the tasks on the processor
and stores the task context in stack or registers and allocates the processor to
the next task available in the ready queue. The action known as context switch.
Context switch leads to the significant wastage of time, memory and leads to
scheduler overhead.

• Low throughput: Throughput is defined as number of process completed per time
unit. If round robin is implemented in soft real time systems throughput will be
low which leads to severe degradation of system performance. If the number of
context switches is low then the throughput will be high. Context switch and
throughput are inversely proportional to each other.

Major disadvantage of round robin scheduling is that it doesn’t give special pref-

erence a task above any other usual ones. This means an urgent request doesn’t get

handled any faster than other requests in ready queue, which could lead to a catastro-

phe in real time OS tasks. Priority Bases scheduling architecture helps overcome this

problem by assigning higher priorty to more important tasks.

3

Table 2.1: Table depecting processes and their arrival time in RR

Process ArrivalT ime BurstT ime
P1 0 7
P2 2 4
P3 3 2
P4 9 1

Table 2.2: Table depecting processes arrival time and their execution in RR

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Arrival P1 P2 P3 P4

Schedule P1 P1 P2 P1 P3 P2 P1 P3 P2 P1 P4 P2 P1 P1

Time Slice = 1 units

Average Waiting Time = (7 + 4 + 3 + 3) / 4

= 4.25

Average Response Time = (0 + 0 + 3 + 3) / 4

= 1.5

Average Turnaround Time = (14 + 8 + 2 + 1) / 4

= 7.25

2.3 Priority based preemptive scheduling

In priority based scheduling, scheduler assigns a fixed base priority to every new pro-

cess, and the scheduler arranges the processes in the ready queue in order of their pri-

ority. Scheduler picks the first process in the ready queue i.e., the one with the highest

priority and executes it. If there are multiple process with same priority then the tasks

are carried out on a round robin basis. Lower priority processes get interrupted by an

incoming higher priority processes. Overhead is not minimal, nor is it significant in

this case. Waiting time and response time depend on the priority of the process. Higher

priority processes have smaller waiting and response times. Deadlines can be easily

met by giving higher priority to the earlier deadline processes. Real time OS can have

huge advantage with this scheduler, by giving higher priority to urgent tasks.

4

A major problem with priority scheduling is indefinite blocking or starvation of low

priority processes. In priority scheduling some low priority process may keep waiting

indefinitely for CPU time. In a heavily loaded system continuous arrival of higher

priority processes can prevent low priority process from getting the CPU. One solution

to the problem of starvation is aging. Aging is a technique of gradually increasing the

priority of process that waits in the ready queue for a longer period of time. Eventually

as the process priority increases slowely, it will have a highest priority in the queue and

it would be executed. Once it gets its chance to execute, its priority can be brought back

to the previous low level.

Let us compare the two scheduling algorithms

Table 2.3: Table depecting processes and their arrival time in PBS

Process ArrivalT ime BurstT ime Priority
P1 0 7 2
P2 2 4 3
P3 3 2 1
P4 9 1 4

Table 2.4: Table depecting processes arrival time and their execution in PBS

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Arrival P1 P2 P3 P4

Schedule P1 P1 P1 P3 P3 P1 P1 P1 P1 P2 P2 P2 P1 P4

Time Slice = 1 units

Average Waiting Time = (2 + 7 + 0 + 5) / 4

= 3.5

Average Response Time = (0 + 7 + 0 + 5) / 4

= 3

Average Turnaround Time = (9 + 11 + 2 + 6) / 4

= 7

As we can see the Average Waiting time and Turnaround time is less in this case im-

proving overall scheduler performance, Avg. response time higher as processes with

lower priority have to wait for the higher priority processes to finish.

5

CHAPTER 3

Rust Programming Language

3.1 About Rust

Rust is a systems programming language that runs blazingly fast, prevents segfaults,

and guarantees thread safety. Rust is an open-source programming language sponsered

by the Mozilla software foundation and a community of volunteers to help the develop-

ers create fast and secure applications. Apart from preventing segmentation faults and

memory leaks Rust offers zero-cost abstractions, guaranteed memory safety, threads

with no data races, pattern matching, type inference and efficient C-bindings with a

minimum runtime size. Rust has no in-built garbage collection like those used by Java

etc.., but uses a method called Resource Acquisition and initialization and reference

counting as in C++. Rust object system consists of structures, implementations and

traits. Implementations are similar to functions in classes and are defined with impl

keyword whereas Inheritance and Polymorphism are provided by the traits that allow

methods to be implemented on structures. Thus the perfect ensemble of high level fea-

tures and the lower level programming constructs makes it an ideal language to write

either user-level applications or kernel level programs with same ease.

3.2 Syntax

The syntax of Rust is similar to C and C++, with blocks of code delimited by curly

brackets, and control flow keywords such as if, else, while, and for. Not all C or C++

keywords are implemented, however, and some Rust functionality (such as the use of

the keyword match for pattern matching) will be less familiar to programmers coming

from these languages. Despite the superficial resemblance to C and C++, the syntax of

Rust in a deeper sense is closer to that of the Meta Language family of languages. A

function need not end with a return expression: in that case the last expression in the

function creates the return value.

3.3 Memory Management

The system is designed to be memory safe, and it does not permit null pointers, dan-

gling pointers, or data races in safe code. Data values can only be initialized through a

fixed set of forms, all of which require their inputs to be already initialized. Rust also

introduces additional syntax to manage lifetimes, and the compiler reasons about these

through its borrow checker.

Rust does not use an automated garbage collection system like those used by Go, Java or

.NET Framework. Instead, memory and other resources are managed through resource

acquisition is initialization (RAII), with optional reference counting. Rust provides

deterministic management of resources, with very low overhead. Rust also favors stack

allocation of values and does not perform implicit boxing.

3.4 Ownership in rust

Ownership is Rust's most unique feature, and it enables Rust to make memory safety

guarantees without needing a garbage collector. Rust has an ownership system where

all values have a unique owner and the scope of the value is the same as the scope of

the owner. When the owner goes out of scope, the value will be dropped. Values can

be passed by immutable reference using &T, by mutable reference using &mut T or by

value using T. At all times, there can either be multiple immutable references or one

mutable reference. The Rust compiler enforces these rules at compile time and also

checks that all references are valid.

3.5 Cargo: Rust Package Manager

Cargo is a tool that allows Rust projects to declare their various dependencies and ensure

that you'll always get a repeatable build. Cargo helps in building the code, downloading

all the dependencies that code needs, and building those dependencies.

7

CHAPTER 4

Redox Operating System

4.1 About Redox

Redox is a Unix-like Operating System written in Rust, aiming to bring the innovations

of Rust to a modern microkernel and full set of applications, a language with focus

on safety and high performance. Redox, following the microkernel design, aims to be

secure, usable, and free. Redox is inspired by previous kernels and operating systems,

such as SeL4, MINIX, Plan 9, and BSD. Redox is not just a kernel, it’s a full-featured

Operating System, providing packages (memory allocator, file system, display man-

ager, core utilities, etc.) that together make up a functional and convenient operating

system. You can loosely think of it as the GNU or BSD ecosystem, but in a memory

safe language and with modern technology. See this list for overview of the ecosystem.

Click to visit Redox: redox-os.org

4.2 How redox OS looks

Attached some images of redox deployed on Lenovo Thinkpad

Figure 4.1: Screenshot of Redox-os desktop

https://www.redox-os.org

Figure 4.2: Screenshot of Redox-os start menu and some programs

Figure 4.3: Screenshot Redox-os with terminal

Figure 4.4: Snapshot of Redox-os deployed on Lenovo thinkpad

9

4.3 Setup and Compiling Redox

1. Make sure you have a Redox toolchain installed (x86_64-unknown-redox-gcc).
You can install it from .deb packages (https://static.redox-os.org/toolchain/apt/)
or build redox/libc manually.

2. Run command
$ rustup update.

3. Run command
$ make clean pull.

4. Make sure you have the latest version of Rust nightly! (rustup.rs is recommended
for managing Rust versions, install it form the link: https://www.rustup.rs. If
you already have rustup installed, then run commands $rustup).

5. Update packages GNU Make, NASM and QEMU/VirtualBox.

6. Pull the upstream master branch, use command below
$ git remote add upstream git@github.com:redox-os/redox.git;
$ git pull upstream master

7. Update submodules
$ git submodule update –recursive –init

8. Finally build and Launch system using,
build: $ make all
Launch: $ make qemu

10

https://github.com/redox-os/libc

CHAPTER 5

Redox Scheduler

5.1 Redox Default Scheduler

Redox implements Round Robin scheduler as default scheduler, giving redox os the

ability to schedule the processes and be deployed on actual hardware. But as the work

load increases the overall waiting time and turnaround time increases, reducing the

overall performance of the scheduler. Thus a need for better scheduler is scheduler was

arising and priority based scheduler comes to the rescue giving the required improve-

ments needed.

5.2 Implementing Priority based scheduler in Redox

Below are the code snippets of implementation of Priority based scheduling

pub struct ContextList {

map: BTreeMap<ContextId, Arc<RwLock<Context>>>,

next_id: usize,

priority_list: Set<(priority,ContextId)>,

def_priority: u8,

priority_inc: u8

}

priority_list: A auto sorted Set data structure stores a tuple(priority,ContextId)

stores id and priority of a process.

def_priority: Default priority value assigned to new processes.

priority_inc: increment priority of remaining processes to avoid starvation

The below code block uses priority scheduling scheme to find a new process to

schedule on processor.

loop {

// Get element from list sorted by priority

let next_id = contexts.get_context_ptlist(to_index);

let context_lock = contexts.get(next_id);

let mut context = context_lock.write();

// Check if process is runnable

if runnable(&mut context, cpu_id) {

to_ptr = context.deref_mut() as *mut Context;

if (&mut *to_ptr).ksig.is_none() {

to_sig = context.pending.pop_front();

}

// Increments the priority

contexts_mut.inc_priority(to_index);

// move the process back to ready

contexts_mut.reorder(to_index);

break;

}

to_index += 1;

}

The use of loop is to find the first runnable process in the queue and schedule it,after

scheduling we increment the priority of the other processes by priority_inc and move

the current process to the queue in appropriate place, such that the whole list is sorted.

12

5.3 Performance of new scheduler

Priority based scheduler performs better than Round robin in improving waiting time

and also overall job completing time.

The Context switch time is increased by a slightly due to increased task of finding

highest priority task from the ready queue and increasing the priority of low priority

tasks to referain them for starving.

13

References
1. Y.A. Adekunle, Z.O. Ogunwobi, A. Sarumi Jerry, B.T. Efuwape, Seun Ebiesuwa,

and Jean-Paul Ainam. A Comparative Study of Scheduling Algorithms for
Multiprogramming in Real-Time Systems International Journal of Innovation
and Scientific Research, Vol. 12 No.1, 181, (2014).

2. Ishwari Singh Rajput and Deepa Gupta. A Priority based Round Robin CPU
Scheduling Algorithm for Real Time Systems. International Journal of Innova-
tions in Engineering and Technology (IJIET), Vol. 1 No.1, (2012).

3. William Stallings, Operating Systems Internal and Design Principles, 5th Edition
, 2006.

14

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction
	Process Scheduling
	Objective
	Round Robin scheduling
	Priority based preemptive scheduling

	Rust Programming Language
	About Rust
	Syntax
	Memory Management
	Ownership in rust
	Cargo: Rust Package Manager

	Redox Operating System
	About Redox
	How redox OS looks
	Setup and Compiling Redox

	Redox Scheduler
	Redox Default Scheduler
	Implementing Priority based scheduler in Redox
	Performance of new scheduler

