Face Detection, Tracking and Verification for

Digital Signage Applications

A Project Report

submitted by

RAUNAK KALANI

in partial fulfilment of requirements

for the award of the dual degree of

BACHELOR OF TECHNOLOGY AND MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

MAY 2018

THESIS CERTIFICATE

This is to certify that the thesis titled Face Detection, Tracking and Verification for
Digital Signage Applications, submitted by Raunak Kalani, to the Indian Institute of
Technology, Madras, for the award of the dual degree of Bachelor of Technology and
Master of Technology, is a bona fide record of the research work done by him under
my supervision. The contents of this thesis, in full or in parts, have not been submitted

to any other Institute or University for the award of any degree or diploma.

Prof. Kaushik Mitra
Research Guide
Assistant Professor

Dept. of Electrical Engineering
[I'T-Madras, 600 036

Place: Chennai

Date: 9th May 2018

ACKNOWLEDGEMENTS

I would like to begin by thanking my guide, Prof. Kaushik Mitra for all his help, support
and patience throughout the course of my project work. His approach and dedication
to research has been incomparable and has always inspired me to keep pushing myself.
All the students in the Computational Imaging Lab have been immensely cooperative,
friendly and accommodating and have greatly inspired my own work. I would like to
thank my project mate Akhil for helping me out through the project.

Were it not for the infallible faith of my parents and brother, I would not be present
here. They have been a constant support throughout my life and I am forever grateful
to them for their blessing and encouragement.

Lastly, I would like to give a huge shout-out to every one of my friends who have made

my experience at [IT Madras, a treasured one.

ABSTRACT

KEYWORDS: Deep Learning ; Face Tracking; Face Detection; Re-Identification;

Verification

The estimation of soft biometric features related to a person standing in front an ad-
vertising screen plays a key role in digital sign-age applications. Information such as
gender, age, and emotions of the user can help to trigger dedicated advertising cam-
paigns to the target user as well as it can be useful to measure the type of audience
attending a store. To be able to do these tasks we need to first detect the faces of peo-
ple standing in front of the screen. To get the features over the course of time of the
advertisement we need to be able to track the person as he/she moves across the screen.
In this project we describe a framework to be able to detect and track multiple faces in
front of a camera. For the project to be deployable at multiple faces it needs to be cost

effective and thus be able to work on medium cost machines.

il

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

LIST OF FIGURES

ABBREVIATIONS

1 Introduction and Motivation

2 Background: Convolutional Neural Networks

2.1

What are CNNs?
2.1.1 Intuition.
2.1.2 Architecture Overview

2.1.3 Layersusedin ConvNets

3 Prior Work

3.1

3.2

Face Detection
3.1.1 ' YOLO9000: Better, Faster, Stronger
3.1.2 SSH: Single Stage Headless Face Detector

313 Datasets
Face Tracking

321 GOTURN

4 Tracking and Face Re-identification
using Deep Networks

4.1

4.2
4.3

From GenerictoFace
4.1.1 Trainingonfaces
4.1.2 Adding general face features
From Single object to Multi-Object Tracking . . .
ResNet.

il

ii

vi

AN W W W W

10
10
10
11
12
14
14

16
16
16
17
17
18

4.4 Face Verification

4.5 Person Re-Identification

5 Results and Conclusions

2.1
22
2.3
24
2.5
2.6

3.1
32
33

34

4.1
4.2
4.3

LIST OF FIGURES

2-d Convolution
Convoltion on images
Convolution Network
Convlayer.
PoolLayer.
Typical ConvNet

YOLO Architecture (Redmon and Farhadi, 2016)

SSH Architecture (Najibietal.,2017)

YOLO and SSH comparison on WIDER Dataset Left: YOLO, Right:

SSH

GOTURN Architecture (Held et al.,2016)

MOT Challenge entries
Single ResNetunit

Module for finding Cosine Similarity

© © 9 wn A~ N

11
11

13
15

18
19
20

CNN

SSH
YOLO
GOTURN
FTURN
MOT
PoC

ABBREVIATIONS

Convolutional Neural Networks

Single Stage Headless (Face Detector)

You Only Look Once

Generic Object Tracking Using Regression Networks
Face Tracking Using Regression Networks

Multi Object Tracking

Proof of Concept

vi

CHAPTER 1

Introduction and Motivation

Digital signage is considered a revolutionary research area which aims to build ad-
vanced technologies for the out-of-home advertising. More specifically, with the term
"digital signage" are referred the smart screens employed to show advertising content to
a broad audience in a public/private area (e.g., store, airport, info office, taxi, etc.). The
advertising screens are usually connected to the Internet and are able to perform a series
of "measurements" on the audience in front of the screen which are then exploited for
marketing purposes (e.g., the screen reacts differently depending on the measurements).
Thousands of organizations (e.g., retailers, government institutions, etc.) have already
realized the benefits of the digital signage increasing the revenue related to their prod-
ucts or offering a better service in terms of given information to the audience.

In the context of digital signage, soft biometrics data inferred from the face of the user in
front to an advertising screen (such as gender identification and age estimation) are used
to collect information to be exploited for users profiling. Adhoc advertising campaigns
are then showed, taking into account of the collected information. Recent works demon-
strate that computer vision techniques for face detection, age and gender recognition,
classification and recognition of people’s behavior can provide objective measurements
(e.g., time of attention) about the people in front of a smart display. Systems able to
learn audience preferences for certain content can be exploited to compute the expected
view time for a user, in order to organize a better schedule of the advertising content to
be shown. The audience emotional reaction can be also captured and analyzed to au-
tomatically understand the feeling of the people to a campaign (e.g., to understand the
attractiveness of a campaign with respect to another). Recent studies demonstrate that
through computer vision methods it is possible quantify the percentage of the people
who looked-at the display, the average attention time (differentiating by gender), the
age groups who are more most responsive to the dynamic or static content.

Person re-identification plays a important role in this to check if we are continuing to
track the same person or have we lost him/her either because of occlusion or tracking

failure and subsequent re-detection.

Although the explosion of the field, in both academia and industry, it seems that mea-
surements about the re-identification of a person in front a smart screen has been not
taken into account in the context of digital signage. The information collected with a
re-identification engine could be useful to answer the following question: is a specific
person back to the advertising screen within a time slot? In computer vision literature
different methods for person re-identification have been proposed. However, differently
of the application contexts belonging to digital signage where in most of the cases only
the person face is acquired to measure the information, the classic re-identification (e.g.,
in surveillance) is based on the exploitation of features extracted considering global ap-
pearance of an individual (e.g., clothing). Few works consider the re-identification
based only on the person face.

In the following sections we will detail all the key "ingredients" useful to build a Digital

Signage system. All of the networks have been implemented in caffe (Jia et al., 2014).

CHAPTER 2

Background: Convolutional Neural Networks

2.1 What are CNNs?

2.1.1 Intuition

Suppose we are tracking the position of a space ship with a laser sensor at discrete time
intervals. Now suppose that the measurements are noisy because of mis-calibration
of the sensors. To obtain a less noisy estimate of the position of the space ship, we
would like to average several measurements. Now more recent measurements are more
important and hence we would like to take a weighted average. In practice we only sum
over a small window.

__\y!m
St = Ea:ol‘t—au}—a

where s; denotes the spaceship position at time t, X are the measurements made at time t
and w are the weights that are assigned to those measurements. This w is called a filter

or a kernel.

This was a 1-d convolution, we can do a 2-d convolution as well. In 2-d convolution
there is a 2-d kernel or w matrix. It slides over the 2-d input matrix and produces the
output as given by

5] 13]
Sij = ELCLQZ*%J ZU’Z*%J [ifa,jfbK%Jra,%er

as illustrated in figure 2.1.

But images are usually 3 dimensional, with the third dimension comprising of the 3
channels: R,G, and B. The visualization in figure 2.2 shows an example of 3d kernel

applied to an image to get a feature map.

Convolutional Neural Networks (CS231n Convolutional Neural Networks for Vi-

sual Recognition) are very similar to ordinary Neural Networks, they are made up of

Input

Kernel
a b C d
w X
e f g h
Yy z
i 1 k f
Output

aw-+bx+ey+fz || bw+cx+fy+gz || ew+dx+gy+hz

ew-+fx+iy+jz fwt+gx+jy+kz || gwt+hx+ky+£z

Figure 2.1: 2-d Convolution

v

-y

OUTPUT

INPUT

Figure 2.2: Convoltion on images

neurons that have learnable weights and biases. Each neuron receives some inputs, per-
forms a dot product and optionally follows it with a non-linearity. The whole network
still expresses a single differentiable score function: from the raw image pixels on one
end to class scores at the other. And they still have a loss function (e.g. SVM/Softmax)
on the last (fully-connected) layer and all the tips/tricks we developed for learning reg-
ular Neural Networks still apply. So what does change? ConvNet architectures make
the explicit assumption that the inputs are images, which allows us to encode certain
properties into the architecture. These then make the forward function more efficient to

implement and vastly reduce the amount of parameters in the network.

2.1.2 Architecture Overview

Convolutional Neural Networks take advantage of the fact that the input consists of im-
ages and they constrain the architecture in a more sensible way. In particular, unlike
a regular Neural Network, the layers of a ConvNet have neurons arranged in 3 dimen-
sions: width, height, depth. (Note that the word depth here refers to the third dimension
of an activation volume, not to the depth of a full Neural Network, which can refer to the
total number of layers in a network.) For example, the input images in CIFAR-10 are
an input volume of activations, and the volume has dimensions 32x32x3 (width, height,
depth respectively). As we will soon see, the neurons in a layer will only be connected
to a small region of the layer before it, instead of all of the neurons in a fully-connected
manner. Moreover, the final output layer would for CIFAR-10 have dimensions 1x1x10,
because by the end of the ConvNet architecture we will reduce the full image into a sin-

gle vector of class scores, arranged along the depth dimension. Here is a visualization

2.3:

depth

S0 "o
- ~OOO0Q0ON] - —7

width

Figure 2.3: Convolution Network

2.1.3 Layers used in ConvNets

To explain the different layers of a typical ConvNet we will use the example of a net-

work used to classify images into 10 categories as described in the CIFAR-10 dataset.

Input Layer

will hold the raw pixel values of the image, in this case an image of width 32, height

32, and with three color channels R,G,B.

Conv Layer

CONYV layer will compute the output of neurons that are connected to local regions in
the input, each computing a dot product between their weights and a small region they
are connected to in the input volume. This may result in volume such as [32x32x12] if
we decided to use 12 filters.

The CONV layer’s parameters consist of a set of learnable filters. Every filter is small
spatially (along width and height), but extends through the full depth of the input vol-
ume. For example, a typical filter on a first layer of a ConvNet might have size 5x5x3
(i.e. 5 pixels width and height, and 3 because images have depth 3, the color chan-
nels). During the forward pass, we slide (more precisely, convolve) each filter across
the width and height of the input volume and compute dot products between the entries
of the filter and the input at any position. As we slide the filter over the width and
height of the input volume we will produce a 2-dimensional activation map that gives
the responses of that filter at every spatial position. Intuitively, the network will learn
filters that activate when they see some type of visual feature such as an edge of some
orientation or a blotch of some color on the first layer, or eventually entire honeycomb
or wheel-like patterns on higher layers of the network. Now, we will have an entire set
of filters in each CONV layer (e.g. 12 filters), and each of them will produce a separate
2-dimensional activation map. We will stack these activation maps along the depth di-
mension and produce the output volume.

When dealing with high-dimensional inputs such as images, as we saw above it is im-
practical to connect neurons to all neurons in the previous volume. Instead, we will

connect each neuron to only a local region of the input volume. The spatial extent of

this connectivity is a hyperparameter called the receptive field of the neuron (equiva-
lently this is the filter size). The extent of the connectivity along the depth axis is always
equal to the depth of the input volume. It is important to emphasize again this asymme-
try in how we treat the spatial dimensions (width and height) and the depth dimension:
The connections are local in space (along width and height), but always full along the

entire depth of the input volume.

/ 32 zq wy

*@ synapse
axon from a neuron

Wpt
[~ (EH]

—=0D0000

cell body

2wz +b ; (L RIS b)

-
output axon

activation
function

32

|

Figure 2.4: Conv layer

We need four hyper-parameters:

e Number of filters K
e Their spatial extent F
e Stride S

e The amount of zero padding P

to produce the output feature map of dimension:

e Wo=(W;—F+2P)/S+1
e H,=(H; - F+2P)/S+1
[] D2:K

ReLu Layer

In the context of artificial neural networks, the rectifier is an activation function defined

as the positive part of its argument:

f(z) = 2" = max(0,z)

where x is the input to a neuron. This is also known as a ramp function and is analogous
to half-wave rectification in electrical engineering. A unit employing the rectifier is also

called a rectified linear unit (ReLLU)

Pool Layer

It is common to periodically insert a Pooling layer in-between successive Conv layers
in a ConvNet architecture. Its function is to progressively reduce the spatial size of
the representation to reduce the amount of parameters and computation in the network,
and hence to also control overfitting. The Pooling Layer operates independently on
every depth slice of the input and resizes it spatially, using the MAX operation. The
most common form is a pooling layer with filters of size 2x2 applied with a stride
of 2 downsamples every depth slice in the input by 2 along both width and height,
discarding 75% of the activations. Every MAX operation would in this case be taking
a max over 4 numbers (little 2x2 region in some depth slice). The depth dimension

remains unchanged.
We need 2 hyper-parameters:

e Their spatial extent F

e Stride S

to produce the output feature map of dimension:
[) W2: (Wl—F)/S+1

e H,=(H, - F)/S+1

e D; =D,

Fully connected Layer

Neurons in a fully connected layer have full connections to all activations in the previous
layer, as seen in regular Neural Networks. Their activations can hence be computed with

a matrix multiplication followed by a bias offset.

224x224x64 H "
Ty Single depth slice
padl 4 R 2 | 4
T o max pool with 2x2 filters
516|718 and stride 2 6| 8
l 3 | 2 IR 3|4
1| 2 [EENIED
224 downsampling ne
12
224 y

Figure 2.5: Pool Layer

In this way, ConvNets transform the original image layer by layer from the original
pixel values to the final class scores. Note that some layers contain parameters and other
don’t. In particular, the CONV/FC layers perform transformations that are a function
of not only the activations in the input volume, but also of the parameters (the weights
and biases of the neurons). On the other hand, the RELU/POOL layers will implement
a fixed function. The parameters in the CONV/FC layers will be trained with gradient
descent so that the class scores that the ConvNet computes are consistent with the labels

in the training set for each image. Figure 2.6 shows a typical ConvNet.

Convolution Layer 2
Convolution Layer 1 Pooling Layer 2

Pooling Layer 1

5=1F=5, S=1F=2,
K=6F=0 K=6F=0 S—1F—s5, S—1F=2
FParams = 150 Farams = 0K K=16P=0 K=6P=0,

Params = 400 Param =0

Figure 2.6: Typical ConvNet

CHAPTER 3

Prior Work

3.1 Face Detection

To be able to get facial features of a person standing in front of a screen, we must be
able to detect were the face is. For this we tested out multiple face detection algorithm
namely the openCV face detection algorithm based on Haar Cascade method, YOLO
(You Only Look Once), and SSH (Single Stage Headless) face detector. The last two

are deep network based.

Below is a brief description of both of them.

3.1.1 YOLO9000: Better, Faster, Stronger

YOLO9000 (Redmon and Farhadi, 2016) gives a method for multiple object detection
in real time in a video feed. The architecture is extremely fast. The base YOLO model
processes images in real-time at 45 frames per second. A smaller version of the net-
work, Fast YOLO, processes an astounding 155 frames per second while still achieving
double the mAP of other real-time detectors. Compared to state-of-the-art detection
systems, YOLO makes more localization errors but is less likely to predict false posi-
tives on background. Finally, YOLO learns very general representations of objects. It
outperforms other detection methods, including DPM and R-CNN, when generalizing
from natural images to other domains like artwork.The newer YOLO9000 can detect
9000 classes of object with more mAP than any other method while still working in
real time. We trained the algorithm on face data from WIDER dataset to compare the

algorithm with other face detection algorithm.

ddn S—

e

448

i —
NN R

54 28 A

L] 7 T

3 w2 T58 Nz noe o 1024 ¥

Caonv. Layer Conv. Loyer Conv. Layars Conv. Layers Conv. Layers Conv, Layers Conn. Layer Conn. Layer

T nbdsd 3xdxl¥2 1x1x128 1215256 1x1x512 1,5 Ix3Ix1024
Maxpool Loyer Maxpool Layer 3x3x256 IxIx512 Ix3x1024 IxIx1024

2x2s2 2x2-52 Tx1x236 1x1x512 3x3x1024
Ix3x512 Ix3x1024 IxIx 102452
Maxpool Layer Maxpool Loyer
2x2-52 2x252

Figure 3.1: YOLO Architecture (Redmon and Farhadi, 2016)

3.1.2 SSH: Single Stage Headless Face Detector

SSH (Najibi et al., 2017) introduces a new method for face detection. Unlike the
conventional two-stage face detectors, SSH detects faces in a single stage directly from
the early convolutional layers in a classification network. It is able to achieve state-of-
the-art results while removing the "head" of its underlying classification network - i.e.
all fully connected layers in the VGG-16 which contains a large number of parameters.
The method is also able to detect multiple faces of different sizes simultaneously in a

single pass. These properties make the network fast and light-weight. It is able to run

at around 50 FPS.

312 Channels

Max pool Detection
112 Module M3
Y
H
3
2
[+
E.' 512 Channels
convs_3
128 Channels
Dim Red Z % Bilinear h 128 Channels
= Upsampling F .
= Conv | E Detection
- Ix3 = Module M1

WL

‘ | 128 Channels

Figure 3.2: SSH Architecture (Najibi et al., 2017)

To compare the above two algorithms we have used WIDER Dataset as a train and test

11

set.

Fig. 3.3 Shows some example detection by the two algorithms.

3.1.3 Datasets

The following two datasets were used for training and testing different algorithms pro-

posed in this project.

WIDER Dataset

This dataset (Yang et al., 2016) contains 32, 203 images with 393, 703 annotated
faces, 158, 989 of which are in the train set, 39, 496 in the validation set and the rest
are in the test set. The validation and test set are divided into "easy", "medium", and
"hard" subsets cumulatively (i.e. the "hard" set contains all images). This is one of the
most challenging public face datasets mainly due to the wide variety of face scales and

occlusion. We train all models on the train set of the WIDER dataset and evaluate on

the validation and test sets

VGG Face Dataset

The dataset (Parkhi et al., 2015) consists of 2,622 identities. Each identity has an
associated text file containing URLs for images and corresponding face detections. It
is made available to the public by the University of Oxford. It contains images of
celebrities in different poses and lightning conditions. This was used for training the

tracking algorithm.

12

Figure 3.3: YOLO and SSH comparison on WIDER Dataset
Left: YOLO, Right: SSH

13

3.2 Face Tracking

The next goal is to track the detected face as the face can keep moving in front of the
screen. To do this we need a robust face detector that can track faces as they are moving.
We would like to use a tracker instead of trying to detect people in each frame because
first, tracking is generally faster than detection. Secondly, if we detect in each frame we
would have the problem of associating the features of the people in the current frame
to that of the detections of the previous frame. This would further be computationally
expensive and would further decrease the speed of tracking. Thus for tracking we start
with a fast generic object tracker that can track single object in real time. The tracker is
called GOTURN (Generic Object Tracking Using Regression Networks). Given some
object of interest marked in one frame of a video, the goal of "singletarget tracking"
is to locate this object in subsequent video frames, despite object motion, changes in
viewpoint, lighting changes, or other variations. Single-target tracking is an important

component of many systems.

3.2.1 GOTURN

GOTURN is General Object Tracking Using Regression Network (Held et al., 2016).
It is a siamese network. In this model, we input the target object as well as the search
region each into a sequence of convolutional layers. The output of these convolutional
layers is a set of features that capture a high-level representation of the image. The
outputs of these convolutional layers are then fed through a number of fully connected
layers. The role of the fully connected layers is to compare the features from the target
object to the features in the current frame to find where the target object has moved.
Between these frames, the object may have undergone a translation, rotation, lighting
change, occlusion, or deformation. The function learned by the fully connected layers
is thus a complex feature comparison which is learned through many examples to be

robust to these various factors while outputting the relative motion of the tracked object.

14

Current frame Conv Layers
Search Region

Fully-Connected
Layers

- Predicted location
of target
within search region

" What to track
Previous frame Conv Layers

Figure 3.4: GOTURN Architecture (Held et al., 2016)

15

CHAPTER 4

Tracking and Face Re-identification

using Deep Networks

The previous chapters gave a rough overview of the technology that was used in our
project. We have made improvements that make the system better at tracking faces. We

highlight them now.

4.1 From Generic to Face

As we know that GOTURN is a generic object tracker which can track any object given
to it to track. For our application we wanted a fairly specific face tracker which when
supplied with face bounding boxes from the detection algorithm was able to track them

in subsequent frames.

4.1.1 Training on faces

The original GOTURN algorithm uses the first five layers of the CaffeNet to extract
features of the object and then passes the features extracted from the previous and the
current frame to a fully connected network of 3 layers each with 4096 nodes. Finally
the last layer is connected to the output layer with 4 nodes for the new bounding box.
The first logical thing to make it face specific is to train the network on face dataset.
What better than the already described WIDER dataset and the VGG Face Dataset. To
teach our network to prefer small motions to large motions, we augment our training
set with random crops drawn from the Laplace distributions. That is we move the faces
in the image by some amount and also change the size of the bounding box a little
to train from images. This new network is now called FTURN (Face Tracking Using
Regression Networks)

But this was generic object tracker with no knowledge of how a face looks like in

general settings. We now needed to provide it with a representation of the face from
the previous frame so that it can get an idea about general face features like texture and

color which it needs to find in the current frame.

4.1.2 Adding general face features

For providing our tracker with the knowledge of how a face looks like we added the
feature detection layers of the face detection module from the SSH detection network
to our tracking network. These layers would help to get the features from the image that
would be the general face features. These extracted features when concatenated with
other features would help our network to be able to track the faces better. We added the
layers along with the weights of the SSH layer that was supposed to detect faces that
are large sized. This layer has helped the tracker by finding the feature in a frame that
distinctly identify a face. The tracker performs much better than the original tracker

and also the tracker trained on faces.

4.2 From Single object to Multi-Object Tracking

The next target was to make the tracker track multiple faces so that we can get the
profile of many people seeing the ad together and can do a comparative study based on
the emotions or soft-biometric features of the crowd.

We know that GOTURN in itself is a single object tracker. We used multi-threading to
make multiple objects of the same tracker class. Each of these object tracks a single
face in the crowd and multiple of these objects are running at the same time. These
trackers also use just a single tracker net and thus help save memory on the GPU.

We are able to track multiple objects in real time at a frame rate of about 30 FPS. It is
faster than most trackers participating in the MOT (Multi Object Tracking) Challenge
(Milan et al., 2016). Fig 4.1 shows the frame rates (in Hz) of top trackers in the

challenge.

17

Showing only entries that use public detections!

Tracker Avg Rank 4+MOTA |DF1 MT ML FP FN D _Sw, Frag Detector
JPM 19.3 491 1 46.9 20.0% 38.9% 9,038 83,031 679 (125 850 (158 Public
1./@ ssion
AFN 16.8 490 w2 482 191% 35.7% 9,508 82,506 899 (184 1,383 2 Public
2.f T P
KCF16 207 488 ws 472 158% 38.1% 5,875 86,567 906 (172 1,116 0.1 Public
3.0 PapfliD 2068
LMP 13.3 488 xs 51.3 18.2% 40.1% 6,654 86,245 431 @1 595 b 05 Public
4.4 S. Tang, M. Andriluika, 5. Andres, B. Schisle. Multiple People Tracking with Lifed Mulscus n CVAR, 201
GCRA 17.8 482 =3 486 129% 41.1% 5,104 88,586 821 (180 1,117 28 Public
5.\ C.Ma, C.Yang. F.Yang, Y.Zhuang, Z Zhang, H.Jia, D Xe. Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRY for Muliple Object Tracking. In IGME 2013
FWT 19.9 478 ws 443 191% 382% 8,886 85,487 852 (180 1,534 iz Public
6. Pl achal, L= Lk Tabek D Cocanars i Toaaniuaies: A Disal Vil Dalacicr Fumson Fraimcsh for W Bebpact Trackd 14, 2
MOTDT 19.1 476 =2 50.9 15.2% 38.3% 9,253 85,431 792 (144 1,858 250 Public
7.0F —_
NLLMPa 145 476 w08 473 170% 40.4% 5,844 89,093 629 (123 768 (150 Public
3

Figure 4.1: MOT Challenge entries

4.3 ResNet

Recent papers and competition winners have used ResNet architecture for various pur-
poses related to object classification and detection.

Residual Network developed by Kaiming He et al. (He et al., 2015) was the winner of
ILSVRC 2015. It features special skip connections and a heavy use of batch normaliza-
tion. The architecture is also missing fully connected layers at the end of the network.
ResNets are currently by far state of the art Convolutional Neural Network models and
are the default choice for using ConvNets in practice.

The author of the paper (Wen et al., 2016) has trained ResNet architecture to extract
face feature. We removed the GOTURN feature extraction CNN and replaced it with
the CNN layers of the DeepFace architecture described in the above paper (Wen et al.,
2016). The network was then again trained to fine tune the weights of the fully con-
nected layers for the ResNet feature extraction network. The ResNet architecture al-
lows the algorithm to decide the size of the network to best represent the images in least

amount of parameters. This helps save memory on GPU to save these weights.

18

weight layer
Fix) l relu

weight layer

X

identity

Figure 4.2: Single ResNet unit

It was observed that the tracking bounding boxes around the face were generally
more stable in the sense that the size was not changing when the size of the face did not
change in the frame. It was also observed that for the same video the memory occupied

was 6% less than that occupied by the network with SSH detection network introduced.

4.4 Face Verification

We need to know when our tracker fails to track a face assigned to it. To do that we
introduce a similarity layer which would compare the features extracted from the previ-
ous frame and current frame and give out a number denoting how similar are the faces
being tracked across the frames. The similarity measure used is the cosine similarity
and based on experimentations it was noted that cosine similarity below 0.20 was the
output if the objects were not similar. This was thus set as the threshold to re-initialize
the detection algorithm. The fig 4.3 shows the part of network where the similarity

module was added.

4.5 Person Re-Identification

We trigger the detection algorithm SSH when we either lose track of a person or every

600th frame to check if any new viewer has joined the crowd. After detection we need

19

N N K

res5_6 resS_6_p

CosineSimilarity

Figure 4.3: Module for finding Cosine Similarity

to assign the same ids to the already detected and tracked faces if they are still there.
To do this we use location information and the extracted face features to compare the
new detections with the faces that were being tracked. This is Person Re-Identification
(Farinella et al., 2014)

We assume that the person at a certain location in the frame will not move far during
the detection time and hence we match the features of people in a certain area to people
in nearby areas. This helps in continuation of data collected being associated to a single
profile for a particular person.

The video shocasing the same has been uploaded at this Link

20

https://drive.google.com/open?id=1jPaj9dEQ-g9EtuhemphvWzpvcui17VQ3

CHAPTER 5

Results and Conclusions

Below are the links to the videos with tracking done using different changes made to

the original tracker.

Original GOTURN

FTURN

SSH layers introduced

ResNet

Based on multiple experimentations we conclude that the tracker with the knowl-
edge of how a general face look like either by using the layers of detection network
or by using the feature extraction layers which are trained specifically to detect faces
like the ResNet layers of DeepFace, is able to track faces in a more robust way and is
affected less by partial occlusion of the target. Even when the target is fully occluded
for a short period of time, our tracker is able to regain it when it appears again. We also
notice that the ResNet tracker is generally more stable in tracking the subject though it
can mis-track a target in full occlusion conditions, but regains the target when it reap-
pears.

We also show the PoC of Re-Identification with 2 subjects and the video demonstrating
it is added above. We are able to recognize the person when he reappears in the frame
and assign the same ID as before. This will help us to assign the features to the same

profile for a particular person.

https://drive.google.com/open?id=17x2jcRF9eb_UDg4ONRa8ZjELFWK0XZ_z
https://drive.google.com/open?id=1-OvTGlsm-LSUX04kuXac93VhygCeaKFD
https://drive.google.com/open?id=1I1OHW2YjP8qsG96UTs_jAqXDlR3Rfciw
https://drive.google.com/open?id=1BX_aDlN4vSm_if0y4kgl8g0I-cBxPDNx

10.

1.

REFERENCES

CS231In Convolutional Neural Networks for Visual Recognition (retrieved: 2018-05-
08). URL http://cs231n.github.io/convolutional-networks/.

Farinella, G. M., G. Farioli, S. Battiato, S. Leonardi, and G. Gallo, Face re-
identification for digital signage applications. In C. Distante, S. Battiato, and A. Cav-

allaro (eds.), Video Analytics for Audience Measurement. Springer International Pub-
lishing, Cham, 2014. ISBN 978-3-319-12811-5.

. He, K., X. Zhang, S. Ren, and J. Sun (2015). Deep residual learning for image recog-

nition. CoRR, abs/1512.03385. URL http://arxiv.org/abs/1512.03385.

Held, D., S. Thrun, and S. Savarese, Learning to track at 100 fps with deep regression
networks. In European Conference Computer Vision (ECCV). 2016.

Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell (2014). Caffe: Convolutional architecture for fast feature embed-
ding. arXiv preprint arXiv:1408.5093.

Milan, A., L. Leal-Taixé, 1. Reid, S. Roth, and K. Schindler (2016). MOT16: A
benchmark for multi-object tracking. arXiv:1603.00831 [cs]. URL http://arxiv.
org/abs/1603.00831. ArXiv: 1603.00831.

Najibi, M., P. Samangouei, R. Chellappa, and L. Davis, SSH: Single stage headless
face detector. In The IEEE International Conference on Computer Vision (ICCV). 2017.

Parkhi, O. M., A. Vedaldi, and A. Zisserman, Deep face recognition. In British
Machine Vision Conference. 2015.

Redmon, J. and A. Farhadi (2016). Yolo9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242.

Wen, Y., K. Zhang, Z. Li, and Y. Qiao, A discriminative feature learning approach for
deep face recognition. In European Conference on Computer Vision. Springer, 2016.

Yang, S., P. Luo, C. C. Loy, and X. Tang, Wider face: A face detection benchmark. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

22

http://cs231n.github.io/convolutional-networks/
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1603.00831

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction and Motivation
	Background: Convolutional Neural Networks
	What are CNNs?
	Intuition
	Architecture Overview
	Layers used in ConvNets

	Prior Work
	Face Detection
	YOLO9000: Better, Faster, Stronger
	SSH: Single Stage Headless Face Detector
	Datasets

	Face Tracking
	GOTURN

	Tracking and Face Re-identification using Deep Networks
	From Generic to Face
	Training on faces
	Adding general face features

	From Single object to Multi-Object Tracking
	ResNet
	Face Verification
	Person Re-Identification

	Results and Conclusions

