
HARDWARE IMPLEMENTATION OF A

LOG-VITERBI DECODER FOR HMM BASED

ISOLATED SPEECH RECOGNITION

A Project Report

submitted by

N VENKATA NAVEEN

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2018

THESIS CERTIFICATE

This is to certify that the thesis titled HARDWARE IMPLEMENTATION

OF A LOG-VITERBI DECODER FOR HMM BASED ISOLATED

SPEECH RECOGNITION, submitted by N VENKATA NAVEEN, to the

Indian Institute of Technology, Madras, for the award of the degree of MASTER

OF TECHNOLOGY, is a bona fide record of the research work done by him

under our supervision. The contents of this thesis, in full or in parts, have not

been submitted to any other Institute or University for the award of any degree

or diploma.

Janakiraman Viraraghavan
Research Guide
Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 24th May 2018

ACKNOWLEDGEMENTS

I have put my best efforts into completion of this project. This wouldn’t have

been possible without the support of many individuals and organization. I would

like to thank my project guide Prof.Janakiraman Veeraraghavan for choosing me

and giving me a project that suits my interests and goals. He has helped me

with his precious knowledge in the fields of Digital IC Design, Speech Processing

and Hardware design at each and every stage of the project. He has always been

supportive and open for discussing new ideas and helped me get through many of

my mistakes.

I am also fortunate to have the company of Prof.Nitin Chandrachoodan for his

invaluable inputs in the RTL design. His vast experience in the field of FPGA/RTL

design has helped me deal with the many errors that were present in the initial

design phase.

Also a special mention to Mr.Venkat Raghavan for providing the MATLAB

source code and helping me in get the code running. Without this code this

project wouldn’t have been possible.

I would also like to thank Janaki Madam for helping me with the setup of

software/tools in the lab. Finally, I would thank my lab mate Prithvi Raj who

has helped me with the understanding of basics principles of Markov Models which

eased my process of going through the research papers.My knowledge on many of

the topics presented in the thesis was limited at the beginning of the project, but

through the course of the academic year I was able to appreciate the concepts

thoroughly.

i

ABSTRACT

KEYWORDS: Hidden Markov Model ; Viterbi; FPGA; Trellis, Verilog.

The thesis presents a hardware implementation(based on fixed point imple-

mentation) of log-viterbi decoder to recognize isolated speech consisting of set

of words based on the concepts of Hidden Markov Models(HMM). The circuit

designed predicts the word spoken based on the probabilities obtained from the

trained sets of pre-calculated data.

A sample case of isolated spoken digits consisting of words from zero to nine

has been analyzed for various possible utterances. A confusion matrix shown at

the end provides an estimate of the performance of the system with respect to

accuracy. The pre-processing steps required prior to decoding stage and all the

HMM-data required has been generated using the MATLAB source code.Therefore

all the computations done are based on the data that has been generated from

this code and hence the simulation results obtained have been verified against the

MATLAB’s outputs.

The architecture design and style of RTL coding used with regards to param-

eterization so as to reuse the code for future purposes easily has been presented.

The benefits of using the fixed point implementation with an optimized regis-

ter bit-lengths at each stage compared to floating point computations(as done

in MATLAB) have been discussed. Further, the synthesis and implementation

results targetting an FPGA have also been presented and analysed.

The work provides an useful insight into tackling the bigger problem of design-

ing an optimized speaker independent sentence recognition system on hardware.

ii

Contents

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vi

ABBREVIATIONS vii

NOTATION viii

1 INTRODUCTION 1

2 ISOLATED SPEECH RECOGNITION 3

2.1 Pre-processing steps . 3

2.2 Speech Modelling using HMMs 4

2.3 Viterbi-Decoder . 7

2.3.1 Viterbi Algorithm-Theory and Equations 7

2.3.2 Trellis Diagrams . 7

2.4 Predicting the word . 8

3 HARDWARE ARCHITECTURE AND IMPLEMENTATION
10

3.1 Log-Viterbi Decoder . 10

3.2 Hidden Markov Models for Isolated Digits 11

3.3 Register Sizes For Fixed Point Arithmetic 13

3.3.1 Choosing ’∞’ . 13

3.4 RTL Hierarchy . 14

3.5 Block Diagram of Entire System 15

4 RESULTS- SIMULATION AND SYNTHESIS 16

iii

4.1 Confusion Matrix . 17

4.2 Synthesis . 17

5 CONCLUSIONS AND FUTURE WORK 20

6 APPENDIX- REFERENCES 21

List of Tables

4.1 Table showing the confusion matrix generated by 150 different sim-
ulations, fifteen per each word 18

v

List of Figures

2.1 Block diagram of an Isolated Speech Recognition system. 3

2.2 Pre-processing stages before the Decoder 4

2.3 Example of an Hidden Markov Model 5

2.4 HMM with a transition from higher numbered state to lower . . 6

3.1 HMM of an Isolated Digit . 11

3.2 Block diagram of a Viterbi_d Module 14

3.3 Block diagram for mapping input symbols for each state 15

3.4 Block diagram of the entire decoding hardware 15

4.1 Wave forms for a correctly recognized digit 16

4.2 Wave forms for a wrongly recognized digit 17

4.3 Figure shows the number of adders of various bit-lenghts used . 18

4.4 Figure showing the total number of different types of MUX used 19

4.5 Figure showing percentage utilization of hardware on Zybo board 19

vi

ABBREVIATIONS

HMM Hidden Markov Model

FPGA Field-Programmable Gate Array

RTL Register Transfer Logic

ASIC Application Specific Integrated Circuit

vii

NOTATION

δ Cost metric associated to a state in an HMM
αij Transition probability of a given HMM upon going from state i to j
b Symbol probability of a given state for a given observation
π Possible list of state transition probabilities at time T=0

viii

Chapter 1

INTRODUCTION

Real time speech recognition is of high importance in our day to day lives. It

is being used in our mobile phones and laptops for various purposes like virtual

assistance that performs useful tasks like searching and browsing. Apart from this

speech recognition also plays an integral role in helping those who are suffering

from motor speech disorders.

Plenty of speech recognition devices have been emerging but most of them

still lack high accuracy and are also slow. As there are many ways a word can

be pronounced/uttered, the main challenge of a speech recognition system is to

accurately recognize them and be speaker independent. HMM based recognition

system provide much better accuracy and can be made fast by designing appropri-

ately. In view of this, lots of prior training of HMM models and faster recognition

algorithms needs to be implemented. To perform such computing intensive tasks

software based solutions tend to be slow. Hardware acceleration would be a better

approach as a dedicated hardware would perform the particular task faster due to

parallel computing capability and lesser overheads.

The ultimate goal of designing a dedicated hardware for speech recognition

would be to accurately recognize the sentence spoken as fast as possible and occupy

as much less area as possible. A sentence recognition system would be based

on continuous HMMs and are very difficult to perform calculation on hardware.

Hence a better beginning to solving such complex problems would be to design an

isolated word recognition system. Since an isolated word stops after the completion

of utterance, we can model them as discrete HMMs which has simpler equations

to work with.

The organization of the thesis from the next chapter is as follows. Chapter

2 presents basics of an isolated speech recognition system, its main components

and also introduces to the basics of Hidden Markov Models(HMMs) following

which the equations required for the viterbi decoder have been analyzed. Chapter

3 presents the details of the actual implementation of the architecture for Log-

viterbi decoder. Chapter 4 presents the simulation ans synthesis results obtained

for the logic designed. Chapter 5 includes conclusions and future work.

2

Chapter 2

ISOLATED SPEECH RECOGNITION

Isolated speech recognition consists of predicting the spoken word from a given

set of words. The spoken words will be transformed to an equivalent form of a

sequence of observational states which are obtained through the pre-processing

stage and will be sent to a decoding stage where we predict the best suitable word

based on the given HMM models as shown in Fig. 2.1. As we build the recognition

system for only a set of words, if the input word spoken is different from this set,

we get a wrong output(one among the set).

Figure 2.1: Block diagram of an Isolated Speech Recognition system.

2.1 Pre-processing steps

Once the speech signal is received it undergoes a lot of steps before being sent to

the decoder. Brief description of these steps is provided below.

• Pre-emphasis: This step is to boost certain frequencies that are highly
susceptible to noise and spectrally flatten the signal.

• Framing: The digitized speech signal is divided into various overlapping
frames of equal size(typically 10-20ms).

• Windowing:Windowing is done to minimize the effects of framing which
might disrupt the continuity.

• MFCC Feature extraction: This step involves the conversion of the sam-
pled signal frames into feature extracted vectors. The steps involved are
1.Taking FFT of the signal 2.Applying Mel-triangular filters and converting
to the log-power spectrum 3.Taking Discrete Cosine Transform(DCT).

• Clustering: Since we are dealing with the isolated speech involving discrete
HMMs, we can actually cluster the obtained featured vectors into various
centroids thus allocating each MFCC vector a centroid and hence the input
to the decoder is an observations sequence consisting of these centroids.

Figure 2.2: Pre-processing stages before the Decoder

2.2 Speech Modelling using HMMs

The Hidden Markov Model(HMM) is a statistical model in which observations

are functions of states in terms of probability. In Hidden Markov Models(HMM),

the actual states are unknown(hidden) but their state transition probabilities are

known. Based on the observation sequence one can predict the best possible

sequence of states that could have resulted in such observations. An HMM(λ) can

be modelled by three parameters namely A, B and π.

λ = (A, B, π)

Where A is the state transition matrix. It show all the state transition proba-

bilities. B represents the list of all possible observations from each state and also

4

their probabilities. π represent the initial state of the system and contains the

probabilities of reaching each state at time t=0. An example of an Hidden Markov

Model is shown below in Fig. 2.2

Figure 2.3: Example of an Hidden Markov Model

For this example the states are numbered as 1,2,3 and 4. The matrices A, π,

B1, B2, B3 and B4 are as follows.

A=



a1 a2 0 a3

0 0 a4 a5

0 0 a6 a7

0 0 0 a8


π=

[
p1 0 0 0

]

B1=
[
B1_1 B1_2 B1_3

]
B2=

[
B2_1 B2_2 B2_3

]

B3=
[
B3_1 B3_2 B3_3

]
B4=

[
B4_1 B4_2 B4_3

]

Rabiner’s paper on Hidden Markov Models describes three problem statements

that are possible relating to these HMMs. A brief discussion on these problems

and how to solve them is discussed below.

• Evaluation: It involves calculation of the probability of observing a se-
quence (O1, O2.., OT) given the module λ for every possible state sequence.
Assuming a possible state sequence is Q1 = q1, q2, q3, ..qt we can write the

5

probability of observing he sequence ’O’ such that the state transitions are
as in ′Q′1 as

P (O,Q1|λ) = (πq1aq1q2aq2q3...aqT −1qT
)(bq1(O1).bq2(O2)...bqT

(OT))
(2.1)

P (O|λ) =
∑
k

(P (O,Qk|λ)) (2.2)

This way of calculating the probability normally would involve 2TNT mul-
tiplications which means exponential dependency on time ’T’. Instead we
can use clever algorithms like Forward Algorithm(TN2) to avoid re-
multiplications at each stage.

• Decoding: This process involves in predicting the most probable path
Qx = q1, q2, q3, ..qt that could resulted in a given observation sequence
(O1, O2.., OT) given the HMM λ. This is the problem that will be of
interest in speech recognition as it can be translated to finding the se-
quence of states(Phonemes) that could have resulted in the observed se-
quence(Quantized Vectors of speech) and hence we could predict the word
spoken.

• Learning: This process involves in actual training of the HMM model i.e.,
adjusting the A, B, π parameters to maximize the probability of the ob-
served sequence.

In the context of speech, each HMM model will correspond to a word and these

models are developed through training. For a phoneme based HMM model each

of the state correspond to phoneme transition or each phoneme itself corresponds

to 2 or more states. Also since speech signal moves forward with time, there

shouldn’t be as such any transitions from a higher numbered state to a lower

numbered state. For example the following HMM in Fig 2.3 is not possible in a

speech scenario.

Figure 2.4: HMM with a transition from higher numbered state to lower

6

2.3 Viterbi-Decoder

Once the pre-processing steps and the model training of the word set is done, the

next important step is the decoder. The decoder block is the one which actually

estimates the most probable word that was spoken. Since we can have various

utterances for each word and noise added to signals, the observational sequence

which comes as input to the decoder varies from the trained model for that word.

So the decoding algorithm must be robust enough to overcome this difficulty. The

most widely used decoding algorithm is the viterbi algorithm because of its ability

to largely avoid the re-computations at each step.

2.3.1 Viterbi Algorithm-Theory and Equations

As discussed above the inputs to the viterbi decoder would be the observation

sequence which will be entering sequentially from time t=0 till t=n. The HMM

trained data will be available to this decoder at each of these time instances.

Suppose each of the trained HMM model has ’k’ distinct states, we assign a

metric(δ(i)) to the ith state and hence ’k’ such metrics. The term δt(i) indi-

cates the metric of state ’i’ at time T=t. The notations for A, B, π matrices

are same as discussed above with an element in A, aij indicating transition prob-

ability from state ’i’ to state ’j’. Each element of B corresponding to a state ’j’

and input observation Ok at time T=t is represented by bj(Ot) and each element

of π corresponding to state ’i’ is represented by πi. Using these notations the

equations for updating the metrics for each state are as follows.

δ1(i) = πi ∗ bi(O1); t = 1, 1 ≤ i ≤ k (2.3)

δt(j) = max
i=1,2...k

(δt−1(i) ∗ aij) ∗ bj(Ot); 2 ≤ t ≤ T, 1 ≤ j ≤ k (2.4)

2.3.2 Trellis Diagrams

Trellis diagrams provide an easier view of the flow of the state transitions at each

instance of time. They are also helpful in tracing back the path(sequence of states)

7

that could have most probably led to the observation sequence. Each column of

the trellis diagram indicates a time instance and also shows the input observation

at that time instance. Each column also contains all the states that are possible

for the given model. The arrows from time to other shows all the possible tran-

sitions possible. The trellis diagram for the HMM model shown in Fig. 2.3 is as

shown below.

s1 s1 s1 s1

s2 s2 s2 s2

s3 s3 s3 s3

s4 s4 s4 s4

s1

s2

s3

s4

t1

Node 1

t2

Node 2

t3

Node 3

t4

Node 4

a23

a24

a23

a24

a44 a44

a33

a34

a12 a12 a12

a11 a11 a11

a14 a14 a14

As we can see in the trellis diagram, for time T=t1, the probability for the input

observation is searched only for state s1 since πi=0 for other states. Hence metric

for only the first state is updated. At time T=t2, the state s3 cannot be reached

and hence metrics for the states s1, s2, s3 will only be updated according to the

formula (2.2)

2.4 Predicting the word

Once we reach the end of the input sequence after time T=tn, we get the updated

metrics for each state. We now calculate the probability of the occurrence of the

input sequence(Ot) given the model λx for each word as

Px(O|λx) = max
1≤i≤k

(δT (i)); 1 ≤ x ≤ cardinality(word− set) (2.5)

8

And the word that could have been spoken is the yth word in the word-set such

that.

y| max
1≤x≤cardinality(word−set)

(Px) = Py (2.6)

9

Chapter 3

HARDWARE ARCHITECTURE AND

IMPLEMENTATION

In the second chapter the procedure for predicting the word for the given speech

signal has been described along with the necessary equations. To implement this

in hardware it is important to describe the architecture and then the data flow in

terms of logic circuits. One must also keep in mind the estimate of Area, Power

and Speed of the circuit. The reason is that, even though we are designing the

system in hardware primarily to speed up the process, we may end up spending a

lot of power and area which can make the design useless. Hence, we might actually

have to re-construct the equations themselves for the betterment of the design.

One such idea is to use Log-Viterbi decoder.

3.1 Log-Viterbi Decoder

A Log-Viterbi decoder is same as the Viterbi decoder except that we take logarithm

of each of the equations 2.1, 2.2 and 2.3. We can re-write these equations as follows.

log(δ1(i)) = log(πi) + log(bi(O1)); t = 1, 1 ≤ i ≤ k (3.1)

log(δt(j)) = max
i=1,2...k

(log(δt−1(i))+log(aij))+log(bj(Ot)); 2 ≤ t ≤ T, 1 ≤ j ≤ k

(3.2)

Px(O|λx) = max
1≤i≤k

(log(δT (i))); 1 ≤ x ≤ cardinality(word−set) (3.3)

As we can see, the difference in both set of equations is that we have been

able to replace multiplications with additions. This is very useful in the context of

hardware because a multiplier would usually take more area and also is slower than

an adder. But one can see that it has resulted in need of calculating logarithms

at each step which itself is area and time taking process on hardware. If we

observe the equations carefully we can actually pre-compute all the logarithms

and store them in memory. Specifically in equation 3.1 πi and bi(O1) belongs the

trained HMM data since we have all of this data beforehand we can compute the

logarithms before the decoder stage itself. Similarly in equation 3.2 aij are the

state transitions of the word models and are all available prior to decoding stage.

3.2 Hidden Markov Models for Isolated Digits

The word-set for which the decoder has been built consists of digits(zero-nine).

The trained model generation and speech pre-processing has been done on Matlab

and some of the properties of the generated data from the Matlab are as follows.

• Each word is represented by a set of seven states and the transitions among
these states are as shown below in Fig 3.1.

Figure 3.1: HMM of an Isolated Digit

• The trellis diagram for the HMM shown in Fig 3.1 would be as shown below.
In the context of Hardware the times t1, t2.. indicate the rising edges of clock
during which the updating of the metrics will be done according to equations
3.1 and 3.2

11

s1 s1 s1 s1 s1

s2 s2 s2 s2 s2

s3 s3 s3 s3 s3

s4 s4 s4 s4 s4

s5 s5 s5 s5 s5

s6 s6 s6 s6 s6

s7 s7 s7 s7 s7

s1

s2

s3

s4

s5

s6

s7

a23

a22

a23

a22

a23

a22

a33

a34

a44

a45

a33

a34

a12 a12 a12 a12

a11 a11 a11 a11

• From the Fig 3.1 we can see that there are 13 transition probabilities (a11, a12, ..., a77)
and hence we need 13 registers to store these numbers per word. General-
izing for higher number of states with similar state transition property we
need (2N-1) registers for N states per word. Hence for a ten word system
we need 10*(2N-1) registers

• There are 64 different possible observations for each state in a given HMM.
Hence there would be 64*7 probabilities per word and 64*7*10 for the entire
system. Hence we need an additional 4480 registers.

• For all the words in the system the initial state probabilities are as follows

πi =

1, if i = 1
0, otherwise

(3.4)

Which means that at time T=0 only the first state is reached. Since this is
fixed we don’t need to remember(store) any of the probabilities from the π
matrix.

• A word has various utterances and each such utterance gives different ob-
servation sequences of variable length. Hence it is necessary to generate a
signal(Flag) to indicate the end of the input sequence.

12

3.3 Register Sizes For Fixed Point Arithmetic

Register bit-widths depends on factors like maximum and minimum values of the

probabilities in trained models, and also the least and largest possible values inside

a particular module. The tricky part is that since we are storing the logarithmic

values and not the actual probabilities, we must account for the signs of the

numbers and in particular a reasonable form to represent ’−∞’. As a result of

appearance of negative numbers each of the logarithmic values will be stored in

2′s complement form and all the operations performed will also be based on 2′s

complement arithmetic.

3.3.1 Choosing ’∞’

All the probabilities are non-negative quantities which will result in all their loga-

rithmic values becoming negative. Hence adding these negative quantities accord-

ing to equations 3.1 and 3.2 would lead to larger negative values. Hence our choice

of infinity should be as negative as possible. In a counter argument we see that

if we have a case where the most of the probabilities are closer to one(log values

closer to zero) we can afford to choose smaller bit widths for the register and hence

a relatively higher value for ’−∞’. In this case we must choose the value carefully

so as to avoid approaching ’−∞’ values during successive logarithmic additions.

Finally based on all the above observations, each of the transition probabilities

and the output observation probabilities have been assigned 16 bits among which

6 bits corresponding to integer part and 10 bits corresponding to decimal part(6.10

fixed point format). Where as the metric registers corresponding to each state has

been assigned 16+logk number of bits where ’k’ is the maximum number of the

length of the input sequence. This is because each incoming input would result in

at most one addition of two 16 bit numbers.

13

3.4 RTL Hierarchy

Based on the bit-widths for registers obtained above, the RTL(Verilog) has been

designed as follows. There is a module V iterbi_d which basically performs the

operations described in equations 3.1 and 3.2 for a single word. At each positive

edge of the clock cycle the metric registers δi(j) are updated. Also these metric

register’s outputs are connected to a series of comparators so as to output the

maximum among all the metrics. the The circuit block diagram for such a process

is as shown in Fig 3.2. As we can see from the figure that the inputs to this

Figure 3.2: Block diagram of a Viterbi_d Module

module are symbol probabilities which change for every clock cycle and state

transition probabilities which are constant values and are directly mapped from

memory. The symbol probabilities are transferred from the registers through a

multiplexer which has the select line as the observation symbol as shown in Fig

3.3. Since there are seven states per word and there are ten words, we will have

70 such multiplexers.Now that the entire description of viterbi_d module is done,

we can build the entire decoding system by instantiating this module for 10 times

and passing their output to another set of comparators to find out the maximum

probability among the 10 values. This constitutes the ’top’ module and is the

complete circuit that was supposed to be built. It takes in CLK and observation

symbol as its inputs and gives out the predicted word.

14

Figure 3.3: Block diagram for mapping input symbols for each state

3.5 Block Diagram of Entire System

Figure 3.4: Block diagram of the entire decoding hardware

15

Chapter 4

RESULTS- SIMULATION AND SYNTHESIS

Based on the RTL designed using the architecture described in Chapter 3, various

simulation and synthesis results have been analyzed. The simulation tool used

was ’iverilog’ and ’gtkwave’ has been used to view the waveforms. The input

sequences to the top module have been generated in the MATLAB. A total of 112

possible utterances for each digit have been provided in the MATLAB. Consider

the following result Fig 4.1 that was obtained when the system was fed with a

sequence of inputs corresponding to digit ’six’

Figure 4.1: Wave forms for a correctly recognized digit

There are 14 different signals that are being projected here. The first signal

being the clock keeps running throughout changing its value from 0 to 1. The

second signal is the input symbol to the top module and third signal indicates the

number of inputs that have entered the systems. From the figure it is clear that

the sequence has a total of 94 inputs. The signals from four to thirteen indicate

the outputs of each of the 10 viterbi_d modules. The fourteenth signal is the

maximum probability among the ten outputs of viterbi_d module. As we can

see the output corresponding to sixth signal is the highest indicating that the word

is correctly detected.

Also consider the figure 4.2 whose inputs(a total of 106 symbols) actually

correspond to digit nine. But the digit showing the highest probability is ’one’

with ’nine’ having the next best probability. These types of errors can occur due

to faulty HMM model or some human error resulting in change of input sequence.

Figure 4.2: Wave forms for a wrongly recognized digit

4.1 Confusion Matrix

The RTL code has been tested against multiple utterances(15) of each word and

the results can be presented in the form of a matrix called ’confusion matrix’. Each

row in a confusion matrix represent the digit that is actually being recognized and

each column represents the number of time this word has been recognized as

itself or any of the rest. The following confusion matrix(Table 4.1) was obtained

for a total of 150 simulations. From the table it is clear that the digits ’one’,

’two’, ’three’, ’five’, ’eight’ and ’zero’ have shown 100% accuracy where as the

digits ’four’, ’six’, ’seven’ and ’nine’ have shown 86.7%, 93.3%, 93.3% and 80%

efficiencies respectively. Therefore the overall efficiency is around 86%. One way

to bring this number up is to test for more number of values along with improving

the training models.

4.2 Synthesis

The top module of the RTL designed has been synthesized and implemented in

Xilinx tool and the board selected was Zybo. A brief summary on the area oc-

17

Table 4.1: Table showing the confusion matrix generated by 150 different simula-
tions, fifteen per each word

Digit↓ 1 2 3 4 5 6 7 8 9 0
1 20 0 0 0 0 0 0 0 0 0
2 0 20 0 0 0 0 0 0 0 0
3 0 0 20 0 0 0 0 0 0 0
4 0 2 0 18 0 0 0 0 0 0
5 0 0 0 0 20 0 0 0 0 0
6 2 0 0 0 0 18 0 0 0 0
7 1 0 0 0 0 0 19 0 0 0
8 0 0 0 0 0 0 0 20 0 0
9 3 0 0 0 0 0 0 0 17 0
0 0 0 0 0 0 0 0 0 0 20

cupied by the module according to synthesis report is as shown in the following

figures 4.3, 4.4 and 4.5. The total number of registers used are seventy 23-bit and

one 7-bit. The LUT utilization percentage is high as shown in Fig 4.5 because of

the large number of values corresponding to HMM model that needs to be stored.

Figure 4.3: Figure shows the number of adders of various bit-lenghts used

18

Figure 4.4: Figure showing the total number of different types of MUX used

Figure 4.5: Figure showing percentage utilization of hardware on Zybo board

19

Chapter 5

CONCLUSIONS AND FUTURE WORK

An optimized hardware design of speech decoder for isolated digits has been pre-

sented and analyzed.The RTL designed can be easily extended to any number of

words in a given set and is also parameterized with respect to the number of bits

each register can hold. Dealing with fixed point numbers with appropriate number

of bits for each of the storage elements at various stages makes this design faster

and lesser area consuming. The obtained results have been comparable to that

produced by the MATLAB and hence the goal is achieved.

One of the drawbacks of the model is that we are using parallel hardware for

the ten HMM models. This would blow up the LUT utilization as we have seen

in Figure 4.5. If we need to design for recognizing twenty words instead of ten

then such hardware wouldn’t be useful. Instead we can design a model which uses

resource sharing but it would take double the number of clock cycles for a twenty

word model.

The future work for this project involves extending the idea of replacing float-

ing point with fixed point numbers in dealing the larger and the ultimate goal i.e.,

sentence recognition system for an Application Specific Integrated Circuit(ASIC)

based solution. As a part of this work, a plan to replace floating point opera-

tions(by doing operator overloading) in the ’Kaldi’ C++ source code for generic

sentence recognition has been proposed.

Chapter 6

APPENDIX- REFERENCES

1. Rabiner, A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2), 257-286, (1989).

2. https://en.wikipedia.org/wiki/Hidden_Markov_model

3. https://en.wikipedia.org/wiki/Mel-frequency_cepstrum

4. H Bhagawateeswaran, Hardware Accelerator For HMM based speech recog-
nition using approximate computing techniques.(2015)

5. https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/
xst.pdf

https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	INTRODUCTION
	ISOLATED SPEECH RECOGNITION
	Pre-processing steps
	Speech Modelling using HMMs
	Viterbi-Decoder
	Viterbi Algorithm-Theory and Equations
	Trellis Diagrams

	Predicting the word

	HARDWARE ARCHITECTURE AND IMPLEMENTATION
	Log-Viterbi Decoder
	Hidden Markov Models for Isolated Digits
	Register Sizes For Fixed Point Arithmetic
	Choosing ''

	RTL Hierarchy
	Block Diagram of Entire System

	RESULTS- SIMULATION AND SYNTHESIS
	Confusion Matrix
	Synthesis

	CONCLUSIONS AND FUTURE WORK
	APPENDIX- REFERENCES

