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ABSTRACT

KEYWORDS: Computational Imaging,Deep Learning, Fourier Ptychography Mi-

croscopy, Image inpainting, Biomedical Images, Serial Two Pho-

ton Tomography

This project explores and solves two different problems in microscopy of biomedical

images using deep learning based computational imaging techniques. The first prob-

lem is on phase retrieval in Fourier Ptychography Microscopy.Fourier Ptychography is

a recently proposed imaging technique that yields high-resolution images by compu-

tationally transcending the diffraction blur of an optical system. At the crux of this

method is the phase retrieval algorithm, which is used for computationally stitching to-

gether low-resolution images taken under varying illumination angles of a coherent light

source. However, the traditional iterative phase retrieval technique relies heavily on the

initialization and also need a good amount of overlap in the Fourier domain for the suc-

cessively captured low-resolution images, thus increasing the acquisition time and data.

We show that an auto-encoder based architecture can be adaptively trained for phase re-

trieval at 40% and 65% of overlap and outperform traditional methods like AP. For high

overlap, we show that optimizing the generator for reducing the forward model error is

an appropriate choice. Using simulations for the challenging case of uncorrelated phase

and amplitude, we show that our method outperforms many of the previously proposed

Fourier ptychography phase retrieval techniques. The second problem is ’Denoising

High Density Gene Expression in Whole Mouse Brain Images scanned using Serial

Two Photon Tomography Microscopy’. In particular this project was aimed to solve a

particular de-noising problem in the automated ex vivo mouse brain imaging STP setup

of Cold Spring Harbor Labs.It is a method that achieves high-throughput fluorescence

imaging of mouse brains by integrating two-photon microscopy and tissue sectioning.

STP tomography generates high-resolution datasets that are free of distortions and can

be readily warped in three dimensions, for example, for comparing multiple anatomical

tracings and opens the door to routine systematic studies of neuroanatomy in mouse
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models of human brain disorders.In certain slice high density cellular/nuclear gene ex-

pression affects registration accuracy via the pixel intensity of the anatomical features

in downsampled images.We propose to use a deep neural network with adversarial loss

for denoising the gene expression to improve the registration accuracy.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Fourier ptychography phase retrieval

Sub-optimal throughput of traditional imaging systems can be attributed to the funda-

mental limitation of its optics, known as the Space Bandwidth Product (SBP). The SBP

of an optical system characterizes the total resolvable pixels, and imposes a trade-off

between the field of view and resolution of captured images. Fourier Ptychography

(FP) Zheng et al. (2013) is a powerful imaging technique that circumvents this physical

limitation using computation, yielding gigapixel-scale intensity and phase images. It

has applications in both microscopic bio-medical imaging Zheng et al. (2013), as well

as long range imaging for surveillance and remote sensing Holloway et al. (2017)Hol-

loway et al. (2016).

The technique of FP includes the acquisition of many SBP limited images using

varying illumination angles of a coherent light source. Since conventional image sen-

sors can capture only the intensity of light falling on them, there’s a loss of phase infor-

mation. Hence, phase retrieval algorithm is then applied to the captured set of images

to reconstruct a high resolution, high field-of-view image. However, traditional phase

retrieval algorithms suffer from a common artifact known as phase-amplitude leakage -

an artifact caused due to phase information leaking into amplitude and vice versa. This

artifact becomes more predominant when phase and amplitude are highly uncorrelated.

In this paper, we exploit the rapid progress of deep learning based techniques in

solving inverse reconstruction problems Ulyanov et al. (2017); Chang et al. (2017);

Dave et al. (2018, 2017) for the task of phase retrieval in FP. We propose a non data-

driven technique that optimizes the weights of an auto encoder based generator net-

work, using an objective function that reduces the loss between estimated and observed

low resolution measurements. This method, inspired by Ulyanov et al.’s Deep Image

PriorUlyanov et al. (2017), doesn’t necessarily require any prior training and the opti-

mization is done only for a given set of test measurements.



In summary, we propose an auto-encoder based non-data driven framework, where

we optimize over the generator parameters by minimizing the forward measurement

error of FP. While other traditional algorithms also optimize in a similar way, the pro-

posed method additionally exploits the low-level image statistics captured by generator

network’s inherent structure Ulyanov et al. (2017), thereby making it more robust to

phase-amplitude leakage. Using simulations for uncorrelated phase and amplitude in

both low and high overlaps, we show that our algorithm outperforms previously pro-

posed FP phase retrieval techniques.

1.1.1 Background on Fourier ptychography

Traditional imaging systems have a trade off between the field-of-view and resolution

at which it can capture images, due to the physical limitation of its optics. The objec-

tive of Fourier ptychography is to circumvent this limitation by computation. For this,

multiple low resolution images are captured using a high field of view objective lens,

where each acquisition is done for different angles of illumination. Using concepts from

Fourier optics, this can be understood as sampling different regions of object’s high res-

olution Fourier domain, and capturing only its corresponding intensity. As the phase

Sample
Camera

LED array

ᶚx

ᶚy
v

o(v)e(j2ᶢ(v.k)) O(ṙ - k)P(ṙ) |F-1 (O(ṙ - k)P(ṙ))|2

Figure 1.1: Schematic illustration of : Here we show the three parts of FP forward
model. The first being the angular illumination from LED array to target
sample. Light from target sample then passes through the objective lens,
in the process the high frequency components gets removed due to the lim-
ited bandwidth of objective lens’ pupil function. The camera then captures
the intensity of light coming from the objective lens, during which phase
information of light is lost.
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information is lost in each of those acquisitions, reconstruction is no longer straight-

forward. There is a need for capturing a certain amount redundant information during

each acquisition, so as to retrieve the lost phase. This comes in terms of high over-

lap between successive measurements in Fourier domain, making required number of

acquisitions sub-optimal. The high resolution intensity and phase images are then re-

constructed, by finding an estimate that satisfies both the spatial and Fourier domain

constraints imposed by the observed measurements.

In the following subsections, we mathematically model the steps involved in FP

technique, and briefly discuss some of the recent phase retrieve techniques used for

solving FP.

FP forward model:

Fourier ptychography forward model involves the angular illumination of target using

LEDs, interaction of light from target sample with the objective lens, and finally its

acquisition using the camera. Below, we mathematically model each of these steps

(See Figure 1.1).

• LED illumination: Let us consider the imaging of a thin target sample having
transmission function given by o(v) = A(v)ejφ(v), where v is the spatial vector,
and A(v) and φ(v) are the amplitude and phase attenuation respectively. If the
target sample is illuminated using an LED that emits light with spatial frequency
k, then light from the target sample that reaches the objective lens is o(v)ej2π(v.k).
Therefore, if O(ω) is Fourier transform of the target sample under normal illumi-
nation, then the Fourier transform under angular illumination would beO(ω−k).

• Objective lens: Let P (ω) be the pupil function of the objective lens, then the
light passing through it would be O(ω − k)P (ω). Since under normal illumina-
tion P (ω) acts as a low pass filter with cut-off frequency given by its numerical
aperture, under angular illumination it would behave as a band pass filter.

• Image acquisition: However, since camera sensors can capture only the intensity
and not the phase of light coming from the objective lens, the captured image is
given as |F−1(O(ω − k)P (ω))|2, where F−1 is Fourier inverse. Multiple such
images are taken using varying angles of illumination to capture different regions
of the object’s Fouier domain.
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FP inverse model:

Phase retrieval can be posed as a non-convex optimization problem that estimates the

high resolution complex object, subject to the constraints imposed by the observed low

resolution measurements. In the context of this paper, we segregate such optimiza-

tion algorithms as non-data driven approaches and data-driven deep-learning based ap-

proaches.

Non-data driven algorithms for FP: As discussed in Yeh et al. (2015), non-data driven

algorithms can be broadly classified as sequential or global, based on the region of high

resolution Fourier domain that is updated in each iteration. In each iteration, global

techniques update the entire Fourier domain in order to minimize the cumulative loss

with respect to all observed measurements, whereas sequential techniques update only

the region corresponding to one observed measurement at a time. In terms of the or-

der of derivative used for optimization, these algorithms can be further divided as first

order sequential Zheng et al. (2013),Ou et al. (2014), second order sequential Tian

et al. (2014), first order global Bian et al. (2015), and second order global Yeh et al.

(2015). It has also been shown that the non-convex phase retrieval algorithm can be

cast as a low-rank semi-definite programming problemRecht et al. (2010)Candes et al.

(2015)Candes et al. (2013)Burer and Monteiro (2003)Horstmeyer et al. (2015), which

has been solved in he context of FP in Horstmeyer et al. (2015). From studies shown

in Yeh et al. (2015), it was inferred that among these, global Newton’s method Yeh

et al. (2015) gives the best reconstruction at the cost of complex computation, whereas

sequential Gauss-Newton Tian et al. (2014) offers the best trade off between computa-

tional efficiency and robustness for large-scale applications.

Data-driven deep learning based approaches: However, due to the non-convex na-

ture of the problem, all non-data driven algorithms tend to get stuck in local-minima

when the number of constraints imposed by measurements are less, which is the case

when overlap in the Fourier domain between successive captured low-resolution images

are less. Under such an ill-posed setting, we obviously expect data-driven techniques

that learns the prior structure of high resolution intensity and phase to perform well. Pty-

chNet Kappeler et al. (2017), prDeep Metzler et al. (2018) and Rivenson et al. (2017)

are examples of data-driven techniques that were used for different such ill posed phase

retrieval settings.
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While PtychNet have shown promising results for intensity reconstruction under

reduced overlap, it was limited to the special case of using constant phase in the forward

model. In most real-world scenarios, the assumption of light from an object having only

constant phase does not always hold true, and hence the reconstruction might suffer

from severe phase-amplitude leakage Yeh et al. (2015). In this paper, we show that

the proposed algorithm can reconstruct both high resolution intensity and phase under

reduced overlap, even when they are highly uncorrelated. Rivenson et al. (2017) have

also proposed such an approach of reducing the number of needed observations by

applying deep learning, but have shown its application only for holography images with

correlated phase and amplitude.

Metzler et al. (2018) have shown that the robustness of phase retrieval algorithm

to noise can be further improved by using a denoising based deep-learning prior. The

formulation includes optimization of high resolution estimate subjected to constrains

imposed by both the observed measurements, as well as a trained denoising convolu-

tional neural network (CNN) which ensures that the estimate suffers from less noise.

However, the results shown are limited to amplitude-only targets, and hence phase is

not reconstructed. Although this work Metzler et al. (2018) is not in the context of

reduced measurements or uncorrelated phase and amplitude, it demonstrates how deep

learning based priors can be exploited for phase retrieval. It is also worth noting that,

unlike Metzler et al. (2018), our algorithm is fully deep learning based where even the

architecture weights are directly updated based on loss with respect to observed mea-

surements.

Recently, Boominathan & Mitra, 2018 proposed a conditional adversarial based net-

work for Fourier Ptychography (cGAN-FP), which aims to reconstruct high resolution

amplitude and phase, specially when the amount of overlap between successive mea-

surements in the Fourier domain is less. Although this shows promising results for the

low overlap case, cGAN-FP’s performance is much inferior to traditional algorithms

for the high overlap case. This is because cGAN-FP doesn’t directly take into account

measurement based loss, and makes prediction only based on the average statistics it

learned over the entire dataset it was trained for. This motivates us to explore ways in

which the estimate of the deep learning framework not only uses image prior, but also

aims to satisfy the likelihood constraints imposed by the measurements.
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1.2 Introduction to denoising of high density gene ex-

pression in whole mouse brain images

STP tomography, that enables automated high-throughput imaging of fluorescently la-

beled mouse brains. This method uses whole-mount two-photon microscopy and thus

generates datasets of well-aligned, high-resolution serial optical sections.Using STP

tomography cell types specific fluorescent protein expression can be studied and by

systematic mapping of input and output connections of mouse, somatosensory cor-

tex can be done easily and robustly. This can help to study mouse models of human

Figure 1.2: Problem statement: Here we show the down-sampled images of various
brain slices. The top set of brain slices only have sparse gene expressions,
whereas the bottom set has thick chumps of dense expressions. As a result
of which, performing registration for the the former is much is easier than
for latter. We aim to solve this problem of registration for slices with dense
gene expression by applying deep learning based inpainitng.
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brain disorders in standard laboratory settings and revolutionize drug discovery. Cold

Spring Harbor Laboratory has been pioneering a method for automate ex vivo STP.

Their pipeline invlolves collecting the slices at 8557*11377 resolution, downsampling

them by 20 times and registering the imaged 3D volume to a reference model. The high

expression in certain slices become white patches when we downsample by 20 times

as shown in Figure ??. This affects the registration accuracy badly. Our objective in

this project is to remove the high expression data in the image, effectively a denoising

problem. To solve this problem we decided to inpaint the white patches in the high

resolution image and then downsample.For this inpainting we used the context-encoder

architecture proposed by Pathak et al and then downsample the image by 20 times to

be used in the pipeline. n contrast, our context encoder needs to solve a much harder

task: to fill in large missing areas of the image, where it canâĂŹt get âĂIJhintsâĂİ from

nearby pixels. This requires a much deeper semantic understanding of the scene, and

the ability to synthesize high-level features over large spatial extents.

1.2.1 Related works

As suggested by its name, exemplar-based inpainting like patch-match uses an itera-

tive solution to generate the unknown region based on the source region of the image.

The pixel synthesis of the fill-region begins at the fill-front, or the edge between the

known/unknown region, and gradually moves inwards to complete the missing zone.

The intuition of this algorithm came from fluid dynamics and partial differential equa-

tions. The filling mechanism is derived from Dr.Bertalmo, Bertozzi and Sapiros con-

cept of smooth continuation of information in the level-lines direction.[3] According to

BertalmoâĂŹs 2001 CVPR paper, the filling rule is to extend the isophotes, or linear

structures, while matching gradient vectors at the contiguous edge of the fill-region.[4]

It is important to point out that our hole-filling task cannot be handled by classical in-

painting [4, 32] or texture synthesis [2, 11] approaches,since the missing region is too

large for local non-semantic methods to work well. In computer graphics, filling in

large holes is typically done via scene completion [19], involving a cut-paste formu-

lation using nearest neighbors from a dataset of millions of images. However, scene

completion is meant for filling in holes left by removing whole objects,and it struggles

to fill arbitrary holes, e.g. amodal completion of partially occluded objects. Further-
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more, previous completion relies on a hand-crafted distance metric, such as Gist [31]

for nearest-neighbor computation which is inferior to a learned distance metric. We

show that our method is often able to inpaint semantically meaningful content in a para-

metric fashion, as well as provide a better feature for nearest neighbor-based inpainting

methods.
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CHAPTER 2

Methodology

2.1 Proposed method for FP phase retrieval

As in the above mentioned cGAN-FP framework (illustration of its training shown in

subfigure (a) of Figure 2.1) uses only a conditional prior learned over a large dataset,

the reconstruction lacks the sharpness and details that can otherwise be achieved in the

Low-resolution input from 
simulated dataset

Forward Model

Estimated high resolution 
intensity and phase

L2 loss w.r.t. GT Fake Real

Discriminator loss

Random sample from 
the dataset

Observed low-resolution
(test sample)

Estimated high resolution 
intensity and phase

Estimated low 
resolution 

measurement

L2 loss w.r.t. observed low resolution(test sample)

Training method for low overlap case

Optimization method for high overlap case

Generator
(activation: ReLU)

Generator
(activation: sigmoid)

Backpropagation

Discriminator

In
te

ns
ity

P
ha

se

In
te

ns
ity

P
ha

se

In
te

ns
ity

P
ha

se

(a)

(b)

Figure 2.1: Proposed approach for low and high overlap cases For the low overlap
case we train the network via supervised training approach, see subfigure
(a). The input to the generator are the simulated low resolution images.
The network weights are learned by minimizing L2 loss between network’s
output and the ground truth high resolution intensity and phase images.
Subfigure (b) shows our method for the high overlap case. We optimize
the generator’s weights by minimizing the loss between the input and the
estimated low resolution images (obtained by passing the the generator’s
reconstructed intensity and phase images through the FP forward model.)



high overlap case by exploiting measurement based loss. This motivates us to directly

optimize the generator network, such that the reconstruction when passed through the

forward model yields values close to the observed measurements. This can be formu-

lated as

argmin
θ

loss(x,M(Gθ(x))) ∀ x ∈ {training dataset} (2.1)

where x is the low resolution measurements,Gθ is the generator network with learn-

able parameters θ, M is the FP forward model. The above optimization problem ba-

sically means that the optimized generator Gθ is an approximation for the inverse of

M . This would be difficult to learn, more so when the number of measurements are not

sufficient for solving the inverse problem. Thus, instead of finding the generator that

works for all x, we propose to optimize the generator parameter θ for only a given test

set of measurements x0, i.e.

argmin
θ

loss(x0,M(Gθ(x0))) for a given x0, (2.2)

which is a much easier optimization problem and also produces better results, see Figure

2.2. We observe that the formulation in 2.2 is related to that used in Deep Image Prior

Generator trained with Forward model loss 
on simulated data 

Intensity Phase

65
%

 o
ve

rla
p

Intensity Phase

cDIP 

Figure 2.2: Training for entire dataset vs optimizing for one test sample, for 65% over-
lap case: On the left is the result obtained by training (on the simulated
dataset) our auto-encoder based generator network using just forward model
loss. On the right is the result obtained for the same generator network with
forward model loss, but with weights optimized only for a given test sample.
We observe that the generator finds it more difficult to reconstruct high res-
olution phase and amplitude, when trained for entire dataset, as compared
to optimizing just for the one test sample.

Ulyanov et al. (2017), with the difference that we use the low resolution measurements

as input instead of random noise. This is more suitable for our case, as it is easier to

reconstruct from low resolution input as compared to noise, which is clearly evident
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from Figure 3.1. Hence, we call this as conditional deep image prior (cDIP). For cDIP,

we found sigmoid to be a better non linearity function after generator’s last convolution

layer. An illustrative example of its optimization is shown in subfigure (b) of Figure

2.1.

Just as mentioned in Ulyanov et al. (2017), the network structure’s high impedance

to noise makes it more robust to artifacts such as phase-amplitude leakage, resulting in

atleast a good looking local optimum with minor variations depending on the network

initialization. We note that initializing cDIP using learned cGAN-FP weights yields

significantly better reconstruction with faster convergence.

2.2 Proposed method for denoising of high density gene

expression in whole mouse brain images

Given an image with a missing region, we train a convolutional neural network to

regress to the missing pixel values. We call our model context encoder, as it consists

of an encoder capturing the context of an image into a compact latent feature repre-

sentation and a decoder which uses that representation to produce the missing image

content. The context encoder is closely related to autoencoders [3, 20], as it shares

a similar encoder-decoder architecture. Autoencoders take an input image and try to

reconstruct it after it passes through a low-dimensional âĂIJbottleneckâĂİ layer, with

the aim of obtaining a compact feature representation of the scene. Unfortunately, this

feature representation is likely to just compresses the image content without learning

a semantically meaningful representation. In contrast,context encoder needs to solve

a much harder task: to fill in large missing areas of the image, where it canâĂŹt get

âĂIJhintsâĂİ from nearby pixels. This requires a much deeper semantic understand-

ing of the scene, and the ability to synthesize high-level features over large spatial ex-

tents.oders are trained in a completely unsupervised manner. Our results demonstrate

that in order to succeed at this task, a model needs to both understand the content of

an image, as well as produce a plausible hypothesis for the missing parts. This task,

however, is inherently multi-modal as there are multiple ways to fill the missing region

while also maintaining coherence with the given context.We decouple this burden in our

loss function by jointly training our context encoders to minimize both a reconstruction

11



Figure 2.3: The above is the architecture for context based encoder. The first part of
the architecture takes in the image patch as input and performs a set of
convolution operation to finally reach a 4000× 1 latent space vector. Then
a set deconvolution operations follow to map the latent space vector to the
inpainted image. We use both l− 2 loss with respect to the ground truth, as
well as adversarial loss to make the output more natural image like.

loss and an adversarial loss. The reconstruction (L2) loss captures the overall structure

of the missing region in relation to the context, while the the adversarial loss [16] has

the effect of picking a particular mode from the distribution. Figure 1 shows that using

only the reconstruction loss produces blurry results, whereas adding the adversarial loss

results in much sharper predictions. We define the overall loss function as

L = λrecLrec + λadvLadv (2.3)

We use a normalized masked L2 distance as our reconstruction loss function,Lrec,where

� is the element-wise product operation. While this simple loss encourages the decoder

to produce a rough outline of the predicted object, it often fails to capture any high

frequency detail. This stems from the fact that the L2 loss often prefer a blurry solution,

over highly accurate textures. We believe this happens because it is much âĂIJsaferâĂİ

for the L2 loss to predict the mean of the distribution, because this minimizes the mean

pixel-wise error, but results in a blurry averaged image. We alleviated this problem by

adding an adversarial loss.

Lrec =
∥∥∥M̂ � (x− F ((1− M̂)� x)))

∥∥∥2

2
(2.4)
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Figure 2.4: The above diagram shows the pipeline of our method. Given a test image,
we first perform histogram matching on it to bring it to the intensity distri-
bution for which our network was trained for. We then extract patches from
the histogram-matched image and feed it to our network - context based en-
coder. The in-painted patches that are obtained from the network are then
put back in their corresponding positions so as to get back our high dimen-
sional in-painted image.

Our adversarial loss is based on Generative Adversarial Networks (GAN).To learn a

generative model G of a data distribution, GAN proposes to jointly learn an adversarial

discriminative model D to provide loss gradients to the generative model.G and D

are parametric functions (e.g., deep networks) where G : ZtoX maps samples from

noise distribution Z to data distribution X .The learning procedure is a two-player game

where an adversarial discriminator D takes in both the prediction of G and ground

truth samples, and tries to distinguish them, while G tries to confuse D by producing

samples that appear as ’real’ as possible. The objective for discriminator is logistic

likelihood indicating whether the input is real sample or predicted one.To customize

GANs for this task, one could condition on the given context information;i.e., the mask

M̂ However, conditional GANs don’t train easily for context prediction task as the

adversarial discriminator D easily exploits the perceptual discontinuity in generated

regions and the original context to easily classify predicted versus real samples. We thus

use an alternate formulation, by conditioning only the generator (not the discriminator)

on context. We also found results improved when the generator was not conditioned on

a noise vector. Hence the adversarial loss for context encoders,Ladv is

min
G

max
D

Exεχ [log(D(x)) + log(1−D(F ((1− M̂)� x))] (2.5)
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CHAPTER 3

RESULTS

3.1 Results for the proposed FP phase retrieval method

(cDIP)

3.1.1 Dataset

Images in INRIA Holidays dataset Jégou et al. (2008) are used for simulating objects

with uncorrelated amplitude and phase. Images are first resized to 256× 256, and ran-

domly paired together with one as an object’s intensity, and the other as its phase by

linearly mapping its values between 0 to 2π. These objects are further divided into

training and test splits. Each object is passed through FP forward model, with parame-

ters depending on the amount of overlap, to obtain its corresponding 64× 64 sized low

resolution images. Data preparation for training includes channel wise stacking of each

object’s low resolution images, resizing them spatially to 256 × 256, and performing

channel wise rescaling to have values between 0 and 1. Similar scaling is also done for

the ground truth high resolution intensity and phase as well. Due to the lack of publicly

available FP data, we could not test our algorithm on real data.

3.1.2 Performance

We compare our results with the commonly used traditional phase retrieval algorithms

such as Alternating Projections Gerchberg (1974)Fienup (1978), and Wirtinger FlowBian

et al. (2015). Among these methods, due to lack of space, we show our compar-

isons only for Alternate Projections (AP) as AP’s performance is better or at par with

Wirtinger Flow in most cases. We also show comparisons with PtychNet Kappeler et al.

(2017), a deep learning based phase retrieval algorithm that was originally proposed for

intensity reconstruction only. Hence for comparison, we train two separate networks

with PtychNet architecture, one for phase and one for intensity. We use Peak Signal to
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Figure 3.1: Different choices of initialization and inputs for our generator network in
the 40% overlap case: There’s significant increase in performance in terms
of PSNR and SSIM when cGAN-FP is used for initializing cDIP training.
However, even without any initialization cDIP gives perceptually good re-
sults with minor line artifacts, see the red bounding box. DIP Ulyanov
et al. (2017) while being able to reconstruct sharper features as compared
to cGAN-FP, suffers from considerable amount of phase-amplitude leak-
age. cGAN-FP on the other hand doesn’t suffer much artifacts, but lack
sharp features.

Noise Raio (PSNR) and Sructural Simmilarity (SSIM) as our evaluation metrics. PSNR

and SSIM calculation for PtychNet results were done only on the central 240× 240 re-

gion, avoiding unwanted border effects mentioned in PtychNet.

In Figure 3.1, we compare different choices of initialization and inputs for our gen-

erator network in the 40% overlap case. The first column shows cGAN-FP result trained

for this 40% overlap. The second column shows result for Deep Image Prior Ulyanov

et al. (2017) (DIP), which is a training-free approach based on minimizing the obser-

vation error. In DIP, both the input and the generator parameters are randomly ini-

tialized. Third column shows the result from conditional DIP (cDIP), where instead

of giving noise as input, we use the set of observed low resolution images as input.

The last column shows result for cDIP with cGAN-FP initialization where instead of

a randomly initializing the generator paramters, we initialize it with the cGAN-FP pa-

rameters trained for 40% overlap. We observe significant increase in performance in

terms of PSNR and SSIM when such an initialization is used. However, even without

any initialization cDIP gives perceptually good results but with minor line artifacts (as
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shown in red bounding box). DIP while being able to reconstruct sharper features as

compared to cGAN-FP, suffers from considerable amount of phase-amplitude leakage.

cGAN-FP on the other hand doesn’t suffer much artifacts, but lacks sharp features.

As shown in Figure 3.2, we observe that Alternate Projection (AP) algorithm is able

to achieve perceptually better intensity reconstruction than PtychNet, but suffers from

phase-amplitude leakage as shown in the region bounded by red box. Also, AP’s phase
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Figure 3.2: Phase retrieval for high overlap case (40% and 65%): Alternate Projection
(AP) algorithm is able to achieve perceptually better intensity reconstruc-
tion than PtychNet, but suffers from phase-amplitude leakage as shown in
the region bounded by a red box. PtychNet does not do as well as AP be-
cause it does not take into account the forward model loss during reconstruc-
tion. Our method gives the best results, as it exploits both the measurements
and the image prior induced by generator network’s structure.
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PSNR: 33.12 / SSIM: 0.84 PSNR: 34.48 / SSIM: 0.97

PSNR: 27.53 / SSIM: 0.79 PSNR: 29.24 / SSIM: 0.88
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PSNR: 27.23 / SSIM: 0.71 PSNR: 33.58 /  SSIM: 0.96

Figure 3.3: In the above figure, we show results of our algorithm for various test sam-
ples for 65% overlap case.

reconstruction is much better than PtychNet’s. This is expected as PtychNet does not

use the forward model loss during reconstruction. Our method gives the best results,

as it exploits both the measurements and the image prior induced by the generator net-

work’s structure.

3.2 Proposed denoising method for high density gene

expression in whole mouse brain images
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Figure 3.4: Patch in-painting: In the left is the patch to be in-painted, at the center is
the in-painted patch we obtained using our approach, and at the right is the
ground truth image.

Figure 3.5: Brain slice in-painting - example 1: In the first row, at the left is the captured
image of a brain slice. At the center is the mask that indicates the network
which pixels (white dots) are to be in-painted.The image at right is the result
we obtained. The bottom two rows show zoomed patches of regions shown
in the first row.
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Figure 3.6: Brain slice in-painting - example 2: We show results for another test image
as in the previous figure. In the first row, at the left is the captured image
of a brain slice. At the center is the mask that indicates the network which
pixels (white dots) are to be in-painted.The image at right is the result we
obtained. The bottom two rows show zoomed patches of regions shown in
the first row.

Figure 3.7
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CHAPTER 4

Conclusion

We explored the application of deep learning for two specific problems in the area of

microscopic imaging. The first one was for phase retrieval in Fourier ptychography

microscopy, and the second for denoising in high density gene expression in whole

mouse brain images.

For solving the problem of phase retrieval in Fourier ptychography, we propose a

deep learning based method uses the same generator network that was used for cGAN-

FP, but under a different setting where weights are updated based on loss with respect to

measurements. Using simulations on uncorrelated phase and amplitude under both low

and high overlap cases, we show that our algorithm outperforms the commonly used

techniques for FP phase retrieval.

For the problem of denoising in high density gene expression in whole mouse brain

images, we proposed a context-encoder based approach. Such an architecture predicts

values for pixels to be in-painted, by exploiting the context information around them.

The trained network was able to produce naturally looking images, and our method is

currently being used for improving registration accuracy in the openSTP pipeline.
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