Neural Network Based Decoder for Topological Color

Codes Using Inverse Parity Check Matrix

A Project Report

submitted by

CHAITANYA CHINNI

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY AND MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2018

THESIS CERTIFICATE

This is to certify that the thesis titled Neural Network Based Decoder for Topological
Color Codes Using Inverse Parity Check Matrix, submitted by Chaitanya Chinni, to
the Indian Institute of Technology, Madras, for the award of the dual degree of Bachelor
of Technology and Master of Technology, is a bona fide record of the research work
done by him under our supervision. The contents of this thesis, in full or in parts, have

not been submitted to any other Institute or University for the award of any degree or

diploma.

Dr. Pradeep Kiran Sarvepalli Dr. Kaushik Mitra

Research Guide Research Guide

Assistant Professor Assistant Professor

Dept. of Electrical Engineering Dept. of Electrical Engineering
IIT Madras, 600 036 IIT Madras, 600 036

Place: Chennai

Date: 18th June 2018

ACKNOWLEDGEMENTS

I am deeply grateful to my guides Dr. Pradeep Kiran Sarvepalli and Dr. Kaushik Mi-
tra for their constant support and encouragement during my research. Their immense
knowledge and dedication towards research not only motivated me but also helped me

in maturing as a researcher and a person.

I am deeply thankful to my faculty advisor Dr. Andrew Thangaraj who was always
there for me whenever I needed an advice, both personally and professionally. I had
a wonderful opportunity to be a TA for Dr. David Koilpillai. His towering figure yet
down-to-earth personality is very inspiring and all my interactions with him have been
extremely gratifying. I would also like to thank Abhishek and Dheeraj without whose

efforts, this work would have been incomplete.

My five years of stay in IIT Madras is the most amazing part of my life. Surrounded
by beautiful minds all around, IIT Madras helped me grow as a person, making me
strong and confident. I would like to convey my heartfelt gratitude to my closest friends
Swarup, Phani, Deepak, Susmitha, Manideep, and many others for making my stay here
such an incredible experience. I would like to thank my seniors Abdeali, Shahidh and
Shivaprasad, whom I have always looked up to for their knowledge and maturity and
without them, I wouldn’t have been the person I am today. I would also like to thank my
lab mates Sharath, Anil, Prasan, Lokesh, Honey, Renju, Arun for all the encouragement
and discussions, both technical and otherwise. Surrounded by all of them, I can proudly

say IIT Madras has been my home.

Finally, I would like to thank my parents, my sister and my brother-in-law for their

constant support, love and unwavering belief in me.

ABSTRACT

KEYWORDS: Quantum Error Correction, Neural Networks, Deep Learning, Surface
Codes, Stabilizer Codes, Color Codes

Qubits are highly susceptible to noise. In order to build a reliable quantum system,
active quantum-error-correction is required. These error correction algorithms should
be of low time complexity and guarantee a good threshold. With the recent advance-
ments of hardware and software in Deep Learning, both these requirements can be met.
We propose a neural decoder using inverse parity-check matrix for the same and show
that it outperforms the state-of-the-art performance of non-neural decoders for inde-
pendent Pauli errors noise model on a 2D hexagonal color code. Our final decoder is
independent of the noise model and achieves a threshold of 10% and outperforms the
state-of-the-art non-neural decoders proposed by Sarvepalli and Raussendorf (2012);
Delfosse (2014). Our result is comparable to the recent work on neural decoder for
quantum error correction by Maskara et al. (2018). We also conclude that our approach

can be extended to arbitrary dimension and to non-CSS codes easily.

il

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

LIST OF TABLES

LIST OF FIGURES

ABBREVIATIONS

NOTATION

1 Introduction

1.1 Neural network based decoders

1.2 Contributions of the Thesis

2 Quantum Error Correcting Codes

2.1 StabilizerCodes

2.2 Quantum Error Correction

221

QEC as a classification problem

23 Colorcodes

3 Machine Learning and Deep Learning

3.1 Anoverview of Machine Learning

3.1.1

Classification problem

3.2 Anoverview of Deep Learning

3.2.1
322
323
324
325

Neuron and Activation functions
Architectures
Loss functions
Training

Weight initialization and back-propagation

il

ii

vii

viii

ix

~ B~ B~ WL W

=)

10
10
10
12
14
14

3.2.6
3.2.7
3.2.8

Optimizers
Hyper-parameters

Processflow

4 Error Correction for Periodic Color Code using Neural Networks

4.1 Introduction
42 Problem Modeling oL
4.3 Architecture Lo
4.4 Training Procedure

4.5 Results
4.6 Insights

5 Conclusion

15
15
16

17
17
18
20
21
24
25

27

4.1

LIST OF TABLES

The values of the hyper-parameters used in the neural decoder for bit-
/phase-flipnoise.o

21

2.1

22

23

24

3.1

3.2

33

34

3.5

4.1

LIST OF FIGURES

Periodic color code on a hexagonal lattice illustrated with a face and a
stabilizer.

The periodic hexagonal color code lattice with a phase-flip error £ on
the left. The corresponding syndromes are indicated in the right. The
X stabilizers on the faces f and f’ anti-commute and commute with the
error [/ respectively. Lo

The periodic hexagonal color code lattice with a different phase-flip
error E on the left where £’ = ES. Both F and E’ leave the same
syndrome and have the same effect on the codespace.

The periodic hexagonal color code lattice with a different phase-flip er-
ror £ on the left where £/ = FEL. Both E and E’ leave the same
syndrome. Applying E’ on to F will result in a logically different
codespace than the original one. Some qubits are indexed to show that
the lattice is periodic. Qubits with the same index are the same. . . .

Simple classification between domestic cats and dogs depending on
weight and height using dummy data. Estimating the parameters of
the boundary is solving the classification problem.

A single neuron which accepts input x and outputs f (w'x + b) where
f is an activation function. The vectors x, w € R" and b € R.

Various activation functions used commonly in DL. Note that ReLU
does not saturate for highinputs.

A sample fully-connected architecture with one hidden layer. Each neu-
ron in every layer is connected to every other neuron in the adjacent
layers. The size of the input vector is m and the size of the output vec-
tor is 0. There are n hidden nodes in the hidden layer. The parameters
w represent the weights of the network.

The process flow of any deep learning network. The NN represents any
neural network either FC, CNN, RNN etc. The NN takes input x and
makes a prediction ¥. The loss is calculated between the ground truth y
and the prediction . The optimizer updates the weights of the network
according to the updaterule.

Flow diagram of our two step decoder. The black dots represent error
on the qubits and the marked regions represent the syndrome caused. In
the first step we get an estimate of the error & and in the second step,
we predict the correction homology L* using our trained NN. Our final
error correction is L* F. Egs. (4.5), (4.7),and (4.8).

vi

10

11

13

16

20

4.2

4.3

4.4
4.5

Plots of the various hyper-parameters used in our work with the distance
d of the code. We can see that the curves are almost linear and is an
advantage when we scale to higher lengths.

Performance of our H-inverse (G) decoder in step-one. Note that is
is a very bad decoder by itself since for a fixed p.,,, the logical error
increases as the length of the code increases and this decoder on its own
does not have athreshold.,

Performance of our neural decoder. The threshold achieved is 10%. .

Performance of our neural decoder without the progressive training pro-
cedure. The threshold achieved is just about 7.2%.

vii

22

24
25

26

DL

ML

CSS codes
QEC
QECC

FC

CNN
RNN

NN

ABBREVIATIONS

Deep Learning

Machine Learning
Calderbank-Shor-Steane codes
Quantum Error Correction
Quantum Error Correcting Codes
Fully Connected

Convolutional Neural Networks
Recurrent Neural Networks

Neural Network

viii

NOTATION

Bold face capital letters denote matrices
Bold face small letters denote row vectors
nt" element of x

absolute value of z

N x N identity matrix

X

CHAPTER 1

Introduction

In order to build a quantum computer, we need to store data on quantum particles or
qubits. Since these qubits are very sensitive to the external environment, the data will
get corrupted easily. Hence the information is encoded in order to protect it. One such
class of Quantum Error Correcting Codes (QECC) are the Topological Color Codes and

we study the decoding problem for it.

1.1 Neural network based decoders

In order to do Quantum Error Correction (QEC) in real-time for a fault-tolerant sys-
tem, the decoding algorithm for these codes should be of very low complexity and at
the same time, accurate. If the decoder takes more time to correct, the whole system
can result in an erroneous state since multiple errors can occur during the time the
decoder takes to decode. For topological color codes, there exist some non-neural de-
coders which achieve threshold of 7.8% Ref. Sarvepalli and Raussendorf (2012) and
8.7% Ref. Delfosse (2014) for independent bit-flip/phase-flip error model which has
the theoretical threshold of 10.97% as shown in Katzgraber et al. (2009).

Recently, data-driven based neural network decoders have been proposed for quantum-
error-correction for various codes and noise models by Torlai and Melko (2017); Varsamopou-
los et al. (2017); Krastanov and Jiang (2017); Baireuther et al. (2018a); Chamberland
and Ronagh (2018); Davaasuren et al. (2018); Jia et al. (2018); Breuckmann and Ni
(2018); Baireuther et al. (2018b); Maskara et al. (2018). Among them, Maskara et al.
(2018) have outperformed the traditional decoders in terms of performance for various
noise models on triangular color codes and achieved a threshold of 10% for independent
bit-flip/phase-flip error model. The works by Varsamopoulos et al. (2017); Chamber-
land and Ronagh (2018); Maskara et al. (2018) have a two step decoder where in the
first-step, they estimate an error and in the second-step, they use a neural network which

improves this estimate.

1.2 Contributions of the Thesis

In this work, we study the decoding problem for topological color codes. We propose
a neural decoder which achieves a threshold of 10% for independent bit-flip/phase-
flip noise model. The main challenge involved with neural networks is determining
the correct architecture in order to improve the overall threshold. We model a part
of our decoder in a deterministic way and show the advantages of doing so with the
improvement in performance of the neural decoder, the reduction in cost of training and

scaling associated with it.
The thesis is organized as follows,

Chapter 2 introduces QEC and stabilizer codes with emphasis on color codes. We

introduce the equivalence class and how QEC differs from classical error correction.

Chapter 3 broadly introduces Machine Learning (ML) and Deep Learning (DL). We
discuss the various components in a neural network which can be changed depending

on the problem to be solved.

Chapter 4 discusses our contributions of using neural decoder for QEC. We describe
the problem formulation and reduce the decoding problem to a classification problem
which can be solved efficiently by a neural network. We describe the architecture and
the hyper-parameters and loss function used. We discuss the progressive training proce-
dure employed and show the results through numerical simulations. We also discuss the
insights we have concluded from our work. We show the importance of the progressive
training procedure with results and describe how our problem modeling simplifies the
decoding problem when compared to other works and show the impact in training and

scaling cost as we move to higher lengths.

Chapter 5 gives conclusions from our work.

CHAPTER 2

Quantum Error Correcting Codes

In this chapter, we summarize the necessary background on QECC. In section, 2.1 we
introduce Stabilizer codes and it’s formalism. In Section 2.2 we describe the error cor-
rection of stabilizer codes. In this thesis we focus on color codes which are introduced

in Section 2.3.

2.1 Stabilizer Codes

In this section we will briefly review stabilizer codes. Stabilizer codes are special class
of quantum codes. Let P,, be the group of Pauli operators acting on n qubits. Stabilizer
codes are defined by an abelian group S C P. The group S consists of Pauli operators,
P ® P, ® ... ® P,. Stabilizer codes encodes information in +1 eigenspace of Pauli
operators in S, i.e codespace, C, is +1 eigenspace of S. Stabilizer operators act trivially

on codespace.

C={l) e (@) |Sl)=v)¥VSeS}

Stabilizer codes acting on n qubits and encoding £ logical qubits will have n —
k independent generators. Let N'(S) be the centralizer of group S. Elements of set
N (S)\S are called logical operators, £, and let £, be it’s generating set. £ maps C
to itself but map is not trivial as in case of S. Hence, logical operators are said to act

non-trivially on codespace.

L, has 2k generators and X,;, Z; for 1 < i < 2k. Also, {YZZ]-} commute if 7 # j

and anti-commute if 7 = j.

Once group S is defined with S, as generator set, we implicitly define another set

called pure errors, 7' with generator set 7, such that,

T,={VteT,3Ise S, ts=—ts,Vs' € Sy\s, ts' =5t }

Pure errors also commute with each other and logical operators. We should also

note that {S, £, T} together form the generating set of P,,.

2.2 Quantum Error Correction

In this section we will discuss basics of error correction. Most of the error correction

procedures discretize the errors, which collapses any error into Pauli operator, £ € P,,.

Error operator, E ¢ N (S) will anti-commute with at least one stabilizer operator in
group, S. If E anti-commutes with the i stabilizer S; € S then, s; syndrome bit is one
and if it is commuting then s; is zero. As n — k stabilizers are independent, syndromes
vector can be written as, s = (s, So, ..., S,_x). Remaining components of the vector
can be obtained by linear combination of n — k£ components. This s vector is binarized

form and it lies in GIF5.

2.2.1 QEC as a classification problem

As we already know {S,, L,, 7,} form a generating set of P,, we can write £ = T'LS.
Here T € T,S € Sand L € L. All the T, L, S are a function of the error E. The
effect of S is trivial implying two error patterns £ and £’ = SE will have same effect
on codespace. Therefore, S introduces an equivalence relation in error operators. Hence
finding S is of little interest. Also, given syndrome vector we can uniquely identify 7’
but identifying L is a very difficult task. The problem of error correction for stabilizer
codes is finding the most likely L given the syndrome vector, s. Surface codes have
fixed number of logical operators for any length and hence, decoding can be thought of

as a classification problem.

2.3 Color codes

Topological codes are special class of stabilizer codes where Pauli operators are spa-

tially local. Popular examples of topological codes are Toric codes and Color codes.

In this section we briefly introduce the 2D color code whose lattice is shown in the

Fig. 2.1. The code lattice shown is periodic and is embedded on a torus. Every vertex

is trivalent and faces are 3-colorable.

Figure 2.1: Periodic color code on a hexagonal lattice illustrated with a face and a sta-
bilizer.

Qubits are placed on the vertices of the lattice and for each face f, we define an X

and Z type operators called the face operators. We define the the stabilizers as,

79 =112 XD =TI 2.1

vef vef

We use notation, v € f to denote that v is a vertex of f. All X and Z type operators
corresponding to every face collectively form the stabilizer generators for the color
code. The color code with periodic boundary encodes four logical qubits as shown

in Bombin and Martin-Delgado (2006a).

Consider a periodic lattice as shown in Fig. 2.2. The black dots in the left indicate
the phase-flip error £ and they leave a trace which is the syndrome as indicated on the
right. The X stabilizer on the face f anti-commutes with the error operator £’ and hence
leaves a syndrome whereas the X stabilizer on the face f’ commutes with the error £

and hence does not leave a syndrome.

Consider the same lattice with a different error £’ as shown in the Fig. 2.3. This
error pattern also leaves the same syndrome as in Fig. 2.2. Here, F and E’ differ by a
stabilizer S i.e, £’ = E'S and hence their effect is same on the codespace. This forms
the equivalence class of errors. The problem of QEC is to find the most likely equiva-

lence class given the syndrome. It is essentially estimating an error up to a stabilizer.

o B

Figure 2.2: The periodic hexagonal color code lattice with a phase-flip error £ on the
left. The corresponding syndromes are indicated in the right. The X
stabilizers on the faces f and f’ anti-commute and commute with the error
E respectively.

-

Figure 2.3: The periodic hexagonal color code lattice with a different phase-flip error
E’ on the left where £’ = E'S. Both E and F’ leave the same syndrome
and have the same effect on the codespace.

Consider the lattices with the corresponding errors in the Fig. 2.4. These error
patterns also have the same resultant syndrome. These error patterns do not form the
equivalence class with the error £ since they no longer differ by a stabilizer but they
differ by a logical operator. Hence, decoding to one of these errors will result in a logical
error. This implies applying these errors on to £ will result in a logically different

codespace than the original one.

)

Figure 2.4: The periodic hexagonal color code lattice with a different phase-flip error
E’ on the left where £’ = EL. Both E and £’ leave the same syndrome.
Applying E’ on to E will result in a logically different codespace than the
original one. Some qubits are indexed to show that the lattice is periodic.
Qubits with the same index are the same.

CHAPTER 3

Machine Learning and Deep Learning

3.1 An overview of Machine Learning

In traditional computing, algorithms are sets of explicitly programmed instructions
which perform a specific task as to give out correct output for the given input. Ma-
chine Learning (ML) is a concept to learn patterns from data through statistical analysis
and make predictions without those rules being programmed explicitly. These ML al-
gorithms are therefore data driven methods and the process of learning these rules or
patterns is called training of the ML model. Training is essentially an optimization pro-
cess minimizing an objective function called the loss function. This loss function plays

an important role in the algorithm learning these patterns and making good predictions.

There are many such algorithms for solving problems of classification, regression
etc and some of them are mentioned in Kotsiantis (2007); Domingos (2012). Any func-
tion can be used as a loss function but they need not necessarily help the algorithm
learn. There exist specific loss functions which are mathematically proven to be apt
for solving each of the above mentioned tasks. Mathematically, the core of any ML
algorithm is to estimate the parameters of a function or set of functions which solve the

given task.

This training can be classified into two types, supervised learning and the unsuper-
vised learning. The requirement for supervised learning is labeled dataset of inputs (x)
and the corresponding true outputs (y). These true outputs are sometimes referred to as
ground truth. The ML algorithm will learn the patterns in the data by this information
of input and correct output during training and tries to predict (¥), the correct prediction
during testing. Eg. Classification, Regression. In unsupervised learning, we still have
input data but the corresponding ground truth information is not present. The ML algo-
rithm is required to learn the patterns from the input data alone without the information

of the ground truth. Eg. Clustering.

50 |-

301 e

e cats
o ~dogs

14 16 18 20 22 24 26
Weight

Figure 3.1: Simple classification between domestic cats and dogs depending on weight
and height using dummy data. Estimating the parameters of the boundary
is solving the classification problem.

3.1.1 Classification problem

In machine learning and statistics, classification is the problem of identifying to which
of a set of categories or classes a new observation belongs to. This relation is statisti-
cally obtained from training data. A classification algorithm will predict the confidence
score or the probability of the new observation belonging to a particular class. This can
be illustrated in a dummy example of classification between domestic cats and dogs
with the knowledge of their weight and length as shown in Fig. 3.1. The weight and
height are called the features since the algorithm classifies with that information. Es-
timating the parameters of the line is solving the classification problem. In general
the boundary could be a complicated curve and there could be multiple classes with

multiple features.

Mathematically, if we assume the feature vector to be f for an observation x and the
total classes are the set C, then the prediction 3 is the most likely class that x belongs to

as defined in Eq. (3.1).

g = argmax Pr (z € c¢|f) 3.1)
celC

Bias

Weights b

xl Oo— 'l,Ul
Activation

function Output

[
Inputs $:2 o U:}2 @ @ f (WTX + b)

Ty O— Wp

Figure 3.2: A single neuron which accepts input x and outputs f (w'x -+ b) where f
is an activation function. The vectors x, w € R™ and b € R.

3.2 An overview of Deep Learning

3.2.1 Neuron and Activation functions

A neuron is an element which takes an input x and performs the operation in Eq. (3.2)
where the parameters w are called weights and the parameter b is called the bias. Each
element of these vectors x, w and b are real numbers. The function f is a non-linear
function and is called the activation function. Some common activation functions in-
clude Sigmoid, TanH, ReLU (Rectified Linear Unit) etc as shown in the Fig. 3.3 and

are exhaustively discussed in Goodfellow et al. (2016).

y=f(w'x+b) (3.2)

Deep Learning (DL) is a method in ML to estimate the parameters of a function
using a combinations of this basic element neuron, as shown in the Fig. 3.2. It is com-
mon to address the combined set of parameters in w and b as weights or parameters and
we follow this same convention in our subsequent discussion. The activation function
plays a very important role in DL since without that, a neuron just performs a linear

operation.

3.2.2 Architectures

Different combinations of these basic neurons result in different architectures. Some of
such famous architectures are Fully-Connected Networks, Convolutional Neural Net-

works, Recurrent Neural Networks etc. All these architectures comprise of layers which

10

I I I
L i 1 H{—tanh (z) 1
0.8 | 0.5 :
0.6 - a
0 L |
04 .
02l h —0.5 | -
0f I |
| | | | | | | | | |
-6 —4 -2 0 2 4 6 -6 —4 -2 0 2 4 6
T T
(a) Sigmoid function (b) TanH function
I I
3 [|— max (z,0) i
2 L |
1 [|
0 [|
—2 0 2

xz

(c) ReLU function

Figure 3.3: Various activation functions used commonly in DL. Note that ReLU does
not saturate for high inputs.

11

are again a combination of neurons. Essentially, these architectures can be characterized

by these layers.

In FC architecture, every neuron is connected to every other neuron. Whereas in a
CNN architecture, the weights are posed as filters and these filters convolve with the
input and produce the output as the convolution operation. This forces the weights in
the filter to take a fixed context in the input and produce output from them. CNNs are
particularly useful when the input has a local structure. RNNs mainly deal well with
sequences, where the current input or output is dependent on the previously seen data.
RNNSs maintain a state vector which is carried to the next time step which encompasses
all the data it has seen till that time-step in a compact way. It is to note that the network
in each time-step of RNN can be thought of as a FC or a CNN. The state vector is
the most essential part of an RNN. Combinations of FC and CNN can also be used as

modeled in Krizhevsky ef al. (2012).

Fully-connected Network

We briefly describe the fully-connected (FC) architecture which we use in our work as
shown in Fig. 3.4. Any FC network has an input layer, an output layer and hidden layers.
Each layer comprises of neurons and each neuron is connected to every other neuron in
the adjacent layers. Connectedness implies that each neuron receives the output of the
neurons it is connected to in the previous layer and it passes the output of itself to all
the connected neurons in the next layer. All the neurons in every layer follow this rule
except that the neurons in the input layer take the input from the data and the neurons
in the output layer give us the final prediction. The input data and the output prediction
varies from problem to problem. In a simple image classification task, the input data is
the image and the output is the class label. As mentioned above, the non-linear function
plays a crucial role in the success of DL in estimating complicated functions efficiently,

making DL a very powerful tool.

3.2.3 Loss functions

The loss function plays an important role in the performance of any DL model. It is

calculated between the true label (y) or the ground truth and the prediction made by

12

Input Hidden Output
layer layer layer

Figure 3.4: A sample fully-connected architecture with one hidden layer. Each neuron
in every layer is connected to every other neuron in the adjacent layers. The
size of the input vector is m and the size of the output vector is o. There are
n hidden nodes in the hidden layer. The parameters w represent the weights
of the network.

the network (y). The training procedure as described next ensures that the predictions
made by the network get closer to the ground truth by minimizing the loss function as
the training progresses. For regression problem, commonly used loss functions are are

{5 and /1 norms as defined in Eqgs. (3.3), (3.4).

b9 =ly=9l,=> (v—4) (3.3)
Oy 9) =Ny =3 =>_ lvi — il (3.4)

For classification problems, cross-entropy is used as the loss function Eq. (3.5). We
use the same loss since QEC can be viewed as a classification problem in Section 2.2.1

and we discuss the reasons for using this loss in Section 4.4.

low (y,9) == y:log (4:) (3.5)

13

3.2.4 Training

Training is nothing but estimating the values of the weights of the network which min-
imizes the chosen loss function for the given training data or the input-output pairs.
One of the traditional method of updating the weights to minimize a function is gradi-
ent descent algorithm. It is an iterative algorithm which tries to optimize the objective
function and in our case, minimize the loss function () by updating the weights (w) of
the network in each iteration, by following the rule in Eq. (3.6) as discussed in Good-
fellow et al. (2016). The algorithm requires us to train on the entire training dataset
at once, i.e calculate the average loss for all the inputs in the dataset and perform the
update rule. Since that is not usually computationally feasible, a popular variant of it
called the stochastic gradient descent is employed. Instead of training on the entire
dataset at once, the model is trained on small batches of data until all the training data
is exhausted. The size of this batch is called the batch-size as mentioned in Goodfellow

et al. (2016).

One of the major limitation of gradient descent and its variants is that it does not
guarantee convergence to global optima. Since the loss is calculated between the true
label (y) and the prediction of the network (¥), it is indirectly a function of the weights

of the network w, since ¥ is a function of w and x.

Wil = Wy — aVgl (y7 X, Wt) (3.6)

Here, w; are the weights of the network at the ' iteration. The parameter « is called
the learning-rate and is a hyper-parameter. There are many such hyper-parameters and
they are described in Section 3.2.7. The speed with which and the optima to which the

model converges to, depends on «.

3.2.5 Weight initialization and back-propagation

Before training, the weights of the NN, w are randomly initialized. Weight initializa-
tion plays a crucial role in training and performance of the NN. There are many weight
initialization methods but the popular ones are proposed by He et al. (2015) and Glorot

and Bengio (2010). These methods have been shown to perform well in classification.

14

Training neural networks can be incredibly costly with gradient descent but with the
use of a dynamic programming based algorithm called the back-propagation algorithm,
the cost of training reduces significantly as discussed in Goodfellow et al. (2016). The
back-propagation algorithm also uses gradient-descent but stores the values of the gradi-
ents to the current layer in order to calculate the gradients to the weights of the previous

layer.

3.2.6 Optimizers

There are many variants of the gradient-descent algorithm described above like RM-
SProp, AdaGrad as mentioned in Goodfellow ef al. (2016) which have a modified
update rule. All these rules are commonly called optimizers since they optimize the
weights of our network in order to minimize the loss function. We use Adam optimizer,
proposed by Kingma and Ba (2014) because of the significant improvements it offers

during training and also in the performance of deep neural networks.

3.2.7 Hyper-parameters

As we can see, numerous design decisions are required to build a neural network like
the architecture, the loss function, activation function, weight initialization, optimizer
etc. Once those are selected, we have few more parameters to experiment with, listed

as follows,

1) The number of hidden layers
ii) The learning rate
iii) The number of neurons in each layer

iv) The batch-size

These parameters are called hyper-parameters of the network. Choosing the right set
of hyper-parameters for a give problem is one of the biggest challenges of DL. These
parameters play a crucial role in both training and performance of the networks because
the training procedure does not guarantee convergence to global minima of the loss

function, as mentioned in Section 3.2.4.

15

Training data

M]

Ground truth

Loss l

Y
A
Input ij Optimizer
> NN 4@ Prediction

T updates to the weights

Figure 3.5: The process flow of any deep learning network. The NN represents any
neural network either FC, CNN, RNN etc. The NN takes input x and
makes a prediction . The loss is calculated between the ground truth y
and the prediction y. The optimizer updates the weights of the network
according to the update rule.

3.2.8 Process flow

The process flow of any DL architecture can be modeled as shown in Fig. 3.5. The NN
can be any neural network as described previously in Section 3.2.2. The NN takes an
input x from the training data and makes a prediction ¥. The loss is calculated between
the ground truth y and the prediction §. The optimizer then updates the weights of the
NN according to the update rule. This whole process completes one iteration during
training. We repeat this process until the loss value between y and ¥ saturates over

multiple iterations.

16

CHAPTER 4

Error Correction for Periodic Color Code using Neural

Networks

4.1 Introduction

In this chapter, we describe our problem formulation for correction of phase errors and
how the decoding can be modeled as a classification problem. For any surface code,
every error I can be uniquely decomposed to the pure error 7', logical error L and
a stabilizer S as shown in Eq. (4.1) where 7', L and S are a function of E. Given
syndrome, s we can uniquely identify 7". Since the stabilizers .S form the equivalence
class, the decoding problem comes down to correctly estimating L given the syndrome,

S.
E=TLS 4.1

Since we are studying CSS codes, we have two type of stabilizers, X and Z. Stabilizers

can be written in matrix form as,

H 0
0 H

Phase errors create X non-zero syndromes. Hence we consider only X stabilizers from
now on. H represents X stabilizers. If £ is equivalent to e € G5, we can calculate the

syndrome as,

s’ = He' 4.2)

Matrix H is not full rank. In color code X stabilizers corresponding to faces have two
dependencies as mentioned in Bombin and Martin-Delgado (2006b). Hence, we remove

the two dependent stabilizers from the H matrix, one stabilizer each corresponding to

two different colors and denote it as H¢ which is full rank. This allows us to calculate
the pseudo-inverse of it and we denote it as G in the Eq. (4.3). The resultant syndrome
which does not list the syndromes calculated by the removed dependent stabilizers is

denoted as s as shown in Eq. (4.4). Hence,

GH, =1, (4.3)

s; = Hye' (4.4)

4.2 Problem Modeling

We model our decoder into a two step process. The first step is a simple inversion
where we calculate an estimate (E) of the actual error (F) which has occurred. We
first calculate the syndrome using the Eq. (4.4) and calculate € € GFFy, the binary

representation of the operator E as follows,
e’ =Gs; (4.5)

Note that the syndrome of the estimate € will be same as the syndrome of e. Hence the

pure error 7' of both & and E will be the same.

HféT = erT = s;

— Hé' =He' =s' (4.6)

This estimate & computed using Eq. (4.5) need not be same as e. This is because there
exist multiple error patterns with the same syndrome. This aligns with the fact that H is
not full rank and we have chosen one such solution by fixing G which is calculated only
once. This process makes the first step of the decoder deterministic. From Eq. (4.6),
we can conclude that the pure error is same in both £ and E and we denote it by T

Applying this initial estimate E onto the system might result in logical errors. This can

18

be concluded through the following equations,

E=TLS
E=TLS
EE=TLSTLS
— FEE = (+)LLSS

— EE = (+) L*S* (4.7)

The reason for occurrence of (+) in Eq. (4.7) is because the Pauli operators 7', S might
commute or anti-commute. This is of little interest to us because we estimate the error

up to a global phase.

The homology of EF is same as the homology of L* since S* has a trivial homol-
ogy. If we can predict the resultant homology L*, we can get back to the trivial state
and the decoding succeeds. Since the number of homologies are fixed in number, this
is modeled in the second step of our decoder as a classification problem using Neural
Network (NN). The goal of the NN is to predict L* given the syndrome s. The NN
can learn to predict this because the first step is completely deterministic. Our two step

decoder can be illustrated in Fig. 4.1. Our final error correction will be,

~

E*=L"F (4.8)

This is because it gets the system into the original state up to a stabilizer and a phase

which is evident through these equations,

F*E = L*EE
— E*E = (+) L*L*S*

— PPE=(4)S"

This idea of a two-step decoder was first started by Varsamopoulos et al. (2017) where
they use a look-up table for calculating the pure error 7" and predict the homology L
using a neural decoder. Subsequent work of Chamberland and Ronagh (2018) used the

same concept in the context of fault-tolerant system. Recent work by Maskara et al.

19

Actual error, e Syndrome, s Error estimate, &
% T %

NN ——

HEEE BN

Correction homology, L*

Figure 4.1: Flow diagram of our two step decoder. The black dots represent error on
the qubits and the marked regions represent the syndrome caused. In the
first step we get an estimate of the error € and in the second step, we predict
the correction homology L* using our trained NN. Our final error correction
is L*E. Egs. (4.5), (4.7), and (4.8).

(2018) used a naive decoder which removes syndromes instead of estimating 7" in the
first step. Their neural network tries to improve upon the estimate given by the initial
naive decoder by predicting the correction homology. We want to emphasize that our
H-inverse in step-one gives us an error estimate which need not always be pure error.

It entirely depends on the construction of the inverse matrix G.

4.3 Architecture

In this section we describe our neural decoder in step-two. We have used a fully-
connected architecture where every neuron in one layer is connected to every other
neuron in the adjacent layers. The output of the network is the homology vector where
each element of it represents a homology class. Since this is a classification problem,
we use cross-entropy as our loss function which needs to be minimized during training.
We have used Adam optimizer proposed by Kingma and Ba (2014) since it has been
observed to perform better than the other optimizers in terms of convergence of the loss.
We have also used 1D batch normalization layer after every layer in the network. It is
proven to significantly boost the training speed as shown in loffe and Szegedy (2015).
The activation function used for every neuron is ReLU since it has shown to perform

well when compared to other functions like Sigmoid or TanH by reducing the prob-

20

lem of vanishing gradients as the network goes deeper as shown in Karlik and Olgac;

Glorot et al. (2011).

Table 4.1: The values of the hyper-parameters used in the neural decoder for bit-/phase-

flip noise.
N parameters W L b o tap t T
6 2 2 500 0.001 2x10" 1.4x10®
8 3 5 750 0.001 4x10" 2.8x 108
9 4 5 750 0.001 4x10" 2.8x108
12 7 10 2500 0.001 10 x 107 7 x 10%

“Distance of the code

’Number of hidden layers

“Hidden dimension factor

4Batch size

¢Learning rate

/Number of training samples per each p.,,.

$Total number of training samples for all p..,.,, combined

4.4 Training Procedure

For the network to decode correctly, it needs to be trained. We employ a supervised
training procedure where we have labeled data of input (syndromes s from Eq. (4.2))
and the corresponding output (homology L*). This output is called ground truth. Train-
ing is nothing but an optimization process where the weights of the network are opti-
mized to minimize an objective function. This objective function is called loss function.
The loss function plays a crucial role during training since certain loss functions are apt
for certain problems. Since our NN needs to solve a classification problem, we use
cross-entropy function (/) as our loss function in Eq. (4.9). This is because given a
syndrome (s), the NN predicts a probability distribution over all the possible classes. If
we assume input is x, the output of the NN is a distribution q (x) and the true distribu-

tion is p (x), cross-entropy can be written as follows,

lok (p,q) Zp)log q (x (4.9)

21

10 -
6 [N 8 I -
= = 6f |
4 [|
4 [|
2 - 2 -
6 8 10 12 6 8 10 12
d d
(a) hg vs d (b) fgvsd
108
I
2,500 + R 1+ -
2,000 1 08} 8
3 1,500 1206/} .
LS
1,000 |- 1 04} .
500 - 1 0.2 i
| | | | | | | |

6 8 10 12 6 8 10 12

d d

(©) bgvsd d) tap,,, vsd

Figure 4.2: Plots of the various hyper-parameters used in our work with the distance d
of the code. We can see that the curves are almost linear and is an advantage
when we scale to higher lengths.

22

This is same as minimizing the Kullback-Liebler divergence (D) between the distri-

butions p (x) and g (x) up to a constant since Dy, (p||q) can be written as,
Dk (plla) = Lok (P,a) — Z p (x)logp (x)

and the term) | p (x) log p (x) is a constant because it is completely determined by the
true distribution p. This implies minimizing the Eq. (4.9) gets the distribution learned

by our NN i.e, q closer to the true distribution p.

Given a syndrome vector s, a trained NN should be able to correctly predict the
correct correction homology class L* for all error rates under the threshold. In order
to train a NN which is independent of the error rate, we employ a progressive training
procedure as described in Maskara ez al. (2018). We generate training samples at a fixed
error rate p.,.. in each case and we train our NN for that noise until the loss function in
Eq. (4.9) saturates. We then move on to a higher p.,.. and repeat the process for various
error rates under the threshold. For our experiments (bit-flip noise), we have trained our
NN for the error rates {0.05,0.06,0.07,0.08,0.09,0.10,0.11}. We use Xavier normal
initialization for the parameters in fully-connected layers and Gaussian normal initial-
ization for the parameters in batch-normalization layer before we start training. We do
not reinitialize the weights during the progressive training while we train on the higher
Derr- We discuss the importance of this progressive training with evidence in the Chap-

ter 4.6.

The hyper-parameters (as described in the Section 3.2.7) we have used for our net-
works are listed in the Table 4.1. The variation of some of them with the distance d
are shown in the Fig. 4.2. The distance of the code is denoted by d and the number
of hidden layers in our network is denoted h,. The batch size used for each length is
denoted by b,. The number of nodes in each hidden layer are characterized by the hid-
den dimension factor f; which is equal to f; multiplied by the dimension of the input
syndrome vector s. The parameter ¢4, is the number of samples required for training
for each p.,, and T; determines the total number of samples the final trained NN has
seen entirely. The parameter « is the learning rate used for optimization. We have used

PyTorch', one of the popular deep learning framework for training our neural networks.

'mttps://pytorch.org/

23

https://pytorch.org/

10° | - |
o 107921 .
]
5
o
S 10704} -
)
3 e d=2606
o6 | -m =28 |
10 d=9
——d =12
I

| | | | |
0 5.1072 0.1 0.15 0.2 0.25
Perr (Independent bit/phase-flip noise)

Figure 4.3: Performance of our H-inverse (G) decoder in step-one. Note that is is a
very bad decoder by itself since for a fixed p.,, the logical error increases

as the length of the code increases and this decoder on its own does not have
a threshold.

4.5 Results

We describe our simulation results for bit-flip noise model in this section. As described
earlier in the Section 4, our decoder is a two step decoder where we use a completely
naive and deterministic H-inverse (G) decoder in step-one and then improve its per-
formance in step-two using a NN. The performance of our H-inverse decoder in the
step-one by itself is shown in the Fig. 4.3. It shows that H-inverse alone is a very bad
decoder since the logical error increases as the length of the code increases for a fixed
Perr- It s quite evident that this decoder does not have a threshold since the curves do

not meet anywhere below the theoretical threshold of 10.97%.

The performance of our fully-connected NN trained according to the training pro-
cedure mentioned in Section 4.4 is shown in the Fig. 4.4. The final trained NN model
is independent of the p.,.. and the it outperforms the previous state-of-the art methods
not based on neural networks by Sarvepalli and Raussendorf (2012); Delfosse (2014).
We report the final threshold achieved by our NN is 10% and is comparable to the result

mentioned in Maskara et al. (2018).

24

10°

g i |

=

[}

5 107} i

EI) F]

3 i o d=6 |
i 8 =238 |
|- d:9 -

| | |
6-1072 8-10"2 0.1 0.12
Perr (Independent bit/phase-flip noise)

Figure 4.4: Performance of our neural decoder. The threshold achieved is 10%.

4.6 Insights

In this chapter, we mention the key insights we could conclude from this work. We
clearly demonstrate the power of data-driven methods and in particular neural networks,
through which we were able to improve the performance of a very bad decoder which
does not even have a threshold. When compared to the previous state-of-the-art on
neural decoders for color codes, our decoder requires significantly less training data
for higher lengths like d = 9, 12. In Section 4.4, we mentioned the importance of the
progressive training. We have run our simulations by training a new NN with Xavier
normal and Gaussian normal initializations. The performance of that decoder with sim-
ilar hyper-parameters as mentioned in the Table 4.1 is shown in the Fig. 4.5. This shows
that without the progressive training, the threshold of the decoder drops to 7.2%. This
is because as the p.,, increases, it would be very likely that our optimizer converges
to a bad local minima. This progressive training is similar to the common practice of
“curriculum-learning” in neural networks so that the optimizer converges to a better
local minima in the hyperspace of the network weights as proposed in Bengio et al.
(2009). We also report that this progressive training should be carried on till the p,,
equals the theoretical threshold and we have observed constant decrement in logical
errors at all error rates. Training the model with a p,,.. above the threshold is not desir-
able as we have seen increments in the logical errors. This concept of H-inverse as a
base decoder improved with a neural decoder can be effectively extended to other noise

models and also to codes in higher dimension including non-CSS codes.

25

10°

=

o

=

(]

?3 [N

"

Q

-y -~ d=6 |
L/ =]
-/ e d=121]

| | | |
6-102 8-10"2 0.1 0.12
Perr (Independent bit/phase-flip noise)

Figure 4.5: Performance of our neural decoder without the progressive training proce-
dure. The threshold achieved is just about 7.2%.

Any decoder which does error correction essentially solves the equation Hx' = s
by removing the dependent stabilizers. To implement a good decoder, determining
which dependent stabilizers to remove for a given syndrome is an important task. Till
now, most of the approaches of neural decoders use heuristics based decoders like push-
ing the syndromes to boundaries or estimating the pure error etc in step-one. These
heuristics take care of determining which dependent stabilizers to remove depending
on the syndrome. This makes these step-one decoders not entirely deterministic and
there is a lot more for the neural network to learn to do a good decoding. In our ap-
proach we fix the inverse G and make the step-one decoder completely deterministic.
This allows the neural network to easily improve the initial estimate and hence results in
superior performance with comparatively lesser training cost. This makes our approach

applicable for any decoding problem where the equation, Hx" = s needs to be solved.

26

CHAPTER 5

Conclusion

We have demonstrated that data-driven methods like neural networks can perform supe-
rior decoding when compared to the traditional rule based approaches. We have stated
the importance of progressive training and come up with conditions on it, numerically
showing the improvement in threshold because of it. The drawbacks of neural net-
work based decoders are figuring out the right set of hyper-parameters for each length
and practical issues of convergence of the loss when the number of trainable parame-
ters increase. We believe our approach can be extended to other realistic noise models
in building fault-tolerant systems and also to codes in higher dimensions or non-CSS

codes.

10.

11.

12.

13.

REFERENCES

. Baireuther, P., M. Caio, B. Criger, C. Beenakker, and T. O’Brien (2018a). Neural

network decoder for topological color codes with circuit level noise. arXiv preprint
arXiv:1804.02926.

Baireuther, P., T. E. O’Brien, B. Tarasinski, and C. W. Beenakker (2018b). Machine-
learning-assisted correction of correlated qubit errors in a topological code. Quantum,
2,48.

. Bengio, Y., J. Louradour, R. Collobert, and J. Weston, Curriculum learning. In

Proceedings of the 26th annual international conference on machine learning. ACM,

20009.

Bombin, H. and M. A. Martin-Delgado (2006a). Topological quantum distillation.
Phys. Rev. Lett., 97, 180501. URL https://link.aps.org/doi/10.1103/
PhysRevLett.97.180501.

. Bombin, H. and M. A. Martin-Delgado (2006b). Topological quantum distillation.

Physical review letters, 97(18), 180501.

Breuckmann, N. P. and X. Ni (2018). Scalable neural network decoders for higher
dimensional quantum codes. Quantum, 2, 68.

Chamberland, C. and P. Ronagh (2018). Deep neural decoders for near term fault-
tolerant experiments. arXiv preprint arXiv:1802.06441.

Davaasuren, A., Y. Suzuki, K. Fujii, and M. Koashi (2018). General framework for
constructing fast and near-optimal machine-learning-based decoder of the topological
stabilizer codes. arXiv preprint arXiv:1801.04377.

Delfosse, N. (2014). Decoding color codes by projection onto surface codes. Phys. Rev.
A, 89, 012317. URL https://link.aps.org/doi/10.1103/PhysRevA.
89.012317.

Domingos, P. (2012). A few useful things to know about machine learning. Communi-
cations of the ACM, 55(10), 78-87.

Glorot, X. and Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics. 2010.

Glorot, X., A. Bordes, and Y. Bengio, Deep sparse rectifier neural networks. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics. 2011.

Goodfellow, 1., Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

28

https://link.aps.org/doi/10.1103/PhysRevLett.97.180501
https://link.aps.org/doi/10.1103/PhysRevLett.97.180501
https://link.aps.org/doi/10.1103/PhysRevA.89.012317
https://link.aps.org/doi/10.1103/PhysRevA.89.012317
http://www.deeplearningbook.org
http://www.deeplearningbook.org

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

He, K., X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision. 2015.

Ioffe, S. and C. Szegedy (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Jia, Z.-A., Y.-H. Zhang, Y.-C. Wu, L. Kong, G.-C. Guo, and G.-P. Guo (2018).
Efficient machine learning representations of surface code with boundaries, defects,
domain walls and twists. arXiv preprint arXiv:1802.03738.

Karlik, B. and A. V. Olgac (). Performance analysis of various activation functions in
generalized mlp architectures of neural networks.

Katzgraber, H. G., H. Bombin, and M. A. Martin-Delgado (2009). Error
threshold for color codes and random three-body ising models. Phys. Rev. Lett.,
103, 090501. URL https://link.aps.org/doi/10.1103/PhysRevLett.
103.090501.

Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification tech-
niques.

Krastanov, S. and L. Jiang (2017). Deep neural network probabilistic decoder for
stabilizer codes. Scientific reports, 7(1), 11003.

Krizhevsky, A., I. Sutskever, and G. E. Hinton, Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems.

2012.

Maskara, N., A. Kubica, and T. Jochym-O’Connor (2018). Advantages of versatile
neural-network decoding for topological codes. arXiv preprint arXiv:1802.08680.

Sarvepalli, P. and R. Raussendorf (2012). Efficient decoding of topological color
codes. Phys. Rev. A, 85, 022317. URL https://link.aps.org/doi/10.
1103/PhysRevA.85.022317.

Torlai, G. and R. G. Melko (2017). Neural decoder for topological codes. Physical
review letters, 119(3), 030501.

Varsamopoulos, S., B. Criger, and K. Bertels (2017). Decoding small surface codes
with feedforward neural networks. Quantum Science and Technology, 3(1), 015004.

29

https://link.aps.org/doi/10.1103/PhysRevLett.103.090501
https://link.aps.org/doi/10.1103/PhysRevLett.103.090501
https://link.aps.org/doi/10.1103/PhysRevA.85.022317
https://link.aps.org/doi/10.1103/PhysRevA.85.022317

1. Name

2. Date of birth

3. E-Mail

5. Work Experience

CURRICULUM VITAE

: Chaitanya Chinni
: 6th November 1995

: chchaitanya95 @ gmail.com

: PayPal India Development Center (2016)

30

Software Development Engineer Intern

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	Introduction
	Neural network based decoders
	Contributions of the Thesis

	Quantum Error Correcting Codes
	Stabilizer Codes
	Quantum Error Correction
	QEC as a classification problem

	Color codes

	Machine Learning and Deep Learning
	An overview of Machine Learning
	Classification problem

	An overview of Deep Learning
	Neuron and Activation functions
	Architectures
	Loss functions
	Training
	Weight initialization and back-propagation
	Optimizers
	Hyper-parameters
	Process flow

	Error Correction for Periodic Color Code using Neural Networks
	Introduction
	Problem Modeling
	Architecture
	Training Procedure
	Results
	Insights

	Conclusion

