
Enhancing Reinforcement through Ensemble Learning

A Project Report

submitted by

RAKESH R MENON

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2017

THESIS CERTIFICATE

This is to certify that the thesis titled Enhancing Reinforcement through Ensemble

Learning, submitted by Rakesh R Menon (EE13B056), to the Indian Institute of Tech-

nology, Madras, for the award of the degree of Bachelors of Technology, is a bona fide

record of the research work done by him under our supervision. The contents of this

thesis, in full or in parts, have not been submitted to any other Institute or University

for the award of any degree or diploma.

Prof. Balaraman Ravindran
Research Guide
Associate Professor
Dept. of Computer Science & Engineering
IIT-Madras, 600 036

Prof. Kaushik Mitra
Research Co-Guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: May 9, 2017

ACKNOWLEDGEMENTS

I would like to thank Prof. Balaraman Ravindran for his constant guidance and sup-

port during the course of the projects. The discussions with Prof. Ravindran and under-

standing his approach to different problems motivated me to perform research in this

field. The obsession that resulted gave me a proper sense of direction and has motivated

me to pursue masters in this field.

I would also like to thank Prof. Kaushik Mitra for his discussions and encourage-

ment.

I would also like to thank Sarath Chandar for his valuable feedbacks regarding the

project during the DHRL meetings.

A special thanks to Manu Srinath Halvagal for being a great project partner for

the project on shared learning. I would also like to thank Ghulam Ahmed Ansari,

Sagar JP and Deepak Mittal for their constant support through the year during our

mini group discussions. I am also grateful to my friends in my wing for their support

and the group adventures.

I would also like to thank the reviewers for RLDM, The Multi- disciplinary Con-

ference on Reinforcement Learning and Decision Making, and the Adaptive Learning

Agents Workshop(AAMAS 2017) reviewers for their suggestions and comments about

the paper on Shared Learning in Ensemble Deep Q-Networks.

Finally, words cannot describe the amount of gratitude I have towards my parents

and my brother who have been through my every whim and win. Thank you for being

such role models for me to look up to.

i

ABSTRACT

KEYWORDS: Overestimation Bias, Online Transfer, Unsupervised Auxiliary

Tasks, Reinforcement Learning

The field of deep reinforcement learning has been able to solve a large number of com-

plex environments successfully. Much of these successes are because of the devel-

opment of good learning algorithms like Deep Q-Networks and Trust Region Policy

Optimization. In this work, we would like to analyze the effect of ensemble learning

in deep reinforcement learning. To this end, we propose two approaches, (i) learn a set

of value function estimates on the same task to improve exploration and induce faster

learning, and (ii) learn a set of auxiliary tasks that learns to control and predict changes

in the environment.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF FIGURES vi

ABBREVIATIONS vii

NOTATION viii

1 INTRODUCTION 1

1.1 Reinforcement Learning . 1

1.2 Shared Learning . 3

1.3 Auxiliary Tasks for Reinforcement Learning 4

1.4 Summary . 5

2 PRELIMINARIES 6

2.1 Markov Decision Processes . 6

2.2 Return, Policy and Value Functions 6

2.3 Temporal-Difference Learning . 8

2.3.1 SARSA . 8

2.3.2 Q-learning . 9

2.4 Parametrised Policy/Value Function 9

2.5 Deep Reinforcement Learning . 10

2.5.1 Deep Q-Networks . 10

2.5.2 Double Deep Q-Networks 11

2.5.3 Environments and Applications 11

3 RELATED WORK 13

3.1 The Exploration-Exploitation Dilemma 13

3.2 Bootstrapped DQN . 14

iii

3.3 Asynchronous Advantage Actor-Critic 15

3.4 Maximizing Pseudo-reward Functions 16

3.4.1 The Horde architecture . 17

3.4.2 Universal Value Function Approximators 17

3.4.3 Successor Representation 17

3.4.4 Auxiliary Tasks . 17

3.5 Reinforcement Learning with Unsupervised Auxiliary Tasks 18

3.6 Next Frame Prediction . 19

4 SHARED LEARNING 20

4.1 Shared Learning for Bootstrapped DQN 20

4.1.1 Coupled Estimates in Double DQN 20

4.1.2 Proposed Algorithm . 20

4.1.3 Online Transfer of Learning Progress 21

4.2 Discussion . 21

4.3 Experiments . 23

4.3.1 MDP experiments . 23

4.3.2 Atari 2600 experiments . 27

5 ADVANCING UNSUPERVISED AUXILIARY TASKS FOR REINFORCE-
MENT LEARNING 31

5.1 Next Frame Prediction as an Auxiliary Task 31

5.1.1 Motivation . 31

5.1.2 Next Frame Predictor Model 32

5.1.3 Experiments . 33

5.2 Sequencing Auxiliary Tasks for Reinforcement Learning 35

5.2.1 Motivation . 35

5.2.2 Policy over Tasks Model 36

5.2.3 Experiments . 36

6 FUTURE WORK 38

6.1 Shared Learning in Ensemble Deep Q-Networks 38

6.2 Advancing Unsupervised Auxiliary Tasks for Reinforcement Learning 38

6.2.1 Next Frame Prediction as an Auxiliary Task 39

6.2.2 Sequencing Auxiliary Tasks for Reinforcement Learning . . 40

v

LIST OF FIGURES

1.1 The reinforcement learning setup 1

2.1 Deep Reinforcement Learning Testbeds 12

3.1 Bootstrapped DQN architecture 14

3.2 A schematic diagram of the A3C architecture 15

3.3 An overview of the UNREAL agent. Figure from Jaderberg et al.
(2016) . 19

4.1 MDP Chain Structure with n-states 23

4.2 MDP results showing average reward obtained per episode and number
of steps taken until completion for 35-state chain MDP 24

4.3 MDP results showing average reward obtained per episode and number
of steps taken until completion for 50-state chain MDP 25

4.4 Heatmap of states visited by different algorithm in 35-state MDP . . 26

4.5 Heatmap of states visited by different algorithm in 50-state MDP . . 27

4.6 Average Reward on Seaquest after 50 epochs of training 28

4.7 Average Reward on Frostbite after 50 epochs of training 28

4.8 Average Reward on Hero after 50 epochs of training 29

4.9 Average Reward on Breakout after 35 epochs of training 29

5.1 Next Frame Predictor Model architecture. The notations for the net-
works are consistent with Figure 3.3. 32

5.2 UNREAL agent vs UNREAL-NFP(as in Algorithm 2) on Space In-
vaders . 33

5.3 UNREAL-NFP vs UNREAL-NFP (Dropout=0.75) vs UNREAL-NFP
(Dropout=0.5) on Space Invaders 35

5.4 UNREAL vs UNREAL-PoTs(as in Algorithm 3) on Space Invaders 37

vi

ABBREVIATIONS

MDP Markov Decision Process(es)

RL Reinforcement Learning

TD Temporal-Difference

DP Dynamic Programming

DQN Deep Q-Network(s)

CNN Convolutional Neural Network(s)

LSTM Long Short-Term Memory

i.i.d. independent and identically distributed

DDQN Double Deep Q-Network(s)

BDQN Bootstrapped Deep Q-Network(s)

A3C Asynchronous Advantage Actor Critic

UVFA Universal Value Function Approximator

UNREAL Unsupervised Reinforcement and Auxiliary Learning

VR Value Replay

RP Reward Prediction

PC Pixel Control

PoTs Policy over Tasks

vii

NOTATION

θ Model Parameters
s State
a Action
r Reward
γ Discount Factor
G Return function
Q State-action-value function
V State-value function
A Advantage Function
π Policy
B Replay Buffer

viii

CHAPTER 1

INTRODUCTION

In this section, we briefly introduce the idea of reinforcement learning and try to intro-

duce the problems that we have worked on in this thesis. The background and related

work required for understanding some of the concepts have been summarised in the

following chapters.

1.1 Reinforcement Learning

Reinforcement learning is the problem of learning how to act in an environment in order

to maximise cumulative rewards. The basic reinforcement learning agent (Figure 1.1)

consists of an agent and an environment. The agent receives state st from the environ-

ment. The agent then takes an action at, which is executed in the environment in order

to get the next state st+1 and a reward rt. The reward rt tells the agent how good it is to

perform an action taken from a given state.

Figure 1.1: The reinforcement learning setup

The whole system can be formulated in terms of a Markov Decision Process which

has been described in Section 2.1.

In our definition of reinforcement learning, we have mentioned that the agent needs

some notion of a cumulative reward that it needs to maximise. The agent gets this no-

tion of cumulative reward through a function called as the return which basically tells

the expected reward that an agent would get from a particular state. The agent has to

learn the return function through a number of trials in the environment in order to un-

derstand how good different actions are from different states. The sequence of actions

that results in the maximum cumulative reward is called as the optimal policy. The def-

initions and mathematical formulations for returns and policies have been mentioned in

Section 2.2. The task of finding the optimal policy is usually met by the hurdle of the

exploration-exploitation dilemma.

The exploration-exploitation dilemma is a fundamental trade-off in reinforcement learn-

ing which results from the dilemma of whether to take exploratory actions that could

result in visiting more states in the environment (possibly rewarding) or to exploit the

current knowledge that the agent and perform actions greedily to execute a certain pol-

icy. As an example, let us consider a real life decision of restaurant selection. Here, we

could either go to our favourite restaurant or we could try out new restaurants (which

may or may not be as good as our favourite restaurant). There has been a plethora of

work on exploration-exploitation problems. Some of these works have been mentioned

in Section 3.1.

Another recent development within reinforcement learning is the use of neural net-

works to give rise to a new sub-field called deep reinforcement learning. The idea of

deep reinforcement learning was first introduced by Mnih et al. (2015). Further de-

velopments were made through the works of Van Hasselt et al. (2016), Schaul et al.

(2015b) and Wang et al. (2015) among many others. The main reason for the success

for deep reinforcement learning has been its ability to learn from only screen pixels and

still solve problems to a great extent. More details about deep reinforcement learning

have been described in Section 2.5.

In this work, we propose the use of ensemble networks in order to aid the model-free

2

algorithms in learning environments with large state spaces. We consider two-variants

of ensemble learning:

• Ensembles of Value Function estimates : Here we study existing algorithms
like Bootstrapped DQN (Osband et al. (2016a)) that have performed deep explo-
ration in environments with large state spaces and produced amazing results on
the Atari 2600 games. We also see that the Q-learning update rule of Bootstrapped
DQN suffers from slight overestimation bias since there is a coupling between the
online network and the target network of the ensemble network. Although this
problem existed in Double Deep Q-Network (Van Hasselt et al. (2016)), there
wasn’t a clear solution to the problem. In this work, we present shared learning,
an algorithm that reduces decoupling effects by leveraging ensemble Q-value es-
timates while at the same time sharing better knowledge in the process. We have
called this work, Shared Learning in Ensemble Deep Q-Networks.

• Ensemble of Auxiliary Tasks : While we receive a lot of training signals from the
environment, current deep reinforcement learning algorithms were only capable
of leveraging a single signal, that is the pixels from the environment. Reinforce-
ment Learning with Unsupervised Auxiliary Tasks introduced a novel method
to take advantage of the different training signals available in the environment
through unsupervised auxiliary learning. In this work, we wish to extend the
work presented in Jaderberg et al. (2016) and introduce next frame prediction as
an auxiliary task. Further, we try to learn a meta-policy that decides which aux-
iliary task needs to executed at what time. We have called this work, Advancing
Unsupervised Auxiliary Tasks for Reinforcement Learning.

1.2 Shared Learning

While there have been many recent developments in exploration strategies in reinforce-

ment learning, it has been realised that these strategies aren’t performing deep explo-

ration to search in large state spaces. Bootstrapped DQN Osband et al. (2016a), how-

ever, proposed a novel exploration strategy that performs deep exploration and showed

a distinct improvement over existing methods at that time.

However, Bootstrapped DQN was suffering from a slight overestimation bias as the

Double Q-learning update was performed as in Van Hasselt et al. (2016). While Dou-

ble Q-learning (Hasselt (2010)) was able to completely remove the overestimation bias

by maintaining different estimates of the action-value function. However, in Van Has-

selt et al. (2016), the author(s) maintain a previous iteration of the action-value function

and then perform the update. This causes some coupling between the estimates as men-

tioned in the same paper.

3

In this thesis, we propose the shared learning algorithm that tries to decouple esti-

mates in Bootstrapped DQN by taking advantage of the different estimates present in

the ensemble deep Q-network. Further, we go on to show how the choice of sharing

the learned progress among the different action-value function estimates can lead to a

better choice for performing perfect Double Q-learning updates and hence better learn-

ing overall. For our experiments, we present results on a toy Markov Decision Process

chain and the ALE environment Bellemare et al. (2013).

1.3 Auxiliary Tasks for Reinforcement Learning

We as humans, live in an environment that provides us with a large number of sensory

signals. We try to infer all of these signals in order to pursue our final goal of survival.

For example, imagine a cricket ball coming directly towards you. Our learnt knowledge

tells us that the ball needs to be avoided. But how do we know how to move away from

the ball or where the ball currently is. To understand this, we would have to know what

a ball is and what it looks like and the environment around it. Through Reinforcement

Learning with Unsupervised Auxiliary Tasks (Jaderberg et al. (2016)), the author(s)

have introduced unsupervised auxiliary tasks that learn through reinforcement learning

to predict and control the environment. Some of the tasks they introduced include pixel

control-a task that learns to control the pixels in the environment and reward prediction

and value prediction tasks that together acts as a form of value iteration. They were able

to produce amazing results on Atari 2600 games as well as the Labyrinth environment.

To this end, we would like to propose another auxiliary task based on next frame predic-

tion that can help the agent predict the next frame given the previous few frames and the

last action. This makes sense because in order to predict what kind of an action an agent

must make, it must have some ability to predict the future frame that could possibly be

more rewarding for the agent. This essentially amounts to having a dynamics model of

the environment. We produce results for the prediction model on the Atari 2600 game

of Space Invaders.

Additionally, we also try to learn a policy over all the auxiliary tasks presented in the

4

paper (Jaderberg et al. (2016)) as well as the next frame prediction model. The new

Policy over Tasks model is evaluated on the Atari 2600 game of Space Invaders.

1.4 Summary

The rest of the thesis is organised as follows. Chapter 2 discusses some pre-requisites

required for understanding the problem we are trying to solve. Chapter 3 discusses

some literature related to the projects we are pursuing. 4 presents our work on shared

learning with experiments on Markov Decision Process chains and ALE environment

(Bellemare et al. (2013)). 5 presents our work on advancing unsupervised auxiliary

tasks for reinforcement learning through next frame prediction models and Policy over

Tasks(PoTs) model. In Chapter 6 we discuss the future directions for research for these

projects.

5

CHAPTER 2

PRELIMINARIES

2.1 Markov Decision Processes

Markov Decision Processes (MDP) are frameworks that are used for representing a

model of the environment in a reinforcement learning problem that satisfies the Markov

property. A Markov Decision Process in the reinforcement learning setting is usually

described by a five-tuple (S,A,P ,R, γ), where :

• S represents the set of states that are present in the environment.

• A represents the set of actions that are available to the agent in the environment.

• P represents the dynamics model of the environment. P : S × A × S → R+ is
a probability distribution over the set of next states s′ ε S given that we are in a
state s ε S. and have taken an action a ε A.

• R : S × A → R is the reward function giving the expected reward associated
with transitioning to state s′ ε S having taken an action a ε A in state s ε S.

• γ ε (0, 1) is the discount factor which regulates how much we weight future re-
wards with respect to the more immediate rewards.

The states and actions can take up both discrete and continuous values. However,

in this thesis, we consider cases where the state space is continous values but the action

space is discrete.

2.2 Return, Policy and Value Functions

We have discussed how the agent’s ultimate goal is to maximize the cumulative reward

it gets in the long run. Formally, this can be defined using a notion of return which

evaluates the actions taken by an agent based on the rewards that are received.

Definition 1: The return received by an agent at time t is given as,

Gt =

8∑
k=0

γkRt+k+1

Definition 2: A policy π : S × A → R+ is a probability distribution over the set

of actions A that can be taken from a state s ε S.

In other words, the policy describes the sequence of actions that an agent takes in the

environment.

Definition 3: The value function Vπ(s) is the expected return when starting from a

state s ε S and following a policy π. Mathematically, it can be written as:

Vπ(s) = Eπ[Gt|st = s]

The value function is also called as the state-value function as it tells us how good it is

to be in a state s while executing a policy π. We would also like to know how good an

action is from a given state s while following policy π and so define another measure

called the state-action value function. The state-action value function is given as,

Qπ(s, a) = Eπ[Gt|st = s, at = a]

A policy π∗ is said to be optimal if,

Vπ∗(s) ≥ Vπ′(s)

for all s ε S. Here, π′ represents any other policy other than π∗. There maybe multiple

optimal policies based on the definition given above and we denote all those policies by

π∗. The shared optimal value function, Vπ∗(s) for these policies is given by:

Vπ∗(s) = maxπVπ(s)

7

2.3 Temporal-Difference Learning

Traditionally, there are two methods of solving RL problems:

• Dynamic Programming (DP) methods : These methods are useful for solving RL
problems in situations where we have a perfect model of the environment.

• Monte Carlo methods : These methods involve learning directly from the envi-
ronment through experience (actual or simulated).

Temporal-difference (TD) learning is a combination of these two standard approaches.

Sutton and Barto (1998) regard the idea of temporal difference learning to be the key

and central idea in RL.

The advantage of TD learning is that it can learn directly by interacting with the envi-

ronment like Monte Carlo methods, and at the same time it can also bootstrap estimates

of the value function, like DP methods, and hence can be used to learn in an on-line

fashion.

In the next couple of sections we briefly look into algorithms that use TD learning

for finding optimal policies.

2.3.1 SARSA

SARSA (Rummery and Niranjan (1994)) is an on-policy method, where we first esti-

mate Qπ(s, a) for the current behaviour policy for all states s ε S and all actions a ε A.

SARSA enjoys some good convergence properties for ε-greedy and ε-soft policies. The

update rule for the state-action value function using the SARSA algorithm is given as,

Qt+1(st, at)← Qt(st, at) + α[Rt+1 + γQt(st+1, at+1)−Qt(st, at)]

where Qt(s, a) and Qt+1(s, a) are the value function estimates at times t and t + 1

respectively, rt is the reward obtained at time t for choosing action at in state st, α is

the learning rate.

8

2.3.2 Q-learning

Q-learning (Watkins and Dayan (1992)) is one method to learn the optimal value func-

tion for an agent using an off-policy strategy. The optimal policy can be achieved by

behaving greedily with respect to the learned state-action value function in each state.

The update rule for Q-learning is given as :

Qt+1(st, at)← Qt(st, at) + α(rt + γmaxaQt(st+1, a)−Qt(st, at))

Double Q-learning

The max operator in the Q-learning update has been shown to produce overestimation

of the value function in Hasselt (2010). This comes about because a single estimator

is used both for choosing the next action and for giving an estimate for the value of

that action. Double Q-learning (Hasselt (2010)) reduces the overestimations by decou-

pling the action selection and value estimation by training two estimators QA(s, a) and

QB(s, a). The update rule for double Q-learning is given as:

QA
t+1(st, at) = QA

t (st, at) + α(rt + γQB
t (st+1, argmaxaQ

A
t (st+1, a))−QA

t (st, at))

2.4 Parametrised Policy/Value Function

In environments with large state spaces, it is not possible to learn values for every pos-

sible state-action pair. The need for generalizing from experience of a small subset of

the state space to give useful approximations of the value function becomes a key issue

(Sutton and Barto (1998)). The function approximators used for representing the value

function can be linear or non-linear functions. Methods like tile coding and coarse cod-

ing are known to provide great generalizations in the tabular RL setting.

Additionally, we can also parametrize the policy of an agent using function approxima-

tors. However, the weights for such a policy function would have to be learnt through

the evaluation available from a value function. The most common way to learn the

weights is through gradients of some performance metric for the policy. This leads to a

9

general set of methods called policy gradients. Methods where both the value function

and the policy are learnt through function approximations are called as Actor-Crtic

Methods. Actor-Critic methods have the advantage of being able to solve continuous

control problems as well.

In the next section, we talk about a new area of research called Deep Reinforcement

Learning which uses neural networks as function approximators and the expansion of

the range of problems that has opened up in RL.

2.5 Deep Reinforcement Learning

2.5.1 Deep Q-Networks

Neural networks, while attractive as potential value function approximators, were known

to be unstable or even to diverge on reinforcement learning problems until recently.

Mnih et al. (2015) successfully overcomes these problems with two crucial ideas:

• Replay Memory : The replay memory allows the network to replay random sam-
ples from the most recent transitions. This breaks the correlation between the
subsequent samples obtained from the environment and makes the whole training
process independent and identically distributed (i.i.d.).

• Target Networks : During the calculation of the loss function using the TD error
as in Equation 2.1, if the on-line network weights are used for target calcula-
tion, the Q-values can go out of control and the whole process becomes unstable.
Hence, we maintain a set of network weights constant for a period of time and use
these for calculation of the target for our network. This way the training process
becomes more stable.

The result, an end-to-end deep reinforcement learning agent called as a deep Q-

network (DQN) that learns from the raw pixels of the game screen. The parametrized

value function is trained using the expected squared TD-error as the loss signal given to

the neural network.

Li(θi) = Es,a,r,s′ [((r + γmaxa′Q(s
′, a′; θ−i)−Q(s, a; θi))2] (2.1)

Here, Li(θi) is the loss function, θi are the online parameters of the network and θ−i are

the parameters of the target network. The target network is needed in order to provide

10

stationary targets so as to ensure stable training. The purpose of the replay memory is

to reduce the correlation of the samples provided to the network during training.

2.5.2 Double Deep Q-Networks

Van Hasselt et al. (2016) extends the idea of Double Q-learning to DQN in a computa-

tionally efficient manner by taking advantage of the target network. The greedy policy

is evaluated using the online network and the value is given by the target network for

this update. Thus the loss signal for the double DQN is given as:

Li(θi) = Es,a,r,s′ [(r + γQ(s′, argmaxa′Q(s
′, a′; θi); θ

−
i)−Q(s, a; θi))2] (2.2)

2.5.3 Environments and Applications

There emergence of the deep reinforcement learning meant that we could look into

many new problems and solve even more complex environments. Some of the envi-

ronments that have been recently developed to study deep reinforcement learning algo-

rithms include Arcade Learning Environment (ALE) (Figure 2.1a) , VizDoom (Figure

2.1b), MuJuCo (Figure 2.1c) and Minecraft (Figure 2.1d) among many others.

Deep reinforcement learning has also advanced the field of robotics and spoken di-

alogue systems as well. Algorithms like Trust Region Policy Optimization (TRPO,

Schulman et al. (2015)) (in simulated robotics tasks) and Guided Policy Search (GPS,

Levine et al. (2015)) (for handling physical robots) provide new promise for robotics

research in the future. Li et al. (2016) has designed a simulator for movie ticket booking

and seeking. These are just a few fields where deep reinforcement learning has been

of great advantage. For an extended overview the interested reader is requested to go

through Li (2017).

11

(a) Montezuma’s Revenge (ALE). Figure from
Ostrovski et al. (2017)

(b) VizDoom. Figure from Kulkarni et al.
(2016)

(c) Humanoid (MuJoCo). Figure from Ho and
Ermon (2016)

(d) Minecraft. Figure from Tessler et al. (2016)

Figure 2.1: Deep Reinforcement Learning Testbeds

12

CHAPTER 3

RELATED WORK

3.1 The Exploration-Exploitation Dilemma

Prior work on exploration strategies in reinforcement learning have produced algo-

rithms likeRmax (Brafman and Tennenholtz (2002)) andE3 (Kearns and Koller (1999)),

which have near-optimal results and theoretical guarantees on MDP problems. How-

ever, such algorithms are intractable when it comes to exploration in domains with large

state spaces. With the introduction of Deep Q-Networks (DQN) (Mnih et al. (2015))

for such domains, there was a need for better exploration strategies other than ε-greedy

in order to perform human level control in these complex environments.

Some recent works have studied the use of count-based methods that incorporate ex-

ploration bonuses based on a count of the number of times a state-action pair is visited.

These bonuses are meant to promote the visitation of state-action pairs that have been

sparsely visited. Tang et al. (2016) uses the technique of hashing, wherein a part of the

continuous state space is hashed into a discrete state space and exploratory bonuses are

given based on the visitation of the discretized space. Bellemare et al. (2016) has tried

to predict pseudo counts for state-action pairs using information theoretic approaches

and conditional pixel probability models. This method has provided state-of-the-art

performance on Montezuma’s Revenge. Ostrovski et al. (2017) extends this work and

uses a PixelCNN van den Oord et al. (2016) for the conditional pixel probability model.

Another way of calculating exploratory bonuses involves the use of intrinsic motiva-

tion (Singh et al. (2004), Barto (2013)) and its idea of state saliency. This state saliency

idea has been exploited well in Stadie et al. (2015) wherein a model prediction error

is used for calculating the exploratory bonus in Atari Games. Variational Information

Maximizing Exploration (VIME, Houthooft et al. (2016)) extends the idea of intrinsic

motivation to environments with continuous state action spaces and encourages explo-

ration by getting information about the environment dynamics.

Some of these methods seem to face an issue when it comes to dealing with sparse

rewards. Ensemble learning algorithms are known to perform well in any task due to

their ability to incorporate knowledge from independent estimates and provide results

that perform better than each of the individual estimates. The same idea has been lever-

aged for exploration in RL tasks by RLSVI Osband et al. (2016b) and PSRL Osband

et al. (2013). Bootstrapped DQN Osband et al. (2016a) was one of the first algorithms

to introduce and show the effectiveness of ensemble learning of Q-functions towards

deep exploration in Atari games. We talk more about this in the next section.

3.2 Bootstrapped DQN

Figure 3.1: Bootstrapped DQN architecture

Bootstrapped DQN (Osband et al. (2016a)) introduces a novel exploration strategy

that is capable of performing deep exploration in large state spaces. The key idea behind

Bootstrapped DQN is the use of randomized value function estimates to approximate

a distribution over possible action-values. At the start of every episode, Bootstrapped

DQN samples a single value function estimate at random according to a uniform distri-

bution. The agent then follows the greedy policy with respect to the selected estimate

until the end of the episode. The authors propose that this is an adaptation of the Thomp-

son sampling heuristic to RL that allows for temporally extended (or deep) exploration.

14

Bootstrapped DQN is implemented by adding multiple head networks which branch

out from the output of the CNN as shown in Figure 3.1. Suppose there are K heads in

this network. The outputs from each head represent different independent estimates of

the action-value function. Let Qk(s, a; θi) be the value estimate and Qk(s, a; θ
−
i) be the

target value estimate of the kth head. The loss signal for the kth head is exactly that

given in equation 2.2. Each of the K heads is updated this way and the gradients are

aggregated and normalized at the CNN layers.

3.3 Asynchronous Advantage Actor-Critic

Figure 3.2: A schematic diagram of the A3C architecture

While DQNs were effective in solving a variety of challenging domains, the mem-

ory and computation required took a lot of space and time respectively. Mnih et al.

(2016) introduces an asynchronous method to train multiple agents in parallel on mul-

tiple instances of the environment. The assumption is that the different agents executed

asynchronously will explore differently and hence observe more unique parts of the

15

state-space. The best result of the paper was the asynchronous advantage actor critic

(A3C), which provides great performance on Atari 2600 games as well as continuous

control tasks.

A3C provides a parametrized representation for the policy π(s) and value function

V (s). The algorithm is trained through n-step returns to update both the policy and

value function. The update for the policy of the algorithm is as follows:

L(θπ) = log πθπ(st)A(st, at; θv, θπ) (3.1)

Usually, the advantage function A(st, at) is defined as,

A(st, at) = Q(st, at)− V (st)

However, in this case we approximate the Q-value using the n-step return,

G(st) =
T−t−1∑
k=0

γkRt+k+1

here, T is the horizon which can be finite or infinite. Subtracting the value function

from the n-step return helps in reducing the variance of the estimate of the advantage

function. However, the estimate remains biased since the n-step return is a biased esti-

mate of the Q-value.

The value function is updated using the n-step TD error given by,

L(θv) = (V ′(st)− Vθv(st))2

here, V ′(st) is an estimate of the n-step return from the current state.

Practically, the A3C algorithm also gives an advantage that the experiments can be run

on a multi-core CPU instead of a GPU.

3.4 Maximizing Pseudo-reward Functions

Recently, there have been a lot of studies on how developing policies for the different

sensory signals available in the environment can aid a reinforcement learning agent to

16

maximize the overall objective. In the following subsections, we have an overview at

some of the architectures that aim at maximizing pseudo-reward functions.

3.4.1 The Horde architecture

The Horde architecture (Sutton et al. (2011)) consists of a multiple reinforcement learn-

ing agents, which they call as demons, that each focus on a specific task aimed towards

maximizing a pseudo-reward function. The architecture when deployed on the Critter-

bot was also able to learn off-policy in real-time.

3.4.2 Universal Value Function Approximators

The Universal Value Function Approximators (UVFA, Schaul et al. (2015a)), much

like the Horde architecture, creates a factorization of the value function into a set of

embeddings for states and goals. Initial work in this direction mainly focused on the

architectural design. The UVFA was however able to generalize to goals that were

previously unseen.

3.4.3 Successor Representation

Similar to UVFAs, the successor representation (Dayan (1993), Kulkarni et al. (2016))

works by factorizing the value function into expected pseudo-reward function and the

expected future state occupancy. The successor representation has the added advantage

of being sensitive to distal rewards in sparse reward games because of its ability to

factorize the reward and the world dynamics.

3.4.4 Auxiliary Tasks

Learning better representations through auxiliary tasks has been studied in the rein-

forcement learning setup in Lample and Chaplot (2016) and Mirowski et al. (2016).

Most recently, Jaderberg et al. (2016) introduced a set of unsupervised auxiliary tasks

which significantly outperformed other state-of-the-art algorithms on Atari games. More

about this algorithm has been mentioned in the section below.

17

3.5 Reinforcement Learning with Unsupervised Auxil-

iary Tasks

As mentioned in the previous section, there are a multitude of sensory signals present

in the environment of which we haven’t taken full leverage. Jaderberg et al. (2016)

introduces a novel approach to incorporate these signals by learning policies for these

tasks using unsupervised learning while sharing some parameters with the base agent

network. The auxiliary tasks are said to be used only for getting better representations

and not to affect the main policy control in any manner. The set of auxiliary tasks

proposed in the paper are as follows:

• Pixel change : In this task, a policy is learnt for changing the pixels maximally
over a non-overlapping n× n grid places over the input.

• Network Features : A policy is learnt to maximally activate the units in the hidden
layer of the agent’s neural network.

• Reward Prediction : Here, the agent is made to predict the reward given a se-
quence of previous frames. Additionally, the reward predictor samples history
in a skewed manner in order to sample non-zero reward and zero reward frames
equally.

• Value Function Replay : Once the agent is capable of predicting the rewards,
we can replay the value function from a replay buffer and perform an extra value
function regression over the samples. This amounts to value iteration and helps
in speeding up the whole learning process.

The first two tasks described above are trained using the n-step Q-learning update

as in Mnih et al. (2016). The replay buffer used for the above auxiliary tasks use a

memory size of about 2000 samples and the auxiliary tasks are trained every 20 steps.

Combining all the tasks mentioned above, the author(s) further came up with an UNsu-

pervised Reinforcement through Auxiliary Learning (UNREAL, 3.3) agent that solves

an objective function given by,

LUNREAL(θ) = LA3C + λV RLV R + λRPLRP + λPC
∑
c

L
(c)
Q (3.2)

Here, LUNREAL(θ) is the loss of the UNREAL agent, LA3C is the loss of the base A3C

agent, LV R is the loss of the value replay, LRP is the loss of the reward predictor and

finally L(c)
Q is the loss of the pixel change auxiliary task.

18

Figure 3.3: An overview of the UNREAL agent. Figure from Jaderberg et al. (2016)

3.6 Next Frame Prediction

The task of next frame prediction is a well studied topic in computer vision (Srivas-

tava et al. (2015), Lotter et al. (2016)). In reinforcement learning problems, next frame

prediction is not a new problem(Levine and Finn (2017), Oh et al. (2015), Finn et al.

(2016)). Oh et al. (2015) has been able to proposed an LSTM-based future frame pre-

dictor that can predict upto 100 frames in the future. They further went on to show

in the paper how the future predictor model can further be used towards informed ex-

ploration strategies. The paper gave a good insight into how we can develop a deep

Dyna-Q model Sutton (1991) that can integrate simulated trajectories along with real

trajectories to train a deep reinforcement learning agent. Similarly, Finn et al. (2016))

proposed another model that predicts a distribution over pixel motion from previous

frames. This paper differs from the action-conditional video prediction paper in Oh

et al. (2015) in that the main focus of the model is the motion of the pixels rather than

some internal state of the model.

19

CHAPTER 4

SHARED LEARNING

4.1 Shared Learning for Bootstrapped DQN

4.1.1 Coupled Estimates in Double DQN

As discussed in section 3.2, the update for the action-value estimate of each head in

the bootstrapped DQN architecture is given by the double Q-learning update rule as in

equation 2.2. However the target network used here is an earlier iteration of the online

network and hence there exists some coupling between the two networks. This poses a

problem as the double Q-learning update is no longer perfect since the idea was hinged

on decoupled estimates (Van Hasselt et al. (2016)).

4.1.2 Proposed Algorithm

The ensemble architecture put forward in Osband et al. (2016a) suggests a computation-

ally efficient way to circumvent the problem described above. To this end, we propose

an algorithm that generates decoupled target value estimates by taking advantage of the

fact that the each head in Bootstrapped DQN already maintains a value estimate that is

completely independent of the other heads.

Consider the K-headed Bootstrapped Deep Q-Network described in Section 3.2. In

order to decouple the estimates, we use the values from a head other than the one being

updated, to pick the greedy action for the target value in the double Q-learning update.

The new loss signal can be formulated as follows:

Li(θi) = Es,a,r,s′ [(r + γQk(s
′, argmaxa′Qm(s

′, a′; θi); θ
−
i)−Qk(s, a; θi))

2] (4.1)

where m ∈ {1, 2, . . . , K} \ {k}.

The target value given here is expected to be a more robust estimate when compared to

Double DQN, since it is derived from a completely independent estimate of the value

function.

4.1.3 Online Transfer of Learning Progress

The head selected for picking the greedy action for the target value in equation 4.1 pro-

vides a degree of guidance to the head being updated, allowing transfer of some amount

of learned knowledge. Hence, basing the selection of this head on a measure of local

learning progress rather than choosing an arbitrary head seems a better choice. This

would be in some sense an online transfer of learned knowledge.

More concretely, at any point of time, we would expect at least one head to have learned

more about the current region of the state space than the other heads. Online transfer

of experience from this head to the rest of the ensemble network could aid learning in

the other heads and result in more directed exploration. With this in mind, we propose

the shared learning algorithm which modifies the loss signal from equation 4.1 in the

following way:

Li(θi) = Es,a,r,s′ [(r + γQk(s
′, argmaxa′Qbest(s

′, a′; θi); θ
−
i)−Qk(s, a; θi))

2] (4.2)

Here Qbest(s
′, a′; θi) represents the action-values of the ’best’ head (selected at regu-

lar intervals) that has progressed furthest in learning about the current state. In our

implementation, we quantify the learning progress using the action-values of the on-

line network. This measure was chosen because the head which outputs the highest

action-value is expected to have learned off of more rewarding subsequent states. The

complete algorithm has been summarized in Algorithm 1.

4.2 Discussion

An alternative way to get more robust target estimates in Bootstrapped DQN would

be to use other heads to provide the actual target Q-value instead of just choosing the

21

Algorithm 1 Shared Learning Algorithm

Input: Action-value function networks Q with K outputs {Qk}Kk=1

1: Let B be a replay buffer storing experience for training and select_best_int be the
interval during which the best head is selected.

2: numSteps← 0
3: best_head ∼ Uniform{1, 2, . . . , K}
4: for each episode do
5: Obtain initial state from environment s0
6: Pick value function to act using k ∼Uniform{1, 2, . . . , K}
7: for step t = 1, . . . until end of episode do
8: Pick an action according to at ∈ argmaxaQk(st, a)
9: Take action at and receive state st+1 and reward rt

10: Sample minibatch from B
11: Train network with loss function given in equation 4.2
12: numSteps← numSteps + 1
13: if numSteps mod select_best_int == 0 then
14: best_head = argmaxkQk(st, at)
15: end if
16: end for
17: end for

greedy action. The loss signal for this approach would then be:

Li(θi) = Es,a,r,s′ [(r + γQm(s
′, argmaxa′Qk(s

′, a′; θi); θ
−
i)−Qk(s, a; θi))

2] (4.3)

where m ∈ {1, 2, . . . , K} \ {k}.

In fact, this update rule would be closer to the true double Q-learning update than our

approach. In this case, the actual values end up getting shared between the heads which

then no longer remain independent estimates. However, variability between the action-

value estimates of the heads is the basis of deep exploration in Bootstrapped DQN.

Hence, direct value transfer is not desirable within the Bootstrap framework. This is

why shared learning is centered around partial policy transfer rather than value transfer.

Additionally, we would also like to point out that the added performance due to our

algorithm over Bootstrapped DQN increases progressively with increasing number of

heads. This is because of the fact that with fewer heads (2 in the extreme case), it is

more likely that a given head is updated with its own target network. In other words,

the best head is the same as the given head for a larger fraction of heads when there

are fewer heads (one out of K heads). Even in this case, we would have a worst-case

performance equal to that of Bootstrapped DQN.

22

4.3 Experiments

We first illustrate how online transfer of learning progress can speed up learning on an

MDP chain environment. In this tabular environment, the issue of coupling between tar-

get estimates and online estimates is nonexistent, and any speedup due to our algorithm

would primarily be because of online transfer. Finally, we demonstrate the effective-

ness of our algorithm on a subset of Atari Games using the ALE environment where we

observe the advantage of both the decoupled estimates as well as the shared learning

progress.

4.3.1 MDP experiments

Experimental Setup

We present a toy chain MDP experiment to demonstrate the faster learning of the new

approach. The MDP consists of n states, arranged sequentially as shown in Figure 4.1.

The agent always starts from state s2. From each state four actions are allowed namely,

go left, go right, do nothing or jump to state s1 incurring a reward of -10 and terminating

the episode. The episode ends when the agent has reached the nth state upon which it

receives a reward of +10.

We use normal Q-learning (with ε-greedy) and double Q-learning (with ε-greedy) as

baselines to compare the performance of a bootstrap agent (5 heads) with and with-

out shared learning. Figures 4.2 and 4.3 show the result for a 35 and 50 state MDP

respectively.

Figure 4.1: MDP Chain Structure with n-states

23

Results

Figure 4.2: MDP results showing average reward obtained per episode and number of
steps taken until completion for 35-state chain MDP

Solving the above environment requires deep exploration, especially with a larger

number of states. This is illustrated by the fact that Q-learning and double Q-learning,

with ε-greedy exploration, are unable to solve large MDP chains (beyond 20 states).

24

Figure 4.3: MDP results showing average reward obtained per episode and number of
steps taken until completion for 50-state chain MDP

The results verify that Bootstrapped DQN (adapted for tabular settings) can indeed per-

form deep exploration. The fact that our algorithm is still capable of performing deep

exploration shows that sharing does not take away from the diversity among the esti-

mates, which is what drives the exploration in Bootstrapped DQN.

25

We observe that the speedup due to shared learning becomes more evident with in-

creasing chain length (Figure 4.2, Figure 4.3). The performance of both Bootstrapped

DQN and shared learning would probably be identical on this problem until the first

time the goal state is reached. It is at this point that sharing learned experience becomes

vital so that knowledge of the goal state propagates out to every head. This is the reason

why shared learning outperforms the bootstrap algorithm on larger MDP chains.

Discussion

Figure 4.4: Heatmap of states visited by different algorithm in 35-state MDP

To analyze if our approach based on shared learning is able to perform exploration

nearly as fast as the bootstrapped DQN version, we measured the number of state visi-

tations made by the agent over 50 runs for 1000 episodes (max steps per episode 1000).

During the experiment, the observation was that the while the bootstrap algorithm was

able to reach the goal faster it was the shared learning approach that was able to reach

the goal more consistently. This has been made evident for the 35-state chain MDP and

the 50-state chain MDP in Figure 4.4 and Figure 4.5 respectively. This provides more

concrete evidence to our hypothesis about shared learning that while it may affect ex-

ploration marginally, once the solution has been reached, the sharing of the knowledge

26

Figure 4.5: Heatmap of states visited by different algorithm in 50-state MDP

of the solution to the other estimates are fast enough by our metric and so we can reach

the goals more consistently.

4.3.2 Atari 2600 experiments

We evaluate our algorithm on 6 Atari games on the Arcade Learning Environment Belle-

mare et al. (2013). The games chosen for evaluation were Seaquest, Frostbite, Hero,

Breakout, Qbert and Pong. Most of these games have been chosen in order to com-

pare with the results shown in Osband et al. (2016a). The network architecture used

for shared learning is the same as that of Bootstrapped DQN and consists of a shared

convolutional layer followed by 10 bootstrap heads to provide value function estimates.

Gradient normalization of 1/K (K is the number of bootstrap heads) was also applied

to the network with no masking (see Osband et al. (2016a)) of heads. The learning

progress for the Atari games have been measured using the Q-values at intervals of 100

steps. The head corresponding to the maximum Q-value is chosen to be the best head

that is suitable for information transfer. In Figures 4.6, 4.7 and 4.8, we show the results

on Seaquest, Frostbite and Hero for Shared Learning against Bootstrapped DQN over

50 epochs and for Breakout in Figure 4.9 over 35 epochs.

27

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 R

e
w

a
rd

Number of Epochs

Average reward per game during testing

Shared Learning
BootstrappedDQN

Figure 4.6: Average Reward on Seaquest after 50 epochs of training

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 R

e
w

a
rd

Number of Epochs

Average reward per game during testing

Shared Learning
BootstrappedDQN

Figure 4.7: Average Reward on Frostbite after 50 epochs of training

Table 4.1 shows the cumulative rewards obtained on the Atari games Qbert and Pong

over 20 epochs.

We have not presented the performance of DQN Mnih et al. (2015) and double DQN

Van Hasselt et al. (2016), since it was shown in Osband et al. (2016a) that Bootstrapped

DQN clearly outperforms them. Our results show an increased cumulative reward dur-

28

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 R

e
w

a
rd

Number of Epochs

Average reward per game during testing

Shared Learning
BootstrappedDQN

Figure 4.8: Average Reward on Hero after 50 epochs of training

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 R

e
w

a
rd

Number of Epochs

Average reward per game during testing

Shared Learning
BootstrappedDQN

Figure 4.9: Average Reward on Breakout after 35 epochs of training

Cumulative Reward on Atari Games during testing
Game Shared Learning Score Bootstrapped DQN Score
Qbert 39001.6661 15286.0259
Pong -44.9735 -80.4237

Table 4.1: 20 epoch cumulative scores

ing learning, while Bootstrapped DQN appears to dither to a larger extent.

29

The significant boost in performance on the Atari games over Bootstrapped DQN con-

firms that the double Q-learning updates in DDQN and Bootstrapped DQN were in fact

imperfect.

30

CHAPTER 5

ADVANCING UNSUPERVISED AUXILIARY TASKS

FOR REINFORCEMENT LEARNING

5.1 Next Frame Prediction as an Auxiliary Task

5.1.1 Motivation

In section 3.5, we saw how unsupervised auxiliary tasks which learn various control

policies through pixel control, reward prediction and value replay can lead to better

representations for the extrinsic goal while trying to solve internal goals themselves.

Better representation learning has been a leading question in the field of artificial in-

telligence for a long time. In the case of reinforcement learning, a better representation

can be obtained by developing tasks that help in getting a better model of the envi-

ronment. One such unsupervised task which helps is next frame prediction (NFP). By

using imagined and predicted frames of the environment we can model the physical

interactions in the world which can be generalized to unseen settings as well.

Why unsupervised next frame prediction should learn good features?

As mentioned in Srivastava et al. (2015), in order to perform next frame prediction

correctly, it is important for the model we create to understand the kind of objects that

are present in the screen and how they move in the environment. This kind of abstract

information is learnt by the encoding architecture of a next frame predictor model.

Mirza et al. (2016) further goes on to show that such predictor models can also be made

competent to generalize in unseen settings.

Figure 5.1: Next Frame Predictor Model architecture. The notations for the networks
are consistent with Figure 3.3.

5.1.2 Next Frame Predictor Model

In order to perform next frame prediction, we design a model as in Figure 5.1. To

the model, we encode the stacked last three frames (from the replay buffer) using a

convolutional network and the last action taken by the agent and pass the encodings to

a fully connected layer. The embedding from the fully connected layer is further passed

through a deconvolutional network in order to construct the next frame.

Loss Function

The loss functions used for frame predictions has been a long standing debate. Ranzato

et al. (2014) discusses how the use of squared error as the loss function is not a good

enough metric for frame prediction. They quantized the images into patches and try to

predict the identity of the target patches as a way to learn the frame predictions. Mirza

et al. (2016) , however, use the predictive mean squared error with the Adam optimizer

and early stopping for training. In our experiments we use the predictive mean squared

32

error given by,

LNFP =
1

M

1

N

1

C

M∑
m=1

N∑
n=1

C∑
c=1

[(f̂(m,n, c)− f(m,n, c))2] (5.1)

Here, f̂ is the predicted frame representation, f is the actual frame representation. M,

N and C represent the number of pixels along x-axis, y-axis and the number of channels

respectively.

5.1.3 Experiments

Initial results

In this section, we show the results of our experiments on the Space Invaders game

using the ALE environment (Bellemare et al. (2013)).

As a baseline for our model, we use the original set of tasks from the UNREAL pa-

per (Jaderberg et al. (2016)). To test our model, we try swapping the pixel control task

from the original paper with the our next frame predictor model and check our results.

The algorithm we use has been summarized in Algorithm 2.

The result on Space Invaders is shown below in Figure 5.2.

Figure 5.2: UNREAL agent vs UNREAL-NFP(as in Algorithm 2) on Space Invaders

33

Algorithm 2 Reinforcement Learning with Value Replay, Reward Prediction and Next
Frame Prediction Auxiliary Tasks - for each thread

1: Assume global shared parameter vectors θ and θv and global shared counter T = 0
2: Assume thread-specific parameter vectors θ′ and θ′v
3: Let B be a replay buffer storing experience for training. Fill buffer with transitions

using a random policy.
4: Assume θcshared be the shared parameters for the auxiliary task c with the base agent.
5: Initialize thread time counter τ ← 1
6: repeat
7: Reset gradients: dθ ← 0 and dθv ← 0.
8: Synchronize thread parameters θ′ = θ and θ′v = θv
9: tstart = τ

10: Get state tτ
11: repeat
12: Perform aτ according to policy π(aτ |tτ , θ′)
13: Receive reward rτ and new state tτ+1

14: τ ← τ + 1
15: T ← T + 1
16: until terminal state sτ or τ − tstart == tmax
17:

R =

{
0 for terminal state
V (tτ ; θ

′
v) for non-terminal state tτ

18: for i ε {τ − 1, ..., tstart} do
19: R← ri + γR
20: Accumulate gradients wrt θ′ : dθ ← dθ +∇θ′ log π(ai; ti;θ′)(R−V (ti;θ′v))

21: Accumulate gradients wrt θ′v : dθv ← dθv + (.R− V (ti; θ
′
v))

2/dθ′v
22: end for
23: Perform skewed replay sampling from B to pass through Reward Predictor

model
24: Compute LRP
25: Perform skewed replay sampling from B to pass through NFP model
26: Compute LNFP
27: Perform uniform random sampling from B to pass through Value Replay model
28: Compute LV R
29: Laux = λV RLV R + λRPLRP + LNFP
30: Accumulate auxiliary task gradients wrt θ′ : dθ ← dθ +aux /dθ

′

31: Accumulate auxiliary task gradients wrt θ′v : dθv ← dθv +aux /dθ
′
v

32: Perform asynchronous update of θ using dθ and θv using dθv
33: until T > Tmax

Discussion

From the Figure 5.2, we see that the next frame prediction performs well initially and

the scores have saturated to a low score very early. This could be because the model

overfit and started focusing on detail which wasn’t very important. For example, in a

game like Seaquest the model may have focused too much on reconstructing the sea

34

and sky properly instead of the game score and the opponents. So, we try to provide

some regularization through the use of dropouts (Srivastava et al. (2014)).

Results with Dropout

For the experiments with dropout, we use a keep probability for the neurons as 0.75 and

0.5. From the results in figure 5.3, we see that the regularized model does much better

than the original UNREAL agent proposed in Jaderberg et al. (2016). This shows how

important NFP is as an unsupervised auxiliary task in guiding the agent towards the

overall extrinsic goal. UNREAL-NFP(from Algorithm 2) performs best with dropout

having keep probability 0.75 in this game.

Figure 5.3: UNREAL-NFP vs UNREAL-NFP (Dropout=0.75) vs UNREAL-NFP
(Dropout=0.5) on Space Invaders

5.2 Sequencing Auxiliary Tasks for Reinforcement Learn-

ing

5.2.1 Motivation

In the previous section, we always considered a scenario when multiple auxiliary tasks

are running at the same time. However, it is questionable, how effective running all

the control policies at once would be. For example, consider a game of sparse rewards

and suppose that we have reached a state that is providing us a high score. Now it is

important for the agent to understand the rewarding features of this state first before

trying to learn a value function over the state. In such a case, we would want the

35

reward replay to be performed more initially, followed by the value replay auxiliary

task to promote the policy that lead to the rewarding state. So, we need to sequence

the auxiliary tasks. Hence, we design a new Policy over Tasks (PoTs) model that can

predict which one auxiliary task that needs to be executed.

5.2.2 Policy over Tasks Model

Model setup

The policy over tasks (PoTs) model develops a policy over the set of available auxil-

iary tasks using the state encoding of the previous tmax states, where tmax is a hyper-

parameter or the number of time steps before a terminal state has occurred. In order to

do this an extra policy layer is built over the base A3C agent. A softmax output of the

policy layer gives the unsupervised auxiliary tasks to execute. The policy is learnt using

the policy gradient update rule as given by the equation below,

L(θπPoTs) = log πθπPoTs (st)A(st, at; θv, θπPoTs) (5.2)

Note, that the value function used for learning is the same as the value function used by

the base A3C agent and so we are essentially solving a multi-objective reinforcement

learning problem.

5.2.3 Experiments

To check the efficacy of the model, we test our model summarised in Algorithm 3

against the base UNREAL model from Jaderberg et al. (2016) on the Space Invaders

game using the ALE environment Bellemare et al. (2013). The result has been produced

in Figure 5.4.

From the above graph we can see that the UNREAL-PoTs model does better than the

UNREAL+NFP model after about 50 million steps. This probably shows that learning

a policy over the set of auxiliary tasks was in fact necessary to perform better data-

efficient learning.

36

Figure 5.4: UNREAL vs UNREAL-PoTs(as in Algorithm 3) on Space Invaders

Algorithm 3 Policy over Tasks model - for each thread
1: Assume global shared parameter vectors θ, θPoTs and θv and global shared counter
T = 0

2: Assume thread-specific parameter vectors θ′, θ′PoTs and θ′v
3: Let B be a replay buffer storing experience for training. Fill buffer with transitions

using a random policy.
4: Assume θcshared be the shared parameters for the auxiliary task c with the base agent.
5: Initialize thread time counter τ ← 1
6: repeat
7: Reset gradients: dθ ← 0, dθPoTs ← 0 and dθv ← 0.
8: Synchronize thread parameters θ′ = θ, θ′PoTs = θPoTs and θ′v = θv
9: tstart = τ

10: Get state tτ
11: repeat
12: Perform aτ according to policy π(aτ |tτ , θ′)
13: Execute policy π(aτ |tτ , θ′PoTs)
14: Receive reward rτ and new state tτ+1

15: τ ← τ + 1
16: T ← T + 1
17: until terminal state sτ or τ − tstart == tmax
18: Based on π(aτ |tτ , θ′PoTs) choose auxiliary task c
19:

R =

{
0 for terminal state
V (tτ ; θ

′
v) for non-terminal state tτ

20: for i ε {τ − 1, ..., tstart} do
21: R← ri + γR
22: Accumulate gradients wrt θ′ : dθ ← dθ +∇θ′ log π(ai; ti;θ′)(R−V (ti;θ′v))

23: Accumulate gradients wrt θ′v : dθv ← dθv + (.R− V (ti; θ
′
v))

2/dθ′v
24: end for
25: Perform auxiliary task c.
26: Compute Laux = Lc
27: Accumulate auxiliary task gradients wrt θ′ : dθ ← dθ +aux /dθ

′

28: Accumulate auxiliary task gradients wrt θ′v : dθv ← dθv +aux /dθ
′
v

29: Perform asynchronous update of θ using dθ and θv using dθv
30: until T > Tmax

37

CHAPTER 6

FUTURE WORK

6.1 Shared Learning in Ensemble Deep Q-Networks

In this thesis, we have shown how shared learning is advantageous using the Boot-

strapped DQN architecture. In the future, we would like to show our experimental

results over more epochs and for more number of games. The deep reinforcement

learning algorithm that is of current interest is the A3C algorithm (Mnih et al. (2016)).

While it is not completely straightforward as to how to implement shared learning in

this algorithm, we hypothesize that it will be very useful.

Additionally, in this paper, we have only discussed two ways of measuring learning

progress, we would also like to look at how we can use better measures of learning to

improve shared learning. For example, we believe that using a certain type of saliency-

based measure could help in environments with sparse rewards since here the prime

importance would be exploration rather than maximizing rewards.

We have also introduced the notion of online transfer in this thesis. We would like

to study many more different applications of the online transfer in the future.

6.2 Advancing Unsupervised Auxiliary Tasks for Rein-

forcement Learning

While, we have run the models for only one game here. We will be testing out the

models on many more Atari games.

Before proceeding to the future work on top of the work done in this thesis, we

would also like to point out some other auxiliary tasks we would like to test out. The

inverse dynamics model that can predict the the action taken given the two consecutive

frames is a great way for the agent to understand the kind of action it has taken. Hence,

we believe that this task would be a great addition to the UNREAL agent. However,

the ALE environment poses some problems for this task as the environment is slightly

stochastic. An example of this is the stochastic appearance of predators in the Seaquest

game. This will mislead the agent that is trying to understand an action. However, if

we use our algorithm in the MuJoCo environment, we may be able to observe some

significant improvement.

6.2.1 Next Frame Prediction as an Auxiliary Task

In this thesis, we have only considered a primitive version of next frame prediction

where the model has as input the as stacked frames. In the future, we wish to consider

models that perform better state encoding using an LSTM architecture. This also allows

for more parameter sharing with the base A3C agent.

The next change we could bring about with this auxiliary task is to test models that

predict more frames in the future. In the current setup, we use only a single frame

predictor. Oh et al. (2015) has also done this task of many frame predictions. They

were successful up-to predicting 100 frames. Hence, we have strong reason to believe

that this model could help the base agent’s representation. We could also try to use an

LSTM encoding-decoding architecture as in the future predictor model in Srivastava

et al. (2015).

Another task which maybe of particular advantage would be to try to predict not only

the next frame, but the previous frame as well. This task is of particular use in tasks

that have partially observable environments when the agent wants to understand where

its current location is in an MDP. Prediction of the previous frame has also been shown

to be helpful in Hausknecht and Stone (2015).

Generative Adversarial Networks (Goodfellow et al. (2014)) has been of great in-

terest to researchers in artificial intelligence in the recent past. As a modelling change

to our task, we would like to see how using an adversarial training as in Radford et al.

(2015) can help in next frame prediction. Also, solving the task on a latent space (in-

put to the discriminator of the generative adversarial model) will be of particular help

39

towards representation learning for the UNREAL agent.

Recently, in a deep learning workshop at NIPS, Prof. Honglak Lee, from University

of Michigan, Ann Arbor discussed the importance of disentagled representations in

getting better future state representations in reinforcement learning. This is also an

exciting area of work linked with next frame prediction that could be done.

6.2.2 Sequencing Auxiliary Tasks for Reinforcement Learning

In this model, we have tried to predict the auxiliary task that needs to be executed at ev-

ery possible step. Sharma et al. (2017) introduced a new method that selects how many

time steps an action needs to be persisted by an agent. We could try to use the same

strategy with our PoTs policy as well and test how auxiliary task persistence could help

in extrinsic learning. This could particularly be computationally helpful and probably

can help in further exploration with respect to the PoTs policy.

On the other end of the spectrum, we could also try to make sure that we never repeat

an auxiliary task by making successive task representation vectors orthogonal. This has

been tried out in the context of natural language processing Nema et al. (2017).

40

REFERENCES

1. Barto, A. G., Intrinsic Motivation and Reinforcement Learning. In Intrinsically moti-
vated learning in natural and artificial systems. Springer, 2013, 17–47.

2. Bellemare, M., S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos,
Unifying Count-based Exploration and Intrinsic Motivation. In Advances in Neural
Information Processing Systems. 2016.

3. Bellemare, M. G., Y. Naddaf, J. Veness, and M. Bowling (2013). The Arcade Learn-
ing Environment: An evaluation platform for general agents. J. Artif. Intell. Res.(JAIR),
47, 253–279.

4. Brafman, R. I. and M. Tennenholtz (2002). R-max-a general polynomial time algo-
rithm for near-optimal reinforcement learning. Journal of Machine Learning Research,
3(Oct), 213–231.

5. Dayan, P. (1993). Improving generalization for temporal difference learning: The suc-
cessor representation. Neural Computation, 5(4), 613–624.

6. Finn, C., I. Goodfellow, and S. Levine, Unsupervised learning for physical interaction
through video prediction. In Advances In Neural Information Processing Systems. 2016.

7. Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial nets. In Advances in neural infor-
mation processing systems. 2014.

8. Hasselt, H. V., Double Q-learning. In Advances in Neural Information Processing
Systems. 2010.

9. Hausknecht, M. and P. Stone (2015). Deep recurrent q-learning for partially observ-
able mdps. arXiv preprint arXiv:1507.06527.

10. Ho, J. and S. Ermon, Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems. 2016.

11. Houthooft, R., X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel, Vime:
Variational Information Maximizing Exploration. In Advances in Neural Information
Processing Systems. 2016.

12. Jaderberg, M., V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and
K. Kavukcuoglu (2016). Reinforcement learning with unsupervised auxiliary tasks.
arXiv preprint arXiv:1611.05397.

13. Kearns, M. and D. Koller, Efficient Reinforcement Learning in Factored MDPs. In
IJCAI, volume 16. 1999.

14. Kulkarni, T. D., A. Saeedi, S. Gautam, and S. J. Gershman (2016). Deep successor
reinforcement learning. arXiv preprint arXiv:1606.02396.

41

15. Lample, G. and D. S. Chaplot (2016). Playing fps games with deep reinforcement
learning. arXiv preprint arXiv:1609.05521.

16. Levine, S. and C. Finn (2017). Deep visual foresight for planning robot motion. ICRA.
URL https://arxiv.org/abs/1610.00696.

17. Levine, S., C. Finn, T. Darrell, and P. Abbeel (2015). End-to-end training of deep
visuomotor policies. arXiv preprint arXiv:1504.00702.

18. Li, X., Z. C. Lipton, B. Dhingra, L. Li, J. Gao, and Y. Chen (2016). A user simulator
for task-completion dialogues. CoRR, abs/1612.05688. URL http://arxiv.org/
abs/1612.05688.

19. Li, Y. (2017). Deep reinforcement learning: An overview. CoRR, abs/1701.07274.
URL http://arxiv.org/abs/1701.07274.

20. Lotter, W., G. Kreiman, and D. Cox (2016). Deep predictive coding networks for
video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104.

21. Mirowski, P., R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil,
R. Goroshin, L. Sifre, K. Kavukcuoglu, et al. (2016). Learning to navigate in complex
environments. arXiv preprint arXiv:1611.03673.

22. Mirza, M., A. Courville, and Y. Bengio (2016). Generalizable features from unsuper-
vised learning. arXiv preprint arXiv:1612.03809.

23. Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, Asynchronous Methods for Deep Reinforcement Learning. In
International Conference on Machine Learning. 2016.

24. Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. (2015). Human-level
Control through Deep Reinforcement Learning. Nature, 518(7540), 529–533.

25. Nema, P., M. Khapra, A. Laha, and B. Ravindran (2017). Diversity driven Attention
Model for Query-based Abstractive Summarization. ArXiv e-prints.

26. Oh, J., X. Guo, H. Lee, R. L. Lewis, and S. Singh, Action-conditional video prediction
using deep networks in atari games. In Advances in Neural Information Processing
Systems. 2015.

27. Osband, I., C. Blundell, A. Pritzel, and B. Van Roy, Deep Exploration via Boot-
strapped DQN. In Advances In Neural Information Processing Systems. 2016a.

28. Osband, I., B. V. Roy, and Z. Wen, Generalization and Exploration via Randomized
Value Functions. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. 2016b. URL http:
//jmlr.org/proceedings/papers/v48/osband16.html.

29. Osband, I., D. Russo, and B. Van Roy, (more) Efficient Reinforcement Learning via
Posterior Sampling. In Advances in Neural Information Processing Systems. 2013.

30. Ostrovski, G., M. G. Bellemare, A. v. d. Oord, and R. Munos (2017). Count-based
exploration with neural density models. arXiv preprint arXiv:1703.01310.

42

https://arxiv.org/abs/1610.00696
http://arxiv.org/abs/1612.05688
http://arxiv.org/abs/1612.05688
http://arxiv.org/abs/1701.07274
http://jmlr.org/proceedings/papers/v48/osband16.html
http://jmlr.org/proceedings/papers/v48/osband16.html

31. Radford, A., L. Metz, and S. Chintala (2015). Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434.

32. Ranzato, M., A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra (2014).
Video (language) modeling: a baseline for generative models of natural videos. CoRR,
abs/1412.6604. URL http://arxiv.org/abs/1412.6604.

33. Rummery, G. A. and M. Niranjan, On-line Q-learning using connectionist systems.
1994.

34. Schaul, T., D. Horgan, K. Gregor, and D. Silver, Universal value function approx-
imators. In Proceedings of the 32nd International Conference on Machine Learning
(ICML-15). 2015a.

35. Schaul, T., J. Quan, I. Antonoglou, and D. Silver (2015b). Prioritized Experience
Replay. arXiv preprint arXiv:1511.05952.

36. Schulman, J., S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, Trust region policy
optimization. In ICML. 2015.

37. Sharma, S., A. S. Lakshminarayanan, and B. Ravindran (2017). Learning to re-
peat: Fine grained action repetition for deep reinforcement learning. arXiv preprint
arXiv:1702.06054.

38. Singh, S. P., A. G. Barto, and N. Chentanez, Intrinsically Motivated Reinforcement
Learning. In NIPS, volume 17. 2004.

39. Srivastava, N., G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov
(2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(1), 1929–1958.

40. Srivastava, N., E. Mansimov, and R. Salakhutdinov, Unsupervised learning of video
representations using lstms. In ICML. 2015.

41. Stadie, B. C., S. Levine, and P. Abbeel (2015). Incentivizing Exploration In Re-
inforcement Learning With Deep Predictive Models. CoRR, abs/1507.00814. URL
http://arxiv.org/abs/1507.00814.

42. Sutton, R. S. (1991). Integrated modeling and control based on reinforcement learning
and dynamic programming. Advances in neural information processing systems, 3,
471–478.

43. Sutton, R. S. and A. G. Barto, Reinforcement Learning: An Introduction, volume 1.
MIT press Cambridge, 1998.

44. Sutton, R. S., J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Pre-
cup, Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In The 10th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2. International Foundation for Autonomous
Agents and Multiagent Systems, 2011.

43

http://arxiv.org/abs/1412.6604
http://arxiv.org/abs/1507.00814

45. Tang, H., R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman, F. D.
Turck, and P. Abbeel (2016). #Exploration: A Study of Count-based Exploration for
Deep Reinforcement Learning. CoRR, abs/1611.04717. URL http://arxiv.org/
abs/1611.04717.

46. Tessler, C., S. Givony, T. Zahavy, D. J. Mankowitz, and S. Mannor (2016).
A deep hierarchical approach to lifelong learning in minecraft. arXiv preprint
arXiv:1604.07255.

47. van den Oord, A., N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, et al., Con-
ditional image generation with pixelcnn decoders. In Advances in Neural Information
Processing Systems. 2016.

48. Van Hasselt, H., A. Guez, and D. Silver, Deep Reinforcement Learning with Double
Q-Learning. In AAAI. 2016.

49. Wang, Z., T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas
(2015). Dueling network architectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581.

50. Watkins, C. J. and P. Dayan (1992). Q-learning. Machine learning, 8(3-4), 279–292.

44

http://arxiv.org/abs/1611.04717
http://arxiv.org/abs/1611.04717

LIST OF PAPERS BASED ON THESIS

1. Rakesh R Menon*, Manu Srinath Halvagal*, Balaraman Ravindran, "Shared
Learning in Ensemble Deep Q-Networks." The 3rd Multidisciplinary Conference
on Reinforcement Learning and Decision Making. (RLDM), 2017 (Accepted).

2. Rakesh R Menon*, Manu Srinath Halvagal*, Balaraman Ravindran, "Shared
Learning in Ensemble Deep Q-Networks." The 15th Adaptive Learning Agents
(ALA) Workshop. AAMAS, 2017 (Accepted).

45

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	INTRODUCTION
	Reinforcement Learning
	Shared Learning
	Auxiliary Tasks for Reinforcement Learning
	Summary

	PRELIMINARIES
	Markov Decision Processes
	Return, Policy and Value Functions
	Temporal-Difference Learning
	SARSA
	Q-learning

	Parametrised Policy/Value Function
	Deep Reinforcement Learning
	Deep Q-Networks
	Double Deep Q-Networks
	Environments and Applications

	RELATED WORK
	The Exploration-Exploitation Dilemma
	Bootstrapped DQN
	Asynchronous Advantage Actor-Critic
	Maximizing Pseudo-reward Functions
	The Horde architecture
	Universal Value Function Approximators
	Successor Representation
	Auxiliary Tasks

	Reinforcement Learning with Unsupervised Auxiliary Tasks
	Next Frame Prediction

	SHARED LEARNING
	Shared Learning for Bootstrapped DQN
	Coupled Estimates in Double DQN
	Proposed Algorithm
	Online Transfer of Learning Progress

	Discussion
	Experiments
	MDP experiments
	Atari 2600 experiments

	ADVANCING UNSUPERVISED AUXILIARY TASKS FOR REINFORCEMENT LEARNING
	Next Frame Prediction as an Auxiliary Task
	Motivation
	Next Frame Predictor Model
	Experiments

	Sequencing Auxiliary Tasks for Reinforcement Learning
	Motivation
	Policy over Tasks Model
	Experiments

	FUTURE WORK
	Shared Learning in Ensemble Deep Q-Networks
	Advancing Unsupervised Auxiliary Tasks for Reinforcement Learning
	Next Frame Prediction as an Auxiliary Task
	Sequencing Auxiliary Tasks for Reinforcement Learning

