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ABSTRACT

KEYWORDS: Spectrum sharing; loss networks; Erland fixed-point approxima-

tion; game theory

We consider a pairwise spectrum sharing model inspired by recently released regula-

tions on spectrum sharing. We first establish a revenue-sharing model for the mobile

service providers (MSPs) involved using principles of coalitional game theory. Ac-

knowledging that the considered model can also be represented as a stochastic loss

network, we proceed to analyze the system using the concept of shadow prices. The

question of how much spectrum should optimally be shared by each MSP is considered

and answered analytically. The results obtained indicate that it is optimal for atleast

one of the MSPs to always completely share its licensed spectrum, and in certain cases,

for both MSPs to fully share their respective spectrums. In order to set up a complete

framework, we finally consider how MSPs should set prices to maximize their profits.
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CHAPTER 1

Spectrum Sharing

Conventionally, frequency spectrum bands are licensed to mobile service providers

(MSPs) by the government under strict rules that allow only that MSP to use the band.

This ensures a certain level of Quality-of-Service for every MSP by ensuring that no

interference from other MSPs occurs. However, this rigidity is often not optimal. Faced

with a shortage of spectrum to auction off amongst MSPs ([1]), and an ever increas-

ing consumer base, regulatory authorities in India have, in recent years, started to relax

rules and allow MSPs to share their spectrum bands with others ([6], [7]).

This raises a number of interesting questions related to how MSPs should share

spectrum. For exmaple, from a competitive viewpoint, there is an immediately obvious

tradeoff - sharing more of one’s own spectrum will lead to increased interference for

one’s own users, but not sharing enough spectrum could lead to other MSPs recipro-

cating and reducing the benefits intended from sharing. There is hence a large body of

literature on the topic of spectrum sharing.

1.1 Previous Work

[3] provides a policy-level overview of spectrum sharing today. A majority of the work

in this field has been in the subfield of dynamic spectrum sharing - where the excess

spectrum of a single MSP is auctioned/allocated to other MSPs dynamically over time.

Auction mechanisms are studied in [8] and Niyato et al. ([9], [10]) study the game

theoretic aspects of such a model. [14] takes a mechanism design approach to spectrum

sharing and investigates how incentives may be used to achieve a socially optimal shar-

ing paradigm.

Another area of work - one that we are more interested in - is that of spectrum shar-

ing with coalitions. [11] and [12] consider the questions of optimal spectrum allocation



in a coalition to achieve a Nash Bargaining Solution and coalition formation for spec-

trum sharing. [13] considers the specific problem of how MSPs in a coalition will share

their profits. [14] considers a mechanism design approach to spectrum sharing. [15] -

[17] also consider the game theoretic aspects of wireless networks models, with [17]

considering a model very close to our own.

In this report, we establish a framework of spectrum sharing between two MSPs

who have already formed a coalition, the model for which is detailed in section 1.2.

Our framework is established in three parts. In section 1.3, we address the issue of MSP

inter-payments using cooperative game theory, establishing a profit-splitting paradigm

that ensures the stability of the coalition. In section 1.4, we consider how much of its

allotted spectrum each MSP should share. Here we present our main result: that atleast

one MSP must fully share its spectrum (and in certain cases, both MSPs should) in order

to maximize profits. In section 1.5, we present a variety of consumer pricing games that

MSPs can play in order to decide price per call.

1.2 Model

We consider the circuit-switched telephony model presented in [1], one that is relevant

while considering GSM networks. There are 2 mobile service providers, or MSPs, who

enter into an agreement to share portions of their spectrum. We do not consider the ques-

tion of how such sharing pairs are formed; rather, we assume that MSPs have already

formed mutually beneficial partnerships, where both of them share some spectrum. It

is assumed that the spectrum allocated to each MSP is split into multiple sub-bands, or

slots, of equal size, each of which is used to service a call. Let the number of such slots

for MSP i be Ni, i ∈ {1, 2}. Calls arrive for each MSP as a Poisson process with mean

λi, and have unit mean exponentially distributed service times.

A call takes up the entirety of a single slot, i.e., we preclude the possibility of a slot

being used for multiple calls. When all the slots available for the use of an MSP are

occupied, any incoming calls do not wait for a slot to free up, and are dropped. Cus-

tomers are charged only for a successful call, i.e., one that is not blocked. We assume

that MSP i charges a constant price pi for a successful call. We further assume that an

MSP charges a price p̃i before entering the coalition.
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MSP i can choose to share ki slots with MSP j. This implies that a total ofN1+k2 slots

are available for MSP 1’s use. Note that there is no guarantee that all k2 slots will be

free for MSP 1’s use - MSP 2 still treats the shared k2 slots as it would any non-shared

slot for its own calls. Either MSP will use its own slots before starting to use the shared

slots. If any of MSP 1’s own slots free up while one of its calls is being serviced in a

shared sub-band of MSP 2’s, the call will be instantaneously switched to MSP 1’s own

spectrum - a process known as call repacking.

Figure 1.1: Sharing model

Note that:

0 < ki ≤ Ni, i ∈ {1, 2} (1.1)

The strict inequality exists due to our initial assumption that MSPs would have formed

pairs where sharing would be mutually beneficial and that no pair exists where only one

MSP contributes to the shared pool.

None of the mobile service providers that participate in spectrum sharing are altruistic

- each requires payment from any other MSP when they use any of its shared spectrum.

Similar to the pricing model for customers, we assume that MSP i is paid a fixed price,

ri by MSP j whenever a slot that MSP i has shared is used by MSP j for one of its

customers.

The quality of service that an MSP offers to customers while in a coalition is measured

using the MSP’s blocking probability,Bi, defined as the probability that a call incoming

from any customer is blocked. While acting by itself, we denote the MSP’s blocking

probability as B̃i.

Lemma 1.2.1. The time-averaged numbers of calls being served by MSP i, Ti, is given

3



by the equation:

Ti = λi(1−Bi) (1.2)

The expression follows directly from Little’s Law.

Using Lemma 1.2.1, the time-averaged revenue Ri that an MSP receives can be ex-

pressed as:

Ri = piλi(1−Bi) (1.3)

The next issue that must be addressed is that of the mathematical analysis of the above

system. Let u = (u1, u2) represent the state of the system at any time instant, where ui

is the number of calls of MSP i’s customers that are being serviced in the system. Then,

the feasible set of such ordered pairs is given by:

F = {u | u1 ≤ N1 + k2, u2 ≤ N2 + k1, u1 + u2 ≤ N1 +N2} (1.4)

The system can now be modeled as a continuous time Markov process, with state space

F . Analysis now is possible, and results in the following limiting distribution.

Lemma 1.2.2. The limiting distribution for a state u ∈ F can be expressed as

π(u) =
1

D
λu11
u1!

λu22
u2!

(1.5)

where

D =
∑
u∈F

λu11
u1!

λu22
u2!

(1.6)

The blocking probability for MSP i can now be expressed as:

Bi =
1

D
∑
u∈Bi

λu11
u1!

λu22
u2!

(1.7)

where

Bi = {u | ui = Ni + kj} ∪ {u | u1 + u2 = N1 +N2} (1.8)

This distribution is identical to that of an appropriately chosen stochastic loss network,

which will help us analyze the system further.
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1.2.1 Stochastic Loss Networks

Stochastic loss networks have been used for almost a century to model systems that

involve the simultaneous usage of a fixed amount of resources, without allowing for

backlogging. They have found extensive applications in the fields of telecommunica-

tions and computer networks, as well as in a diverse range of other fields (see [18] -

[20]).

In general, they are defined by a set of nodes, N , and a set of edges or links, J

between nodes. Routes, (Ri ∈ R, i ∈ {1, 2, 3...} are defined as subsets of links in the

network that form a path. Each link has a capacity Ci allotted to it. Call/job arrivals &

service times for each of the routes can be modeled as random processes. If the number

of calls/jobs being served by a route is equal to the capacity of any of the links in the

route, all incoming calls/jobs to that route will subsequently be blocked.

It is possible to construct a stochastic loss network to obtain the exact distribution seen

in (1.5) and (1.6).

Figure 1.2: Equivalent loss network (Source: [1])

Such a network will have 3 links, say {1, 2, 3} and two routes: A = {1, 3}, corre-

sponding to MSP 1 and B = {2, 3}, corresponding to MSP 2. The capacities of the

links are given by:

C1 = N1 + k2

C2 = N2 + k1

C3 = N1 +N2

(1.9)
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1.3 Inter-MSP Payments (Profit Sharing)

The question of the quantum of inter-MSP payments is not one that has an immediately

obvious solution. Intuitively, a high value of ri would dissuade other MSPs from sharing

spectrum with MSP i. Lowering the value of ri, however, is detrimental to MSP i, who

is aiming to maximize profits and offset operating costs. To address the problem of

inter-MSP payments, we turn to cooperative game theory.

1.3.1 Introduction

Cooperative, or coalitional game theory analyzes the behaviour of rational players when

they cooperate. The actors in cooperative game theory are not individual players -

rather, they are coalitions, or groups of individual players. It is usually assumed that

coalitions have already been formed beforehand ([2]), as has been done in our model.

The choice of cooperative game theory is a natural one, since MSPs in our model have

essentially entered into an agreement to share spectrum, thus forming a coalition. We do

not address the issue of coalition formation further in this paper, apart from reiterating

(1.1). Rather, the following analysis focuses on how the total revenue generated by a

coalition is split among its members. We present a formal definition of the game being

played below ([4], [5]).

1.3.2 Game Characterization

The game can be represented as (v,P), where P is the set of players, and v is the

characteristic function, defined later.

Let the set of players be defined by P = {P1, P2}, and let the power set of P be P.

Any non-empty subset S of P is called a coalition. Each coalition is assigned a value

or revenue, defined by the characteristic function v : 2|P| 7→ R+, that denotes the

worth of the coalition. We consider a coalitional game in characteristic form, where the

value of a coalition depends only on its members, and not on the split of the coalition’s

nonmembers. Further, we assume that the game has a transferrable utility, i.e, revenue

from the game can be shared freely among members of a coalition. These assumptions

are natural for 2 MSPs with customer bases and revenue obtained from customers.
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Lemma 1.3.1. The characteristic function v is superadditive ([5]), i.e., for every S, T ∈

P such that S ∩ T = φ,

v(S ∪ T ) ≥ v(S) + v(T ) (1.10)

Proof. Case 1: When S or T is φ (and remarking that v(φ) = 0), (1.10) is trivially

satisfied.

Case 2: Without loss of generality, when S = {P1} and T = {P2}, (1.10) is:

v({P1} ∪ {P2}) ≥ v({P1}) + v({P2})

=⇒ p1λ1(1−B1) + p2λ2(1−B2)

≥ p̃1λ1(1− B̃1) + p̃2λ2(1− B̃2)

(1.11)

This condition must necessarily be satisfied by all coalitions that form in our model. It

is easy to see why: if (1.11) does not hold, at least one member of the coalition formed

must receive less revenue while in the coalition than if it acted on its own. Hence, the

concerned MSP would have no incentive to participate in spectrum sharing, and would

not form a coalition to begin with.

�

Since the game is superadditive, and from our initial assumptions, the only coalition

that will form is the grand coalition: {P1} ∪ {P2}.

While superadditivity is a necessary condition for a stable coalition (one whose mem-

bers have no incentive to split off and act individually), it is not sufficient. To ensure

stability, we must find a suitable payoff vector, [f1 f2]T (note that fi is the total payoff

for player i), so that:

f1 + f2 = v({P1} ∪ {P2})

and

fi ≥ v({Pi}), i ∈ {1, 2}

(1.12)

Such a payoff vector is said to belong to the core of the game being played.

Definition 1.3.1. Core. The core of a coalitional game with two players is defined

as the set of all payoff vectors satisfying 1.12, i.e, the set of stable payoff vectors -

those that will ensure that the players of the game have no incentive to leave the grand

coalition.

7



The Shapely Value

The Shapely value is a well-known solution concept to coalitional games, named after

its inventor, Lloyd Shapely. It is a ’fair’ distribution, in that it satisfies a set of axiomatic

properties that make it a desirable payoff distribution (see [5]).

Definition 1.3.2. Shapely Value. For a game (v,P), the Shapely value payoff is de-

fined as:

fi(v) = Bi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)) (1.13)

where n = |P|.

For our model, the Shapely value payoffs simplify to:

f1 =
1

2
(R1 +R2 + R̃1 − R̃2)

f2 =
1

2
(R1 +R2 + R̃2 − R̃1)

(1.14)

where Ri and R̃i are the revenues that MSP i receives after and before joining the coali-

tion respectively.

Definition 1.3.3. Convex Game. A game is said to be convex if:

v(S) + v(T )− v(S ∩ T ) ≤ v(S ∪ T ) (1.15)

, where S ∈ P, T ∈ P, S 6= T .

We state another lemma from [4] that will be useful:

Lemma 1.3.2. If a game is convex, the Shapely value belongs to the core of the game.

We now state the main result of this section:

Theorem 1.3.3. The Shapely value belongs to the core of the game relevant to our

model.

Proof. Clearly, from 1.3.2, it is sufficient to prove that our game is convex in order to

prove this theorem.

8



Note that P = {φ, {P1}, {P2}, {P1} ∪ {P2}}.

Case 1. Without loss of generality, assume that S = φ. We then trivially get v(T ) ≥

v(T ) (since v(φ) = 0).

Case 2. Without loss of generality, assume S = {P1} ∪ {P2} and T 6= φ. We then

trivially get v(S) ≥ v(S).

Case 3. Without loss of generality, assume S = P1 and T = P2. Then, from 1.10, we

get v(S ∪ T ) ≥ v(S) + v(T ).

Hence, proved.

�

It is clear that the payoffs defined by 1.14 belong to the core and ensure a stable

coalition. Hence, the quantum of inter-operator payments (ri) can be obtained from the

Shapely value split.

9



1.4 Quantum of sharing

In this section, we consider the question of how much spectrum each MSP should opti-

mally share with the other, i.e, we will derive optimal values of k1 and k2. To begin, we

will state the following assumptions.

• We assume that the incoming traffic to each MSP as well as the prices charged
per successful call are known and fixed, i.e, λi and pi are fixed.

• We further assume that since the MSPs have agreed to share spectrum, they will
share in such a way as to maximize the total revenue they receive:

Pt = R1 +R2 = p1λ1(1−B1) + p2λ2(1−B2) (1.16)

This can also be intuited by looking at 1.14, the revenue split we established before.

In order to maximize individual revenues, MSPs must maximize total revenue.

In order to obtain an optimal sharing policy, we consider the equivalent loss network that

we described in Section 1.2.1 (refer Fig 1.2). The question of an optimal sharing policy

now reduces to dimensioning links 1 & 2 in the loss network previously described. The

optimal dimensioning of loss networks is a problem that has been considered previously

in the context of circuit-switched phone networks (see [21]). To analyze our model, we

will utilize the concept of shadow prices, which were introduced by Kelly ([22]).

1.4.1 The Erlang fixed-point distribution

As stated before, the blocking probability distributions for the routes on the loss net-

works are equivalent to the blocking probabilities for the MSPs, and are given in 1.2.2.

The expressions, however, are somewhat intractable to analyze, and hence we turn to

an approximation called the Erlang fixed-point approximation.

The Erlang approximation considers the question: what if call blocking on each

link in a loss network was independent of any other link (though this is obviously not

the case)? In this case, the blocking probability of a single link would be given by the

well-known Erlang-B function:

10



For traffic λ and link capacity C,

E(λ,C) =
λC

C!∑C
i=0 λ

i/i
(1.17)

The dependence of the blocking probability of a link on the states of the other links in

the network is taken into account by the approximation by way of the concept of ’re-

duced traffic’. The traffic offered to each link on a route is assumed to be decreased by

the effects of blocking in the other links on that route. The Erlang fixed-point approxi-

mation for our loss network can hence be expressed as:

b1 = E(λ1(1− b3), N1 + k2)

b2 = E(λ2(1− b3), N2 + k1)

b3 = E(λ1(1− b1) + λ2(1− b2), N1 +N2)

and

B1 = 1− (1− b1)(1− b3)

B2 = 1− (1− b2)(1− b3)

(1.18)

where bi is the blocking probability for link i andBi is the blocking probability for route

i. (recall that routes correspond to MSPs, and that links 1 & 3 make up route 1, and

links 2 & 3 make up route 2). The ’reduced traffic’ assumption of the approximation can

be clearly seen in the above expression. The Erlang fixed-point approximation has been

largely used to compute approximate blocking probabilities for large loss networks nu-

merically till date. Kelly ([22]) proves that the fixed point (i.e, the solution to 1.18) both

exists and is unique via Brouwer’s fixed point theorem. Hence, it is always possible to

iteratively compute approximate blocking probabilities from 1.18. However, we will

now use the fixed-point approximation to derive analytical results on dimensioning our

loss network.

To do so, we will now introduce the concept of shadow prices.

11



1.4.2 Shadow prices

The concept of shadow prices was introduced by Kelly in [22], as a tool to aid in the

dimensioning of loss networks.

Definition 1.4.1. Shadow price. The shadow price of a link is defined as the derivative

of the total revenue generated by the loss network with respect to the capacity of that

link. Using previously established notation, the shadow price si of a link i is:

si =
Pt
Ci

(1.19)

As with the fixed-point approximation, shadow prices are defined by a set of equa-

tions that yield a unique fixed point ([22]). The general form can be found in [22], and

the set of equations that yield shadow prices for our loss networks are:

s1 = η1λ1(1− b3)(p1 − s3)

s2 = η2λ2(1− b3)(p2 − s3)

s3 = η3(λ1(1− b1)(p1 − s1) + λ2(1− b2)(p2 − s2))

(1.20)

where

ηi = η(ρ1, Ci) = E(ρi, Ci − 1)− E(ρi, Ci) (1.21)

and
ρ1 = λ1(1− b3)

ρ2 = λ2(1− b3)

ρ3 = λ1(1− b1) + λ2(1− b2)

(1.22)

12



1.4.3 Sharing paradigm (Equal Prices)

We now assume that the price per call of both MSPs is equal, i.e, p1 = p2 = p.

Theorem 1.4.1. When the above assumption on equality of the price per call holds, the

revenue-maximizing sharing policy is for the MSPs to share their spectrum fully, i.e,

k1 = N1 and k2 = N2.

Proof. We start our proof by re-emphasizing our assumption of superadditivity (1.10).

We assume that the loss network starts from an under-dimensioned state, i.e, initially,

k1 = 0 and k2 = 0. The superadditivity condition guarantees that in this under-

dimensioned state, the shadow prices s1 > 0 and s2 > 0, since MSPs have an incentive

to share, and so the gradient will be positive. To prove the theorem, we will prove that

the shadow prices s1 and s2 never hit zero, which in turn implies that the MSPs always

have an incentive to share more. Hence, they will share as much of their spectrum as

they can - resulting in full sharing. Note that this proof method is valid only when

considering continuous Ci, not discrete. Kelly ([22]) however assumes continuous link

capacities in his shadow price analysis, and our proof doesn’t assume discrete capacities

anywhere.

The shadow price equations now become:

s1 = η1λ1(1− b3)(p− s3)

s2 = η2λ2(1− b3)(p− s3)

s3 = η3(λ1(1− b1)(p− s1) + λ2(1− b2)(p− s2))

(1.23)

In order to obtain optimal dimensioning results, we assume:

s1 = 0

s2 = 0
(1.24)

Note that by the equations that define s1 and s2, if we assume one to be zero, the other

13



also must be zero. Also note from the definition of b3 (1.18) that b3 < 1 unless:

N1 +N2 = 0

or

λ1(1− b1) + λ2(1− b2)→∞

(1.25)

Since we have N1 > 0 and N2 > 0, and assuming finite λ1 and λ2 for now, we get:

s3 = p (1.26)

Substituting into the last equation in 1.23, we get:

p = pη3(λ1(1− b1) + λ2(1− b2))

=⇒ 1 = η3(λ1(1− b1) + λ2(1− b2))

=⇒ ρ3η3 = 1

(1.27)

Note that an immediate implication of the above equation is that the sharing policy

of the MSPs will be constant as long as prices per call are equal, regardless of the

magnitude of that price. (η is defined in 1.21.)

Theorem 1.4.2. ρη < 1, where η = E(ρ, C − 1)− E(ρ, C),∀ρ, C.

Proof. We know that the Erlang-B function E(ρ, C) is convex in C (see Theorem 1 in

[24]).

Hence, we can say that:

E(ρ, C − 1)− E(ρ, C) > E(ρ, C)− E(ρ, C + 1) (1.28)

Hence, it follows that η(ρ, C) is a decreasing function of C.

=⇒ ρη is also a decreasing function of C.

Now, for a finite ρ, we have:

E(ρ, 0) = 1

E(ρ, 1) =
ρ

ρ+ 1

E(ρ, 2) =
ρ2/2

1 + ρ+ ρ2/2

(1.29)

14



It is easy to show that for finite ρ,

ρ(E(ρ, 0)− E(ρ, 1)) = ρ

ρ+ 1
< 1

ρ(E(ρ, 1)− E(ρ, 2)) = ρ2/2

1 + ρ+ ρ2/2
< 1

(1.30)

Hence, ∀ finite ρ and C, ρη < 1. �

We’ll now, for completeness, consider the system when λ1 →∞ and λ2 →∞. The

equation 1.27 can be rewritten as:

ρ3(e(ρ3, C3 − 1)− E(ρ3,M3)) = 1 (1.31)

Since C3 = N1 + N2 is known, the only variable is ρ3. Assume now that a solution to

this equation exists, say ρ3∗. Then the value of b3∗ = E(ρ3
∗, C3) is also fixed. We now

have:

b1 = E(λ1(1− b3∗), N1 + k2)b2 = E(λ2(1− b3∗), N2 + k1) (1.32)

We’ll now make use of the main result in [25] that is restated below:

Theorem 1.4.3. For any ε ∈ (0, 1), if

ρ ≥ n+
1

ε
(1.33)

then

1− n

ρ
< E(ρ, n) < 1− n

ρ
+ ε (1.34)

This theorem implies that as traffic goes to infinity, the Erlang-B function tends to

the LHS of the above inequality. Hence, as λ1 →∞ and λ2 →∞, we have:

b1 → 1− N1 + k2
λ1(1− b3∗)

b2 → 1− N2 + k1
λ2(1− b3∗)

(1.35)

Hence,

λ1(1− b1)(1− b3∗) + λ2(1− b2)(1− b3∗)→ N1 +N2 + k1 + k2 (1.36)
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The LHS of this limit, however, is the average number of calls being served at a given

time. Hence,

λ1(1− b1)(1− b3∗) + λ2(1− b2)(1− b3∗) ≤ N1 +N2 =⇒ N1 +N2 + k1 + k2 ≤ N1 +N2

(1.37)

This is a contradiction, since our model assumes that k1 > 0, k2 > 0 (since some shar-

ing must occur). hence, our assumption (1.27) is wrong.

We have arrived at a contradiction, and hence our initial assumption (1.24) is wrong.

Hence, the shadow prices s1 and s2 can never be zero, and it is always in the best inter-

est of the MSPs to dimension their loss network to the fullest, i.e

k1 = N1

k2 = N2

�
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1.4.4 Sharing paradigm (Unequal Prices)

For this section, we will assume without loss of generality that p1 < p2.

Theorem 1.4.4. When the above assumption on prices per call holds, the revenue-

maximizing sharing policy is for the MSP charging the lower price (here, MSP 1) to

share its spectrum fully (i.e, k1 = N1), and for the other MSP ( here, MSP 2) to share

some portion of its spectrum.

Proof. Our proof method is: assume that initially the prices are equal, ie. p1 = p2 =

p.The network is also hence fully dimensioned, i.e, k1 = N1 and k2 = N2. We will

show that as p2 is increased (and link dimensioning is kept static), s2 stays positive, but

s1 does not - instead becoming increasingly negative, implying a larger decrease in k2.

Writing the shadow price equations again:

s1 = η1λ1(1− b3)(p1 − s3)

s2 = η2λ2(1− b3)(p2 − s3)

s3 = η3(λ1(1− b1)(p1 − s1) + λ2(1− b2)(p2 − s2))

(1.38)

Upon inspection of these equations, it is clear that dividing all 3 equations by a constant

value will result in a set of three equations with appropriately scaled shadow prices. We

hence divide all 3 equations by p1, and in a slight abuse of notation, continue to refer to

the scaled shadow prices as si. We also define

R =
p2
p1
> 1 (1.39)

The shadow price equations are now:

s1 = η1λ1(1− b3)(1− s3)

s2 = η2λ2(1− b3)(R− s3)

s3 = η3(λ1(1− b1)(1− s1) + λ2(1− b2)(R− s2))

(1.40)

We can treat the above set of equations as a set of 3 linear equations in {s1, s2, s3}.
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Solving for s1 and s2, we get:

s1 =
D(1− AB)R +D(−A+ AB − CR)

−(AB + CD − 1)

s2 =
B(1− CD) +B(−A−RC +RCD)

−(AB + CD − 1)

(1.41)

where
A = η3λ1(1− b1)

B = η1λ1(1− b3) = η1ρ1

C = η3λ2(1− b2)

D = η2λ2(1− b3) = η2ρ2

(1.42)

From 1.4.2, we observe the following:

A+ C = η3ρ3 < 1

B < 1

D < 1

=⇒ AB + CD < 1

(1.43)

=⇒ the denominators of the expressions in 1.41 are positive. Consider now the

numerators of:

• s1:

B(1− CD) +B(−A−RC +RCD) = B(1− A− CD +R(C(D − 1))

When R = 1, i.e, equal prices, this simplifies to B(1− A− C) > 0.

Note that D < 1 =⇒ C(D − 1) < 0. Hence, as R increases, s1 decreases
until it crosses 0 at some value of R.

• s2:

A(B − 1) +R(1− C − AB)

When R = 1, this simplifies to 1− A− C > 0.

As R increases, s2 becomes increasingly positive (since 1− C − AB > 0).

18



Hence, from the above behaviour of the shadow prices s1 and s2, we can say that

the optimal sharing policy (for p1 < p2) is:

k1 = N1

k2 = k2
∗

(1.44)

where k2∗ is such that:

1− A− CD +R(C(D − 1)) = 0

=⇒ 1− A− CD = RCD −RC = 0

=⇒ 1− A+ (R− 1)CD −RC = 0

=⇒ 1 + (R− 1)CD = RC + A

=⇒ 1 + (R− 1)η3η2λ2
2(1− b2)(1− b3) = Rη3λ2(1− b2) + η3λ1(1− b1)

(1.45)

�
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1.5 Call Pricing

With knowledge of how MPSs will optimally share their spectrum with each other, we’ll

now consider the following question: MSPs now know their optimal sharing strategies

given prices. How will they strategically set prices to maximize their profit?

1.5.1 Non-strategic customers

In this section, we will assume that customers are non-strategic, i.e, they cannot make

any decisions regarding whether or not to use a certain MSP. Instead, MSPs can choose

how much traffic they accept to service, i.e, MSP i can choose λi. This model is studied

in [26], where it is posed as an optimization problem - the objective function is the

revenue earned by the entire loss network:

min −
∑

pkλk(1−Bk)

over λk∀k

subject to

λk ≥ 0 ∀k

and the Erlang fixed-point distribution

(1.46)

Karush-Kuhn-Tucker conditions are used to establish necessary conditions for an opti-

mal traffic allocation. The main result of [26] is stated below.

Theorem 1.5.1. When the traffic allocation in a loss network is optimal, then:

• For every route k to which traffic offered is nonzero,

ck +
∑
l∈r

ηlvl = 0 (1.47)

• For every route k to which traffic offered is zero,

ck +
∑
l∈r

ηlvl ≤ 0 (1.48)

Here, we assume a route in a loss network is a set of links.

Also,
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vi =
−si
ηi

(1.49)

Assume also, without loss of generality, that p1 > p2. We’ll now state the main

theorem of this section:

Theorem 1.5.2. In order to maximize revenue, MSPs should direct all traffic towards

the MSP charging the higher price per call, and the other MSP should only cooperate

by sharing spectrum slots.

Proof. Recall that as per the sharing paradigm previously established, k2 = N2, and:

s1 > 0

s2 = 0
(1.50)

• Case 1: λ1 > 0, λ2 > 0
The simplified necessary conditions for optimality are:

s1 + s3 = p1

s2 + s3 = p2
(1.51)

=⇒ p2 = s3 (1.50)

But from the definition of shadow prices,
s1 = η1λ1(1− b3)(p1 − s3).
Together with 1.52,
=⇒ p1 − s3 = η1λ1(1− b3)(p1 − s3)
=⇒ p1 − p2 = η1λ1(1− b3)(p1 − p2)
=⇒ η1λ1(1− b3) = 1 (since p1 > p2)
=⇒ ρ1η1 = 1.
This isn’t possible (1.4.2). Hence, such a case cannot be a optimal traffic alloca-
tion.

• Case 2: λ1 = 0, λ2 > 0
The simplified necessary conditions for optimality are:

s1 + s3 ≥ p1

s2 + s3 = p2
(1.52)

=⇒ p2 = s3 (1.50)

But from the definition of shadow prices,
s1 = η1λ1(1− b3)(p1 − s3).
Together with 1.52,
=⇒ p1 − s3 ≤ η1λ1(1− b3)(p1 − s3)
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=⇒ p1 − p2 ≤ η1λ1(1− b3)(p1 − p2)
=⇒ η1λ1(1− b3) ≥ 1 (since p1 > p2)
=⇒ ρ1η1 ≥ 1.
This isn’t possible (1.4.2). Hence, such a case cannot be a optimal traffic alloca-
tion either.

• Case 3: λ1 > 0, λ2 = 0
We have:
s1 + s3 = p1
s2 + s3 ≥ p2
. 1.50 yields s+ 3 ≥ p2
=⇒ p1 − s1 ≥ p2
=⇒ p1 − p2 ≥ s1
=⇒ η1ρ1 ≤ 1.

Hence, an optimal traffic allocation could exist here, and it would be defined
by the equation: s1 + s3 = p1

�
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1.5.2 Strategic Customers

The question of how MSPs should set prices when customers are strategic is as yet

unanswered (see [27] - [31] for references being used in current work). This question

straddles the realms of mechanism design and economics - for example, one can assume

that customers behave according to a demand curve based on the price offered to them

by MSPs - alternatively, they could consider perceived price instead. Customers could

be selfish, aiming to minimize their own perceived prices - this could be modelled using

the concept of a Wardrop equilibrium (a good reference is [30]). Customers could also

be forced to cooperate to achieve a social optimum instead.
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1.6 Conclusion

We see that the model we are analyzing heavily skews towards the MSP that is charging

a higher price per call - optimally necessitating the complete spectrum of the other MSP

to be shared with it, as well as the entirety of traffic to be redirected towards it. We note

that this entire analysis has been carried out uner the Erlang fixed-point approximation,

and hence, may only be an approximate optimum. These are, however, one of the first

analytical results on the dimensioning of loss networks that have been established. Fur-

ther work remains to be done on optimal pricing policies when customers are strategic.
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