
Non-blind Deblurring using CNN

A Project Report

submitted by

Venkatesh Reddy Maligireddy
(EE13B041)

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

APRIL 2017



THESIS CERTIFICATE

This is to certify that the thesis titled Non-blind Deblurring using CNN, submitted by

Venkatesh Reddy Maligireddy, to the Indian Institute of Technology, Madras, for the award

of the degree of Bachelor of Technology, is a bonafide record of the research work done by

him under our supervision. The contents of this thesis, in full or in parts, have not been

submitted to any other Institute or University for the award of any degree or diploma.

Prof. A.N.Rajagopalan
Research Guide
Professor Place: Chennai
Dept. of Electrical Engineering Date:
IIT-Madras, 600036

1



ACKNOWLEDGEMENTS

This work would not have been possible without the guidance and the help of several peo-

ple. I take this opportunity to extend my sincere gratitude to all those who made this thesis

possible.

First, I would like to thank all my teachers who bestowed me with good academic knowl-

edge. I am indebted to my advisor Prof. A.N.Rajagopalan whose expertise, generous guid-

ance and support made it possible for me to work on a topic that was of great interest to me.

I would also like to thank my lab mate and dear friend Subeesh Vasu for sharing his valuable

ideas and helping me whenever I am stuck with some problem.

I would like to thank my family for giving support and guidance all through my life. I

would also like to thank all my friends and well-wishers for helping me in difficult times and

being a good source of support and guidance.

2



ABSTRACT

Proper handling of outliers is an important problem that needs to be handled in case of non-

blind deblurring, which is important in avoiding ringing artifacts in the restored image. This

artifacts are a result of noisy kernels that come with most of the natural images. Blind motion

deblurring methods are primarily responsible for recovering an accurate estimate of the blur

kernel. Non-blind deblurring (NBD) methods, on the other hand, attempt to faithfully restore

the original image, given the blur estimate. However, NBD is quite susceptible to errors in

blur kernel. Many of the existing works tried to solve this problem but are limited to a

single noisy kernal. In this work, we present a convolutional neural network-based approach

to handle kernel uncertainty in non-blind motion deblurring. We provide multiple latent

image estimates corresponding to different prior strengths obtained from the given blurry

observation in order to exploit the complementarity of these inputs for improved learning.

To generalize the performance to tackle arbitrary kernel noise, we train our network with a

large number of real and synthetic noisy blur kernels. Our network mitigates the effects of

kernel noise so as to yield detail-preserving and artifact-free restoration.

3



Contents

Acknowledgments 2

Abstract 3

1 Introduction 10

1.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Non-blind deblurring . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Learning based non-blind deblurring . . . . . . . . . . . . . . . . . 14

1.2.3 Learning based restoration . . . . . . . . . . . . . . . . . . . . . . 14

2 Neural Networks and Deep learning 15

2.1 Modeling one neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Training sigmoid neurons . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Multilayer network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Backpropagation Algorithm . . . . . . . . . . . . . . . . . . . . . 18

3 The Proposed Method 22

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Analyzing Performance of Different Network Structures . . . . . . . . . . 27

4



3.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Identifying the input for optimal performance . . . . . . . . . . . . . . . . 31

3.6 Comparisons with existing methods . . . . . . . . . . . . . . . . . . . . . 33

3.7 Qualitative Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Conclusion 40

5



List of Figures

1.1 Preserving details in non-blind deconvolution. (a) Input blurry image. (b-

d) Inputs to our network representing restored images with different prior

weights. Restored results from (e) EPLL [40], and (f) our approach. . . . . 11

2.1 Artificial Neuron model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 A neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Impact on the restored image quality with varying λ. (a) Latent image. (b)

Ground truth kernel. (c) Blurred image generated using (a) and (b). (d)

Noisy kernel obtained from [32]. Estimated images using the kernel in (d)

with λ = (e) 2e4, (f) 2e3, and (g) 2e2. . . . . . . . . . . . . . . . . . . . . 24

3.2 Our network structure. We use the deblurred images obtained from a stan-

dard NBD scheme but with different prior strengths as inputs to our network.

Our FCN has a feature extraction unit followed by feature discrimination and

recombination to yield the final result. . . . . . . . . . . . . . . . . . . . . 26

3.3 Initial network architecture we tried. We use the deblurred images obtained

from a standard NBD scheme but with different prior strengths as inputs to

our network. This network does not include a feature extraction unit that is

present in our final architecture . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Performance of different network architectures. . . . . . . . . . . . . . . . 29

6



3.5 Performance of our network with different input combinations. Inputs to the

network with (a) λ = 2e2, (b) λ = 2e3, and (c) λ = 2e4. Output of the

network trained using (d) single input with λ = 2e4, (e) two inputs with

λ = 2e3, 2e4, and (f) three inputs. . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Network performance as a function of inputs. . . . . . . . . . . . . . . . . 32

3.7 Examples from the dataset in [19]. (a) Ground truth (top) and estimated

kernels (bottom). (b) Input blurred images. Restored images using (c) [14]

(d) [17], (e) [26], (f) [40], and (g) proposed approach. . . . . . . . . . . . . 33

3.8 Examples from the dataset in [16]. Restored image using [14] with (a) λ =

2e2, (b) λ = 2e3, and (c) λ = 2e4. Results from (d) [17], (e) [26], (f) [40],

and (g) proposed approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 Image from [32] dataset, for a noisy kernel estimate returned by [37]. (a)

Input blurred image. Restored image using [14] with (b) λ = 2e2, (c) λ =

2e3, and (d) λ = 2e4. Results from (f) [17], (g) [26], (h) [40], and (i)

proposed approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.10 Image from [32] dataset, for a noisy kernel estimate returned by [37]. (a)

Input blurred image. Restored image using [14] with (b) λ = 2e2, (c) λ =

2e3, and (d) λ = 2e4. Results from (f) [17], (g) [26], (h) [40], and (i)

proposed approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.11 Image from [32] dataset, for a noisy kernel estimate returned by [37]. (a)

Input blurred image. Restored image using [14] with (b) λ = 2e2, (c) λ =

2e3, and (d) λ = 2e4. Results from (f) [17], (g) [26], (h) [40], and (i)

proposed approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7



3.12 Worst case scenario example 1: Image from [16] dataset, for a severely

noisy kernel estimate returned by [32]. (a) Ground truth (top) and estimated

kernels (bottom). (b) Input blurred image. Restored images using (c) [14]

(d) [17], (f) [26], (g) [40], and (h) proposed approach. . . . . . . . . . . . . 39

3.13 Worst case scenario example 2: Image from [16] dataset, for a severely

noisy kernel estimate returned by [37]. (a) Ground truth (top) and estimated

kernels (bottom). (b) Input blurred image. Restored images using (c) [14]

(d) [17], (f) [26], (g) [40], and (h) proposed approach. . . . . . . . . . . . . 39

8



List of Tables

3.1 Average PSNR in dB on dataset of [19] . . . . . . . . . . . . . . . . . . . 34

3.2 Performance comparison on dataset of [32] and [16] . . . . . . . . . . . . . 35

9



Chapter 1

Introduction

Motion blur is a common and unpleasant corruption that occurs in hand-held photography

and is very hard to undo. Image deblurring has been an active area of research in terms

of both blind and non-blind de-blurring. Blind image deblurring methods aim to recover the

blur kernel as well as the clean image. Since the dimension of the kernel is much smaller than

image size, one can better constrain the estimation of the blur kernel rather than the image

[18]. Hence, most existing blind deblurring (BD) approaches [5,10,15,21,32,34,37,39] try

to recover an accurate motion estimate from the blurred image [16]. This is eventually used

to recover the latent image using an off-the-shelf non-blind deblurring (NBD) method.

The objective of NBD is to recover a sharp latent image from a known blurred image

and a given blur estimate. Over the last decade, there has been significant progress in this

direction. Recent works [14, 18, 26, 27, 40] have come up with new image priors that can

model the statistics of natural images which helps in suppressing ringing artifacts. Few works

have even attempted to handle outliers such as noise [6,38], saturated regions [6,34,38], and

compression artifacts [38] to improve the quality of the deblurred result. Most of the existing

non-blind methods are tailored to perform well under the assumption that the motion is

known accurately. Consequently, they tend to underperform when the motion estimate is

10



noisy. Because of the highly ill-posed nature of BD, an approach that can deliver accurate

(close to ground truth) motion estimate is still far from reality [16]. The blur estimates from

BD come with varying degrees of noise which can introduce serious artifacts in the restored

output. This necessitates the need to tune NBD methods for optimal performance in the

presence of noisy blur estimates which is a very cumbersome task.

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Preserving details in non-blind deconvolution. (a) Input blurry image. (b-d)
Inputs to our network representing restored images with different prior weights. Restored
results from (e) EPLL [40], and (f) our approach.

In this work, our focus is on improving restoration quality in the presence of a noisy blur

kernel. The approach that we propose consists of a conventional non-blind deconvolution

unit followed by a deep convolutional neural network (CNN) to remove undesired artifacts

caused by errors in motion estimate. Our approach is based on the premise that deblurred

11



images obtained with different prior strengths carry complementary information. The com-

plementarity lies in the fact that restored images with low prior weight preserve details but

suffer from artifacts. On the other hand, a large prior weight helps in artifact removal but at

the cost of image details. Hence, we are motivated to use multiple images obtained from the

same blurred image-kernel pair, but with different prior strengths as inputs to our network.

This we believe allows the network to perform better feature discrimination and restoration

as compared to the single input image case. Recent works on single image based restora-

tion ( [8, 9, 38]) have already revealed the potential of CNN based feature learning. The fact

that we need discriminatory feature learning from multiple inputs renders CNN as a natural

choice.

We also propose an approach to generate synthetic noisy kernels that can closely mimic

the behavior of noise in real kernel estimates. We employ thousands of such synthetic noise

kernels to improve the performance of our network and its generalization capability.

1.1 Summary of contributions

The following is the summary of the major contributions of this thesis:

• In chapter 3, we discuss a deep learning based approach to improve the restoration

quality of motion blurred images over existing non-blind deblurring methods. The core

idea of the method including use of multiple restored images as input to the network,

and generation of the right kind of training data which we mention in this chapter

was not our contribution and it was done by another member in our lab. However

we mention it for completeness. Our contribution was mainly to try out different

architectures and tune the hyper-parameters of the network so as to come up with a

working network architecture that can perform the restoration task well.

12



1.2 Related works

1.2.1 Non-blind deblurring

Classical methods such as Wiener filter [35] and Richardson-Lucy deconvolution [24] are

known to cause ringing artifacts. Most of the works on NBD resort to maximum a posteriori

(MAP) estimation, with differences in the type of the image prior they employ. While most

existing works use global image priors (typically in the form of ||Ol||α, where Ol represents

image gradient) [14,17,33], the use of local (patch-based) priors [40] has been more effective

in non-blind deconvolution. Earlier works have attempted to use Gaussian distributions (α =

2) on the gradients of image. For the Gaussian prior, the presence of closed-form solution in

the frequency domain allowed to recover the image very quickly. However, the assumption

of Gaussian prior is very often violated by natural images leading to results of mediocre

quality. The work in [33] has shown that Laplacian prior (α = 1) is more effective in image

restoration, and can produce good results in a reasonable time. However, recent studies have

shown that the gradients of natural images have significantly heavier tails than a Laplacian,

and can be well modeled by a hyper-Laplacian [17] (0.5 ≤ α ≤ 0.8). Both [17] and [14] have

used sparse (hyper-Laplacian) prior on image gradients to perform non-blind deconvolution.

While [17] uses an iteratively reweighed least squares (IRLS) algorithm to enforce the hyper-

Laplacian prior on image gradients, [14] have proposed to speed up the computation using

either look up tables or analytic formulas. The state-of-the-art work in [40] uses a patch

prior learned from natural images to perform state-of-the-art image restoration. They have

employed a Gaussian mixture model (GMM) with 200 components over patches of size 8×8

to learn the patch prior.

Few other works have tried to handle the outliers present in the blurred image, while

doing non-blind deconvolution. The works in [6, 34] has shown that improper handling of

outliers results in artifacts in the restored images. The work in [6] tried to handle the presence

13



of noise as well as saturation using a variational expectation maximization scheme. [34]

employed auxiliary variables in the Richardson-Lucy method to handle saturation regions

present in the blurred images.

1.2.2 Learning based non-blind deblurring

The work in [29] showed that better outlier-robust image restoration can be done by learning

to predict the latent image from L2 norm based solution. But they were unable to generalize

for arbitrary kernels as well as noisy kernels since the performance scope of their network

was limited only to a single kernel. Xu et al. [38] have employed 1D filter based deep net-

work to perform an outlier-robust non-blind deconvolution entirely within a single network

but was designed to work only for a single kernel. Some of the recent works on non-blind

deblurring have employed learning frameworks based on integrated Bayesian model [28],

Gaussian conditional random fields [27], [25] and shrinkage fields [26], but can handle only

small level of noises in the blur kernels.

1.2.3 Learning based restoration

Recent works using deep neural networks have been showing promising results in other im-

age restoration tasks as well. [2] shows that decent results on denoising can be achieved using

plain multi-layer perceptrons. [36] uses a stacked denoise autoencoder to obtain promis-

ing results both for denoising and inpainting. The work in [9] uses a convolutional neural

network (CNN) architecture to handle strong noises such as raindrop and lens dirt. The

works in [7, 8] achieve state-of-the-art results on super-resolution using CNNs. The work

in [23] propose Shepard networks to achieve performance improvement for both inpaint-

ing and super-resolution. While the works in [4, 30] have used deep networks for blind-

deblurring, [3] perform dehazing.

14



Chapter 2

Neural Networks and Deep learning

Neural networks are a class of machine learning models that are used to approximate real-

valued, discrete valued and vector-valued functions. Motivated by the biological neural net-

works which are a set of interconnected neurons that enable information processing in or-

ganisms, artificial neural networks are presented as a set of interconnected nodes (also called

neurons) which exchange messages with each other. The connections have numeric weights

that can be tuned based on experience, making neural nets adaptive to inputs and capable of

learning.

A deep neural network (DNN) is an artificial neural network with multiple hidden layers

of units between input and output layers. DNNs attempt to model highlevel abstraction

in data by using multiple processing layers, with complex structures composed of multiple

non-linear transformations. Deep learning is a part of a family of machine learning methods

based on learning representations of data. An observation (e.g., an image) can be represented

in many ways such as a vector of intensity values per pixel, or in a more abstract way as a set

of edges, regions of particular shape, etc. Some representations are better than the others at

simplifying the learning task from examples. One of the promises of deep learning methods

is replacing hand-crafted features with better feature representations that are automatically

15



learnt for a given task.

Deep learning methods have seen a recent surge in success and popularity due to ad-

vances in Graphics Processing Units (GPU) hardware as well as new and improved methods

for training them. A type of feed-forward neural network called convolutional neural net-

work (CNN) is extensively used in computer vision and has shown state-of-the-art results in

many problems such as object detection, image calssification, image denoising, etc. In this

work, we explore the use of CNNs in non-bind deblurring of images.

2.1 Modeling one neuron

One of the popular models for neurons in an Artificial Neural Network is the sigmoid model.

The perceptrons (neurons) with out this sigmoid function at the end are essentially linear

classifiers. The perceptron training rule will converge if the data is linearly separable. How-

ever, for overlapping data, convergence is not assured. Here we require our neural network

to learn non-linear functions.

Figure 2.1: Artificial Neuron model

A new model of neuron (the sigmoid model) was introduced to circumvent the prob-

lem. The sigmoid model is illustrated in Fig.2.1. The sigmoid unit first computes a linear

combination of its inputs, then applies a threshold to the result. In the case of sigmoid unit,

however, the threshold output is a continuous function of its input. More precisely, the sig-

16



moid unit computes its output O as

o(~x) = σ(~w, ~x)

σ(y) =
1

1 + e−y

The sigmoid function has a very useful property that its derivative is easily expressed in

terms of its output.
dσ(y)

dy
= σ(y)(1− σ(y))

Other activation functions which are generally used include tanh function.

2.1.1 Training sigmoid neurons

For the sigmoid neurons to predict output given an input vector, it becomes necessary to

estimate the weights {wi}n0 based on a set of training examples D. Let us denote td to be

the target output for the training example d. The set D is essentially the set of ordered pairs

(d,td). In order to optimise wi’s, we need to specify a measure of training error relative to the

training examples. One common measure of error between the predicted and the true output

is the mean square error between them.

E(~w) =
1

2

∑
d∈D

(td − od)2

Here ~w = ( ~w0, ~w1... ~wn) is the weight vector to be learnt. We can optimize this error

using the Gradient Descent Algorithm. In gradient descent, the error function is minimized

by starting with an arbitrary weight vector, then iteratively updating the weight vector by

moving in the direction of steepest descent along the error surface. The direction of the

17



steepest descent is essentially the vector derivative of E with respect to ~w.

∆E(~w) =

(
∂E

∂w0

,
∂E

∂w1

...
∂E

∂wn

)

∂E

∂wi
=

∂

∂wi

1

2

∑
d∈D

(td − od)2 =
∂

∂wi

1

2

∑
d∈D

(td − σ(~w, ~xd))
2

∂E

∂wi
=
∑
d∈D

(td − od)(od(1− od)(−xid))

Here xid is the ith component of the vector ~xd. Now the iterative training rule can be

written as

wi ←− wi + η
∑
d∈D

(td − od)(od(1− od)(−xid))

2.2 Multilayer network

In the previous section, we have discussed a prominent model for neuron which is the fun-

damental unit in an ANN. By combining multiple units in a cascade, we obtain a model that

will learn complex functions. Fig 2.2 shows one such network composed of 4 layers - one

input layer, followed by 2 hidden layers which is then connected to an output layer. For the

rest of this chapter, we shall consider only sigmoid neurons.

2.2.1 Backpropagation Algorithm

In 2.1.1 we have discussed gradient descent algorithm for training single sigmoid unit. To

train multilayered network, we follow a similiar approach, but apply gradient updates in a

layered fashion - for layer j, gradient output from layer j+1 is taken as input, gradient is then

computed with respect to this output and then it is passed in to layer j-1. Since gradient

18



Figure 2.2: A neural network

propagates backwards, this algorithm is called ”Backpropagation Algorithm”.

Let us now derive the update rules for the backpropagation algorithm. The notation

adopted for this section is given below.

• xij = ith input to unit j

• wij = weight associated with ith input to unit j

• netj = the weighted sum of inputs for unit j(
∑

iwjixji)

• oj = output computed by unit j

• tj = target output for unit j

As before, we use mean squared error between the target and output units as our error

function. But now, since the output layer consist of multiple units, we need to compute the

average error over all the units.

E =
1

2

∑
d∈D

∑
k∈outputs

(td − od)2

Let us derive the update rule for a single training example- the overall gradient is the

19



summation of gradients corresponding to all training examples.

Ed =
1

2

∑
k∈outputs

(td − od)2

∂Ed
∂wij

=
∂Ed
∂netj

∂netj
∂wij

=
∂Ed
∂netj

xij

Case 1: Training rule for output weights

In case of output weights, wij can influence the network only through netj and netj can

influence the network only through oj . Hence,

∂Ed
∂netj

=
∂Ed
∂oj

∂oj
∂netj

∂Ed
∂oj

=
∂

∂oj

1

2

∑
k∈outputs

(td − od)2

= −(tj − oj)
∂oj
∂netj

=
∂σ(netj)

∂netj

= oj(1− oj)

Summing everything, we get

∂Ed
∂netj

= −(tj − oj)(oj(1− oj)

Case 2: Training rule for hidden unit weights

In case of hidden units, the derivative of the training rule for wji must take into account

the indirect ways in which wji can influence the network outputs and hence Ed. For this

reason, we will find it useful to refer to the set of all units immediately downstream of unit j

20



in the network. We can then write

∂Ed
∂netj

=
∑

k∈Downstream(j)

∂Ed
∂netk

∂netk
∂netj

Let δk denote − ∂Ed

∂netj
Then

δk = −
∑

k∈Downstream(j)

∂Ed
∂netk

∂netk
∂netj

= −
∑

k∈Downstream(j)

−δk
∂netk
∂oj

∂oj
∂netj

= oj(1− oj)
∑

k∈Downstream(j)

δkwkj

(2.1)

We can combine all these derived update rules to obtain the Backpropagation algorithm.

21



Chapter 3

The Proposed Method

Our attempt is to improve the performance of non-blind image deblurring task, from the

knowledge of a noisy kernel estimate and blurred image. Although this is the most common

scenario to occur at the final stage of a blind-deblurring problem, a little attention has been

given to resolve this issue. We propose to use a deep learning network to remove kernel noise

specific characteristics present in the deconvolved images such as ringing artifacts thereby

improving the image restoration quality. Consider the commonly used convolution model of

blurring where the latent image l is related to the blurred image b through a blur kernel k as

b = l ∗ k (3.1)

where ‘*’ refers to the convolution operation. Our approach for image restoration consists of

two units, a conventional non-blind deconvolution unit followed by the use of a deep CNN to

remove the undesired artifacts. In our experiments, we use the hyper-Laplacian prior based

method in [14] , to obtain the restore image from first unit. The choice of this method was

motivated by the following reasons; among the works that employ global priors, [14] gives

the state-of-the-art results, and as compared to the state-of-the-art work in [40] this method

yields close results while consuming significantly lesser computational time. [14] estimates

22



the latent image from known values of b and k using the following optimization framework.

l̂ = arg minλ||l ∗ k − b||2 + ||Ol||α (3.2)

where λ is a scalar which determines the weight of the data cost over the prior term, O

represent the gradient operator, and α (< 1) refers to the norm value of the prior term. For

the hyper-Laplacian prior, we use α = 2/3, the value at which the restoration quality was

found to be the best as reported in [14].

3.1 Motivation

Our idea of using deep CNN to improve the output from such a deconvolution is motivated

by the fact that, λ plays a crucial role in the final image restoration quality. Figure 3.1

illustrates the differences in the restored images while we vary the value of λ over a range of

values. We have used an example image (Fig. 3.1(a)) and a ground truth kernel (Fig. 3.1(b))

to produce the blurred image in Fig. 3.1(c). The restored image using the noisy kernel in

Fig. 3.1(d) is shown in Figs. 3.1 (e-g). While higher value of λ results in restored image

with more details, it is also affected by serious level of ringing artifacts since the weight for

the prior term is negligible. Decrease in λ increases the influence of prior term reducing the

ringing artifacts but leading to loss of high frequency details. Although, for ground truth

kernel higher value of λ can produce results with no ringing artifacts, most of the time the

availability of ground truth kernel is not guaranteed. In practice, the non-blind deblurring is

used as the final image restoration stage of a blind-deblurring problem, and the blur kernels

returned by deblurring problems are typically noisy.

Our attempt is to improve the quality of latent image estimate under this scenario, by

making use of a deep learning network. Note that, unlike the kind of artifacts that have been

23



(a) (b) (c) (d)

(e) (f) (g)

Figure 3.1: Impact on the restored image quality with varying λ. (a) Latent image. (b)
Ground truth kernel. (c) Blurred image generated using (a) and (b). (d) Noisy kernel obtained
from [32]. Estimated images using the kernel in (d) with λ = (e) 2e4, (f) 2e3, and (g) 2e2.

addressed in previous works on denoising [2, 36] or dirt removal [9], the variability of the

artifacts produced by kernel noises are much more complicated. Hence coming up with a

deep network which can generalize such a task for arbitrary kernels is not easy. This is one of

the main reason why the earlier works ( [29, 38]) which tried to handle outliers in non-blind

deconvolution was unable to generalize the performance for arbitrary kernels. Our attempt is

to train the network such that the performance improvement is applicable to arbitrary kernels

also.

By giving the restored images instead of the blurry images, we can easily remove the

kernel dependency of the network, since the artifacts in them is introduced by the noise in

the estimates alone. However this alone does not solve the problem entirely. This is because

the variabilities introduced by the noise in kernels have more complex patterns making it

difficult to learn it directly through a deep CNN. To begin with, let us assume that we are

trying to improve the estimated image with high λ. Now the artifacts in the input image

have very complex patterns and hence a network which was learned with such inputs cannot

24



promise high performance when it comes to generalization for arbitrary noises in kernel. In

contrary, if we use the estimated image with lower λ, the details lost cannot be retrieved back

since the mapping is much more complicated as compared to the other restoration tasks like

super-resolution [7]. Hence our attempt to use a single image input based restoration was

a partial failure, since the improvement that was able to achieve was minor. We have also

observed that, image restoration by removing the artifacts (i.e., using high λ input) gives

better performance as compared to attempting to recover the details (i.e., using low λ input).

Our key finding is that, giving multiple restored images corresponding to different values

of λ can lead to significant improvement in restoration quality. For example consider the re-

stored images in Fig. 3.1 (e) and Fig. 3.1 (g). By comparing with Fig. 3.1 (g) it is more easy

to identify the regions in Fig. 3.1 (e) corresponding to artifacts and high frequency details.

The same intuition work with deep networks also. Giving more inputs enable the network

to easily differentiate between desirable and undesirable features leading to significant im-

provement over the case of single image based training.

3.2 Network Architecture

We initially started experimenting with the network as shown in Fig. 3.3 where we give

multiple inputs concatanated with varying λ. In this case we feed the network with multiple

inputs and expect it to learn the necessary features blindly. Later we moved onto a more

intelligent and intuitive network where we divided the whole network into Feature extraction

unit followed by Feature discrimination and recombination unit as shown in the Fig. 3.2.

Since we divided the feature extraction unit and reconstruction unit, there is less work

on the network in the feature extraction phase and it can take the necessary features from

the corresponding input images and combine them to get the estimated image. First, we

use the blurry image and noisy kernel estimate to generate multiple estimates of the latent

25



Non-blind
Deblurring 

Blurred image

Noisy kernel

Network inputs Feature extraction Feature discrimination and recombination Network output

Figure 3.2: Our network structure. We use the deblurred images obtained from a standard
NBD scheme but with different prior strengths as inputs to our network. Our FCN has a
feature extraction unit followed by feature discrimination and recombination to yield the
final result.

image using a conventional NBD scheme [14]. These multiple image estimates are passed

through individual feature extraction units formed of two convolutional layers. The extracted

features are then combined and passed through a number of convolutional layers which act

as a feature discrimination unit using which the desired artifact-free features are integrated

to yield the final restored image.

The feature extraction unit corresponding to each input consists of two convolutional

layers, with 64 and 128 filters in the first and second layer, respectively. Thus, when we use

a network with m inputs, the feature extraction units will output 128m number of feature

channels. The feature discrimination unit takes 128m feature maps from the feature extrac-

tion unit as input. Our feature discrimination unit consists of 7 convolutional layers with the

number of filters in each layer being 512, 512, 512, 512, 128, 64, and 1, respectively. At

the output of every convolution layer (except the last layer), we apply batch-normalization

followed by ReLu [11]. For all the layers, we use filters of size 3 × 3 with a stride of 1

and zero-padding by 1, to maintain spatial resolution over the entire network. The hyper-

parameter settings that we use are partially motivated from the encoder-decoder architecture

used in [12], although our network has significant differences in terms of structure. Before

26



arriving at our final network, we conducted experiments to tune the parameters (such as

the number of layers, number of filters in each layer, filter size, number of feature extraction

units etc.). A detailed discussion on the various architectures that were attempted is provided

in the next section.

3.3 Analyzing Performance of Different Network Structures

Non-blind
Deblurring 

Blurred image

Noisy kernel

Network inputs Feature discrimination and recombination Network output

Figure 3.3: Initial network architecture we tried. We use the deblurred images obtained from
a standard NBD scheme but with different prior strengths as inputs to our network. This
network does not include a feature extraction unit that is present in our final architecture

Before arriving at our final network architecture, we had attempted different variations of

our network of which one was mentioned in the previous section (Fig.3.3). After changing

the network into Feature Extraction and Recombination layers there are few variations that

we tried on the final network to improve performance, details of which are provided here.

Their structure is described in the format of ‘number of filters (filter size)’ for each layer. In

the following description, the layers inside curly braces represent feature extraction units for

a single input, C refers to 64 filters, Cq refers to 64q filters, and An represent nth network

structure.

A1) 2 layers of feature extraction for each input (our final network), over all network struc-

27



ture: 3 × {C(3 × 3) − C2(3 × 3)} − C8(3 × 3) − C8(3 × 3) − C8(3 × 3) − C8(3 × 3) −

C2(3× 3)− C1(3× 3)− 1(3× 3)

A2) 3 layers of feature extraction for each input: 3 × {C1(3 × 3) − C2(3 × 3) − C2(3 ×

3)} − C8(3× 3)− C8(3× 3)− C8(3× 3)− C2(3× 3)− C1(3× 3)− 1(3× 3)

A3) 1 layer of feature extraction for each input: 3×{C2(3× 3)}−C8(3× 3)−C8(3× 3)−

C8(3× 3)− C8(3× 3)− C8(3× 3)− C2(3× 3)− C1(3× 3)− 1(3× 3)

A4) NO individual feature extraction units: C3(3× 3)− C6(3× 3)− C8(3× 3)− C8(3×

3)− C8(3× 3)− C8(3× 3)− C2(3× 3)− C1(3× 3)− 1(3× 3)

A5) 2 layers of feature extraction for each input, with larger filter size at input layer:

3 × {C1(5 × 5) − C2(3 × 3)} − C8(3 × 3) − C8(3 × 3) − C8(3 × 3) − C8(3 × 3) −

C2(3× 3)− C1(3× 3)− 1(3× 3)

A6) 2 layers of feature extraction for each input, with larger filter size at output layer:

3 × {C1(3 × 3) − C2(3 × 3)} − C8(3 × 3) − C8(3 × 3) − C8(3 × 3) − C8(3 × 3) −

C2(3× 3)− C1(3× 3)− 1(5× 5)

A7) 2 layers of feature extraction for each input, with one layer removed from the middle:

3×{C1(3×3)−C2(3×3)}−C8(3×3)−C8(3×3)−C8(3×3)−C2(3×3)−C1(3×3)−1(3×3)

A8) 2 layers of feature extraction for each input, with one layer added at the middle:

3 × {C1(3 × 3) − C2(3 × 3)} − C8(3 × 3) − C8(3 × 3) − C8(3 × 3) − C8(3 × 3) −

C8(3× 3)− C2(3× 3)− C1(3× 3)− 1(3× 3)

A network with no individual feature extraction units (A4) will try to discriminate the

features from multiple inputs at the first layer itself. Whereas, for the networks with in-

dividual feature extraction units, the feature discrimination starts from the junction of all

individual feature extraction units. Fig. 3.4 displays the PSNR values of test data for each

of these networks. As can be observed, the inclusion of feature extraction units (A1 − A3)

for each input resulted in improvement in PSNR. However, the performance improvement

28



Figure 3.4: Performance of different network architectures.

begins to narrow down when we use more than 2 feature extraction layers. To explore the

scope for performance improvement by using filters of larger spatial extent, we tried to in-

crease the filter size at input and output layer, respectively (A5 − A6). However, for both

cases, increasing the filter size lead to minor reduction in performance. The performance of

the network had a direct influence on the total number of layers used. To display the sensitiv-

ity of network performance with respect to our final network, we compare the performance

of two networks obtained by removing and adding one layer each, with respect to our final

network (A7−A8). As is evident, the performance is inferior for the network with one layer

less. Although there exists minor improvement in PSNR for network with more layers, we

chose to proceed with our final architecture as a trade-off between computational complexity

and performance. Scope exists to improve the performance with additional layers.

29



3.4 Training

We started our experiments using the code from [12] and modified it to our requirements. We

implemented multiple input network architecture and modified the data loading file particular

to our use case. We used L2 norm of the difference between the network output and ground

truth sharp image to define the loss for training. We used ADAM [13] solver for training

with Batch size of 4, Learning rate of 0.0002 and Momentum of 0.5 as solver parameters.

Before giving the inputs to the network a simple normalization of inputs by multiplying

the image pixel values with 2 and subtracting the result by 1 was done to make the input pixel

values between [-1,1] as a preprocessing step. To nullify the effect of this normalization, a

post-processing step is done on the output image from network at the testing phase. In most

of our cases an intensity compensation of the output image is also required as another post-

processing step with any of the inputs to get the best result. Because of the GPU memory

requirements, we tested the images by splitting them patch wise and later combining them

to reconstruct the total image after doing the post-processing steps mentioned above.

3.4.1 Data Generation

As we have already discussed, we use the images estimated by [14] for different values of λ

as inputs to our network. Images from the BSD 500 dataset [1] are used as latent images for

generation of training and test data. While the first 400 images were used for training, the

remaining 100 images were used for testing. In order to learn a network which can generalize

well to arbitrary noises in the kernels, we need to use a large number of realistic noisy kernels

to generate the training data. This formed part of work of another student in the lab. As noisy

kernel estimates, we used 3200 kernels returned by the BD methods in [4, 15, 19, 32] while

deblurring images from the dataset in [32]. We chose a subset of these noisy kernels for

generation of test data. Note that the set of kernels and images used for generation of test

30



data is kept different from the ones used for generation of training data. For generation of

training as well as test data, we use ground truth kernels to form the corresponding blurred

images, and the noisy kernel estimates to obtain image estimates. We followed patch-wise

training in which randomly cropped patches of size 101 × 101 from the estimated images

were used as inputs to our network.

3.5 Identifying the input for optimal performance

In order to identify the input images that can deliver best restoration quality, we trained

our network with different input combinations. We began our experiments by training with

single image inputs and then proceeded to add more inputs to the network. Based on visual

inspection of image quality, we chose λ = 2e4, 2e3, and 2e2 in [14] to generate multiple

inputs. This is because: (i) [14] has shown that λ = 2e3 yields optimal restoration quality,

and (ii) the restored results corresponding to λ = 2e2 and 2e4 had significant differences

with respect to the optimal λ.

Fig. 3.5 illustrates differences in the restoration quality when we train the network with

the best performing 1, 2, and 3 input cases. Fig. 3.6 displays the average peak signal-to-noise

ratio (PSNR) value (averaged over all images in the test data) of the network outputs while

training with different input combinations. Out of all possible single-input cases, the input

corresponding to λ = 2e4 yielded the highest PSNR. Among all the input pairs, it was found

that 2e2+2e3 performed the worst (mainly due to lack of details in both the inputs) whereas

2e3+2e4 performed the best with a marginal improvement over 2e2+2e4.

When we use a single input corresponding to λ = 2e4, the network was able to achieve

only partial artifact removal (Fig. 3.5 (d)). Whereas with 2 inputs (2e3+2e4) most of the

artifacts went away (Fig. 3.5(e)). While the PSNR improvement for the 2-input case was

significant, this was not true when we moved from 2 to 3 inputs. We also observed that

31



(a) (b) (c)

(d) (e) (f)

Figure 3.5: Performance of our network with different input combinations. Inputs to the
network with (a) λ = 2e2, (b) λ = 2e3, and (c) λ = 2e4. Output of the network trained
using (d) single input with λ = 2e4, (e) two inputs with λ = 2e3, 2e4, and (f) three inputs.

further addition of inputs yields only a marginal improvement in PSNR. A close inspection

of the result in Fig. 3.5 (f) reveals the importance of the third input (λ = 2e2) in removing

artifacts in Fig. 3.5 (e). Among all possible input combinations, the 3-input network was

observed to yield best performance (Fig. 3.5 (f)) and was hence adopted for analyzing our

network further.

Figure 3.6: Network performance as a function of inputs.

32



3.6 Comparisons with existing methods

In this section, we use network trained with synthetic and real, as well as low and high-

noise kernels. Training of our network was done using gray scale images. To obtain results

for color images, following others, we recombined the restored results of each channel. To

evaluate the performance of our proposed approach, we use the publicly available datasets

in [16, 19, 32]. The dataset in [19] contains 32 low resolution blurred images formed from

8 kernels and 4 latent gray-scale images. [32] contains 640 high resolution blurred images

formed from 8 kernels and 80 latent gray-scale images. The dataset in [16] contains 100 high

resolution blurred color images.

(a) (b) (c) (d) (e) (f) (g)

Figure 3.7: Examples from the dataset in [19]. (a) Ground truth (top) and estimated kernels
(bottom). (b) Input blurred images. Restored images using (c) [14] (d) [17], (e) [26], (f) [40],
and (g) proposed approach.

We perform extensive quantitative evaluation using real kernels returned by BD methods

on these three datasets so as to validate the wide scope and applicability of our method.

33



Table 3.1: Average PSNR in dB on dataset of [19]
NBD

method
BD method for kernel estimation

[10] [5] [19] Average
[17] 28.86 29.32 29.49 29.23
[14] 29.08 29.39 29.55 29.34
[26] 29.29 29.50 29.66 29.55
[40] 29.51 29.66 29.85 29.67

Ours (1
input)

29.50 29.64 29.91 29.68

Ours (2
inputs)

30.27 30.53 30.76 30.52

Ours (3
inputs)

30.40 30.62 30.87 30.63

Towards this end, we obtain kernel estimates for all the images in each dataset using a number

of BD methods. For a particular BD method, we use the corresponding set of kernels to

obtain the restored images using each NBD method, including ours. The quality of these

deblurred images is used to assess performance. For the dataset in [19], we used kernel

estimates obtained from [5, 10, 19], whereas for [32] we used kernel estimates returned by

[5, 20, 37]. Since [16] comprises of many challenging examples, there exist examples on

which BD algorithms ( [22,32,37,39]) fail to recover the blur kernels. To avoid the damaging

influence of such bad kernel estimates, we excluded them while testing performance in Table

3.2.

To evaluate the performance of our proposed approach, we compared with existing NBD

approaches in [14, 17, 26, 40] and used PSNR, SSIM, and IFC [31] as metrics. We used the

online-available implementation of these NBD methods with optimal parameters settings as

specified in the respective works. For [14], we used λ = 2e3, as given therein. Use of

IFC in the dataset of [16] is motivated by the fact that on the images from this dataset, IFC

has the highest correlation with respect to human subject scores [16]. As can be observed

from Tables 3.1 and 3.2, our method significantly outperforms the state-of-the-art works

34



(a) (b) (c) (d) (e) (f) (g)

Figure 3.8: Examples from the dataset in [16]. Restored image using [14] with (a) λ = 2e2,
(b) λ = 2e3, and (c) λ = 2e4. Results from (d) [17], (e) [26], (f) [40], and (g) proposed
approach.

Table 3.2: Performance comparison on dataset of [32] and [16]
NBD

method
BD method for kernel estimation

PSNR/SSIM for images from [32] SSIM/IFC for images from [16]
[5] [37] [20] [37] [39] [32] [22]

[17] 28.02/0.81 29.56/0.83 28.87/0.80 0.72/2.17 0.72/2.00 0.69/1.92 0.69/1.91
[14] 28.29/0.83 30.15/0.85 29.27/0.82 0.73/2.40 0.73/2.16 0.71/2.08 0.71/2.13
[26] 27.22/0.78 28.34/0.81 27.90/0.78 0.66/1.70 0.67/1.60 0.65/1.60 0.63/1.50
[40] 28.46/0.83 30.51/0.86 29.59/0.82 0.75/2.52 0.74/2.28 0.72/2.20 0.72/2.20

Ours
(3

inputs)

29.54/0.88 32.60/0.91 30.69/0.85 0.78/2.58 0.76/2.30 0.75/2.31 0.75/2.41

with respect to all the metrics. While with a single input (Table 3.1), the performance of our

approach is only comparable to other works, the addition of more inputs results in significant

improvement in PSNR.

For visual comparisons, we show few randomly chosen representative examples from all

three datasets which we used in our quantitative evaluation. Fig. 1.1 illustrates the results of

our detail-preserving non-blind deconvolution method while attempting to deblur the image

in Fig. 1.1(a) using a noisy kernel estimate. We give the image estimates shown in Figs.

1.1(b-d) as input to our fully convolutional network (FCN) and it yields the high quality

restoration result in Fig. 1.1(f). Note that our method clearly reveals significantly higher

35



details as compared to the state-of-the-art [40] (Fig. 1.1(e)). Fig. 3.7 shows a set of low

resolution image examples from the dataset in [19]. We have used the kernel estimates shown

in Fig. 3.7(a) to restore the images from the corresponding blurry images (Fig. 3.7(b)).

As is evident from Fig. 3.7(g), our approach restores the images without artifacts while

achieving significant improvement in the recovery of details over competing methods. Fig.

1.1 and Fig. 3.8 reveal performance differences on high resolution images from [16, 32].

While our approach (Fig. 1.1(f) and Fig. 3.8(g)) is able to deliver an artifact-free and yet

detail-preserving image by integrating desired features from the inputs (Figs. 1.1(b-d), Figs.

3.8(a-c)), the competing methods (Fig. 1.1(e), Figs. 3.8(d-f)) fail to recover these details.

Since we use [14] to obtain the inputs for our network, the performance difference be-

tween our network output and that of [14] can be treated as the performance gain achieved

through our scheme. Note that for most of the cases, we could achieve more than 1dB gain

in PSNR over the inputs. It should be possible to use image estimates obtained from even

other prior-based NBD methods, which opens up the possibility to improve the performance

further by employing better image priors.

3.7 Qualitative Comparisons

In this section, we provide visual comparisons of many randomly chosen examples from the

datasets in [16, 18, 32]. The results shown here include images of a wide variety of scenes,

and kernel estimates from various blind deblurring methods. The qualitative comparison that

we present here is mainly to illustrate the wide-scope of our proposed approach in handling

different kinds of scene contents, kernel noises, deconvolution artifacts etc.. In our compar-

isons we follow, four different ways to display the impact of results. We compare the results

of proposed approach with all the inputs of our network, to visualize the variations in the

kind of image artifacts that we can handle. Visual comparison with respect to blurry image,

36



(a) (b) (c) (d)

(a)

(b)

(c)

(d)
(e) Patches from (a-d)

(f) (g) (h) (i)

(f)

(g)

(h)

(i)
(j) Patches from (f-i)

Figure 3.9: Image from [32] dataset, for a noisy kernel estimate returned by [37]. (a) Input
blurred image. Restored image using [14] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4.
Results from (f) [17], (g) [26], (h) [40], and (i) proposed approach.

and kernel estimates are provided to have an understanding of the level of blur, and the kinds

of kernel noise that our approach can handle respectively. We also provide comparison with

respect to ground truth image, which illustrates the closeness of the results (to ground truth)

in preserving details. In all the examples, the detail preservation that can be achieved through

our proposed approach as compared to other non-blind deblurring methods is clearly evident.

We also provide few challenging scenarios (Figs. 3.12, 3.13) for which the estimated kernels

are significantly noise-affected. For the kernel estimates with significant noises, although we

are unable to remove the artifacts completely, the results of our approach are significantly

better than those of competing methods.

37



(a) (b) (c) (d)

(a)

(b)

(c)

(d)
(e) Patches from (a-d)

(f) (g) (h) (i)

(f)

(g)

(h)

(i)
(j) Patches from (f-i)

Figure 3.10: Image from [32] dataset, for a noisy kernel estimate returned by [37]. (a) Input
blurred image. Restored image using [14] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4.
Results from (f) [17], (g) [26], (h) [40], and (i) proposed approach.

(a) (b) (c) (d)

(a)

(b)

(c)

(d)
(e) Patches from (a-d)

(f) (g) (h) (i)

(f)

(g)

(h)

(i)
(j) Patches from (f-i)

Figure 3.11: Image from [32] dataset, for a noisy kernel estimate returned by [37]. (a) Input
blurred image. Restored image using [14] with (b) λ = 2e2, (c) λ = 2e3, and (d) λ = 2e4.
Results from (f) [17], (g) [26], (h) [40], and (i) proposed approach.

38



(a) (b) (c) (d)

(b)

(c)

(d)
(e) Patches from (b-d)

(f) (g) (h)

(f)

(g)

(h)
(i) Patches from (f-h)

Figure 3.12: Worst case scenario example 1: Image from [16] dataset, for a severely noisy
kernel estimate returned by [32]. (a) Ground truth (top) and estimated kernels (bottom).
(b) Input blurred image. Restored images using (c) [14] (d) [17], (f) [26], (g) [40], and (h)
proposed approach.

(a) (b) (c) (d)

(b)

(c)

(d)
(e) Patches from (b-d)

(f) (g) (h)

(f)

(g)

(h)
(i) Patches from (f-h)

Figure 3.13: Worst case scenario example 2: Image from [16] dataset, for a severely noisy
kernel estimate returned by [37]. (a) Ground truth (top) and estimated kernels (bottom).
(b) Input blurred image. Restored images using (c) [14] (d) [17], (f) [26], (g) [40], and (h)
proposed approach.

39



Chapter 4

Conclusion

We presented a deep CNN-based framework for non-blind restoration of motion blurred im-

ages. Unlike existing works, we investigated a very relevant scenario which is the unavail-

ability of the exact ground truth kernel. By using multiple latent image estimates obtained

with different prior strengths as inputs, our network exploits the complementarity present

in the input data to yield high-quality restoration results. To remove kernel noise-specific

artifacts in the deconvolved results, we trained our network with real kernels obtained from

existing blind deblurring methods as well as synthetically generated noisy kernels. We also

provided results of our network on high resolution images which are artifact-free and yet

detail-preserving image by integrating desired features of the inputs, performing better than

existing methods. Our method is able to deliver state-of-the-art performance in non-blind

deblurring.

We trained our network with training data assuming images are noise free and kernels

generated are noisy, but we didn’t explicitly consider the case of noise present in the blurred

images. We believe that our network can be able to learn this task and perform well if

necessary training data is provided. As future work one can train the network with data from

noisy images and noisy-kernel combined for a more general case.

40



Bibliography

[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image

segmentation. TPAMI, 33(5):898–916, 2011. 30

[2] H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising: Can plain neural networks

compete with bm3d? In CVPR, pages 2392–2399. IEEE, 2012. 14, 24

[3] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao. Dehazenet: An end-to-end system for single image

haze removal. TIP, 25(11):5187–5198, 2016. 14

[4] A. Chakrabarti. A neural approach to blind motion deblurring. In ECCV, pages 221–235.

Springer, 2016. 14, 30

[5] S. Cho and S. Lee. Fast motion deblurring. In TOG, volume 28, page 145. ACM, 2009. 10, 34,

35

[6] S. Cho, J. Wang, and S. Lee. Handling outliers in non-blind image deconvolution. In ICCV,

pages 495–502. IEEE, 2011. 10, 13

[7] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image

super-resolution. In ECCV, pages 184–199. Springer, 2014. 14, 25

[8] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using deep convolutional

networks. TPAMI, 38(2):295–307, 2016. 12, 14

[9] D. Eigen, D. Krishnan, and R. Fergus. Restoring an image taken through a window covered

with dirt or rain. In ICCV, pages 633–640, 2013. 12, 14, 24

41



[10] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman. Removing camera shake

from a single photograph. In TOG, volume 25, pages 787–794. ACM, 2006. 10, 34

[11] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. arXiv preprint arXiv:1502.03167, 2015. 26

[12] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional

adversarial networks. arxiv, 2016. 26, 30

[13] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014. 30

[14] D. Krishnan and R. Fergus. Fast image deconvolution using hyper-laplacian priors. In NIPS,

pages 1033–1041, 2009. 7, 8, 10, 13, 22, 23, 26, 30, 31, 33, 34, 35, 36, 37, 38, 39

[15] D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution using a normalized sparsity measure.

In CVPR, pages 233–240. IEEE, 2011. 10, 30

[16] W.-S. Lai, J.-B. Huang, Z. Hu, N. Ahuja, and M.-H. Yang. A comparative study for single image

blind deblurring. In CVPR, June 2016. 7, 8, 9, 10, 11, 33, 34, 35, 36, 39

[17] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image and depth from a conventional

camera with a coded aperture. TOG, 26(3):70, 2007. 7, 8, 13, 33, 34, 35, 37, 38, 39

[18] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding and evaluating blind decon-

volution algorithms. In CVPR, pages 1964–1971. IEEE, 2009. 10, 36

[19] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Efficient marginal likelihood optimization

in blind deconvolution. In CVPR, pages 2657–2664. IEEE, 2011. 7, 9, 30, 33, 34, 36

[20] T. Michaeli and M. Irani. Blind deblurring using internal patch recurrence. In ECCV, pages

783–798. Springer, 2014. 34, 35

[21] J. Pan, D. Sun, H. Pfister, and M.-H. Yang. Blind image deblurring using dark channel prior. In

CVPR, June 2016. 10

[22] D. Perrone and P. Favaro. Total variation blind deconvolution: The devil is in the details. In

CVPR, pages 2909–2916, 2014. 34, 35

42



[23] J. S. Ren, L. Xu, Q. Yan, and W. Sun. Shepard convolutional neural networks. In NIPS, pages

901–909, 2015. 14

[24] W. H. Richardson. Bayesian-based iterative method of image restoration. JOSA, 62(1):55–59,

1972. 13

[25] U. Schmidt, J. Jancsary, S. Nowozin, S. Roth, and C. Rother. Cascades of regression tree fields

for image restoration. TPAMI, 38(4):677–689, 2016. 14

[26] U. Schmidt and S. Roth. Shrinkage fields for effective image restoration. In CVPR, pages

2774–2781, 2014. 7, 8, 10, 14, 33, 34, 35, 37, 38, 39

[27] U. Schmidt, C. Rother, S. Nowozin, J. Jancsary, and S. Roth. Discriminative non-blind deblur-

ring. In CVPR, pages 604–611, 2013. 10, 14

[28] U. Schmidt, K. Schelten, and S. Roth. Bayesian deblurring with integrated noise estimation. In

CVPR, pages 2625–2632. IEEE, 2011. 14

[29] C. J. Schuler, H. Christopher Burger, S. Harmeling, and B. Scholkopf. A machine learning

approach for non-blind image deconvolution. In CVPR, pages 1067–1074, 2013. 14, 24

[30] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf. Learning to deblur. TPAMI,

38(7):1439–1451, 2016. 14

[31] H. R. Sheikh, A. C. Bovik, and G. De Veciana. An information fidelity criterion for image

quality assessment using natural scene statistics. TIP, 14(12):2117–2128, 2005. 34

[32] L. Sun, S. Cho, J. Wang, and J. Hays. Edge-based blur kernel estimation using patch priors. In

ICCP, pages 1–8. IEEE, 2013. 6, 7, 8, 9, 10, 24, 30, 33, 34, 35, 36, 37, 38, 39

[33] Y. Wang, J. Yang, W. Yin, and Y. Zhang. A new alternating minimization algorithm for total

variation image reconstruction. SIAM Journal on Imaging Sciences, 1(3):248–272, 2008. 13

[34] O. Whyte, J. Sivic, and A. Zisserman. Deblurring shaken and partially saturated images. IJCV,

110(2):185–201, 2014. 10, 13, 14

[35] N. Wiener. Extrapolation, interpolation, and smoothing of stationary time series, volume 7.

MIT press Cambridge, MA, 1949. 13

43



[36] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting with deep neural networks. In NIPS,

pages 341–349, 2012. 14, 24

[37] L. Xu and J. Jia. Two-phase kernel estimation for robust motion deblurring. In ECCV, pages

157–170. Springer, 2010. 7, 8, 10, 34, 35, 37, 38, 39

[38] L. Xu, J. S. Ren, C. Liu, and J. Jia. Deep convolutional neural network for image deconvolution.

In NIPS, pages 1790–1798, 2014. 10, 12, 14, 24

[39] L. Xu, S. Zheng, and J. Jia. Unnatural l0 sparse representation for natural image deblurring. In

CVPR, pages 1107–1114, 2013. 10, 34, 35

[40] D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restora-

tion. In ICCV, pages 479–486. IEEE, 2011. 6, 7, 8, 10, 11, 13, 22, 33, 34, 35, 36, 37, 38,

39

44


