
Genode on Secure Tablet

A project report submitted by

N Kranthi Tej
EE13B037

in partial ful�lment of the requirements

for the award of the degree

BACHELOR OF TECHNOLOGY

Department of Electrical Engineering
Indian Institute of Technology Madras

May 19, 2017

1

Thesis Certi�cate

This is to certify that the thesis titled Genode on Secure Tablet, submitted

byN Kranthi Tej, to the Indian Institute of Technology, Madras, for the award

of the degree of Bachelor of Technology, is a bona�de record of the project work

carried out by him under my supervision. The contents of this thesis, in full or

in parts, have not been submitted to any other Institute or University for the

award of any degree or diploma.

Dr. V. Kamakoti
Project Guide
Professor
Dept. of Computer Science & Engineering
IIT Madras, Chennai - 600036

Place: Chennai
Date: 09 May, 2017

2

Acknowledgements

The work that I've done on this project was done under the guidance of Dr. V.

Kamakoti. I would like to thank Dr. V. Kamakoti for all the motivation and

guidance he has provided throughout the span of this project.

I would also like to thank Mr. Vasan for his guidance throughout the course

of this project. He had provided me with all the support I required without

any delay and had helped me out solve the problems I've encountered in this

project. I wouldn't have made this much progress without his guidance.

I would also like to thank my parents for encouraging me throughout this

project. Their understanding of how I had to dedicate my time for this project

and that I had only very few occasions to return home has really been a driving

factor for me to progress further.

Lastly, I would like to thank the Ministry of Human Resource and Development,

Government of India and Defence Research and Development Organization for

the �nancial aid and equipment provided.

Kranthi Tej

3

Abstract

Key words: Genode, Image, Flashing, Booting, Touchscreen

This report contains the implementation of Genode on the secure tablet

which is a joint project between Indian Institute of Technology Madras

and Defence Research and Development Organization. It is mostly based

on how to bring up Genode on a proprietory tablet designed by RISE

Lab of IIT Madras. This document contains extensive details about

the kind of errors one could face in each stage of bringing up Genode on

this tablet - building the Genode image, �ashing it onto the tablet and

booting it up. The �xes have also been provided for most of the problems

encountered. Along with the resolved issues, this document also contains

di�erent solutions that have been tested and their outcomes. Further areas

of investigation have also been indicated in the document. The objective

of this document is to provide a head start for the person who wishes to

work on this tablet. The steps mentioned in this document will reduce

time consumption on issues which have already been worked on and will

provide the person to build further on this foundation, thus contributing

more to this new �eld of microkernels.

This document also contains details about the touchscreen component

of the tablet. Currently, there is no driver for the touchscreen on the

Genode kernel (for i.MX6 processor). However, the framebu�er support

for i.MX53 (which is the previous version of ARM processor to i.MX6 by

Freescale/NXP) has been implemented and incorporated into the Gen-

ode code base. The driver can be built on this foundation. A brief

about the framebu�er, I2C interface and Capacitive Touch Panel con-

troller (FT5x06) has been provided. The driver can be developed by

taking insights from the Linux kernel implementation of the same. This

document provides a mapping between the interfaces used on the Linux

kernel side and Genode side with respect to touchscreen driver implemen-

tation.

4

Contents

1 Introduction 6
1.1 Motivation . 6

1.2 Objective . 6

1.3 Organization of this Document 7

2 Building the Image for Tablet 9
2.1 Generation of uImage 9

2.2 Setting up the Build environment 9

2.3 Building the uImage 10

2.4 Resolved Build issues 12

3 Flashing the uImage 15
3.1 Flashing Tool & Procedure 15

3.2 Flashing procedure 18

3.3 Resolved �ashing problems: 18

4 Booting up Genode 20
4.1 Boot settings & Issues 20

4.2 Boot up Issues 21

4.3 Tested Solutions & their outcomes 25

5 Touchscreen Speci�cation 34
5.1 Overview . 34

5.2 Capacitive Touch Panel Module (CTPM) . . 36

6 Mapping between Linux and Genode - Touchscreen
Drivers 38

7 Future Scope 46

5

1 Introduction

1.1 Motivation

Information and device safety has been a matter of increasing concern over the

past decade. Hackers try to exploit the vulnerabilities in the software to extract

con�dential data from electronic devices. The number of vulnerabilities in the

software shoots up when the code base becomes larger and complicated. There-

fore, it is very essential to have a simple code base which does not compromise

on the functionalities. Linux kernel is one case of a huge code base. The proba-

bility of �nding new vulnerabilities (bugs) in the code becomes higher because

of its large source code. This is the case with most of the Monolithic kernels.

Monolithic kernels have the entire functionality of the Operating System in

the kernel itself. This makes it complicated and the amount of code running in

the privileged mode is very large. As a solution to this problem, Microkernels

came into existence. Microkernels only include the parts of code which should

be necessarily running in privileged mode (kernel space). All the others parts

are placed in the user space. This resulted in the signi�cant reduction of the

size of the code base.

Genode is one such framework based on Microkernels. Our aim is to make

the tablet (designed by RISE Lab of IIT Madras) secure with as little room for

vulnerabilities as possible. Currently, most of the devices around the world are

running Android Operating System. This has been developed with Linux kernel

as the foundation. Our aim is to replace the Linux kernel with a microkernel as

the foundation for Android, thus achieving more security.

1.2 Objective

The objective of this project is to bring up Genode on a proprietary tablet

designed by RISE Lab of IIT Madras. It has been developed into a �n-

ished tablet. The tablet is meant to serve as an end product for the consumer.

From a security point of view, having a SD card support for the device is a

vulnerability. Therefore, the SD card support for this tablet has been removed.

Due to absence of the support of SD card, the interfaces utilized to success-

6

fully bring up Genode on the tablet are quite di�erent than the ones used on

development boards. Bringing up Genode on this tablet without the support of

SD card is one of the prime objectives of this project.

Keeping this objective in mind, the eMMC Flash available on the tablet

has been utilized to �ash the Genode image onto it. It has been successfully

implemented and all the issues that were encountered in the process have also

been mentioned along with their �xes. The scope of this project covers how

to build the suitable Genode image for our device, �ashing the image onto it

(without the help of an external component) and successfully booting it up.

This objective has been achieved in this project. The custom device now

runs Genode successfully on it.

1.3 Organization of this Document

This document is organized into 7 parts:

1. Introduction: Motivation for this project

2. Build Genode Image: This part describes the procedure to build a

Genode uImage. It also outlines the problems that were encountered in

building the uImage and how they were resolved

3. Flashing the uImage: This parts details the procedure to be followed

for �ashing the Genode Operating System onto the tablet. MfgTool is

used for �ashing. A brief on how to use the tool and how to resolve the

issues which may arise while �ashing are described

4. Booting up Genode: This part mainly deals with setting up the Uboot

environment to boot Genode. The problems faced while booting up are

also described in detail. The di�erent approaches tried to resolve these

problems have also been described in detail

5. Touchscreen Overview: This part talks about the touchscreen of the

tablet

6. Mapping between Linux and Genode - Touchscreen drivers: This

part outlines the common features between touchscreen driver implemen-

7

tation in the Linux kernel and Genode and provides a mapping between

them

7. Future Scope: Potential for future work in this area

8

2 Building the Image for Tablet

2.1 Generation of uImage

We require a uImage to get the Genode kernel running on the tablet. A uImage

is a compressed version of the kernel image along with uboot wrapper (OS

type and loader information). We use this uImage and run it on the uboot

(bootloader) to start the kernel on the tablet. In order to generate the uImage

of Genode, several steps have to be followed. The remaining part of this section

describes the build procedure.

The build procedure has been described in detail here. It �rst involves setting

up the Genode build environment. Once this is done, one can get started with

the build procedure.

2.2 Setting up the Build environment

• Download the latest Genode source code from Genode's git repository [1].

Use the �Download Zip� option. Uncompress the zip �le. Let the obtained

Genode directory be <genode-dir>

• Download the Genode toolchain under the name �genode-toolchain-<version>-

<arch>.tar.bz2 � from [2]

• Open the terminal and navigate to the directory where the toolchain has

been downloaded. Run the following line:

sudo tar xPfj genode-toolchain-<version>-<arch>.tar.bz2

/* Example: sudo tar xPfj genode-toolchain-16.05-x86_64.tar.bz2 */

• Check your GNU Make version by running �make �version� on the termi-

nal. Ensure that it is 3.81 (or higher)

• Install the following packages on your system

u-boot-tools, libSDL-dev, tclsh, expect, qemu,

genisoimage, byacc, autoconf2.64, autogen,

bison, flex, g++, git, gperf, libxml2-utils,

subversion, xsltproc

9

• You can install the packages in the following way on the terminal:

sudo apt-get install <package-name>

With having completed these steps, the build environment for building Genode

is set up. One can now move onto the next section of building the uImage.

2.3 Building the uImage

Note: <genode-dir> refers to the path of the Genode directory obtained after

uncompressing the �le downloaded from [1] as it has been mentioned above.

This notation will be used subsequently.

• Open the terminal and run the following:

<genode-dir>/tool/create_builddir <hardware-platform>

<hardware-platform> can be the following (Supported by

Genode Community):

• wand_quad (i.MX6 processor)

• x86_64

• pbxa9

• riscv

• rpi

• zynq

• panda (Pandaboard)

• usb_armory

• odroid_xu

• imx53_qsb

• arndale

For the subsequent steps, wand_quad will be used as

an example.

• The above command would have created a build directory at <genode-

dir>/build/wand_quad. Now, make the following changes in <genode-

dir>/build/wand_quad/etc/build.conf �le:

10

� Uncomment line 6 or the corresponding code for enabling parallel

build (remove the # before MAKE += -j4)

� Add the following line:

RUN_OPT += �include image/uboot

• Since, there is no direct support for our customized tablet, the Wandboard

con�guration settings (which uses an i.MX6 processor) are utilized. How-

ever, some adjustments need to be made to make it compatible with the

device at hand. The tablet has 1 GB RAM (whereas, Wandboard has 2

GB RAM). To change the RAM size, make the following changes in the

<genode-dir>/repos/base/include/spec/imx6/drivers/board_base.h �le:

� Change RAM0_SIZE = 0x80000000, to RAM0_SIZE = 0x40000000,

in line 33

• We currently have support of upto 2 cores in the device. So, make the fol-

lowing changes in <genode-dir>/repos/base-hw/lib/mk/spec/imx6/*.mk

�les:

� ChangeNR_OF_CPUS = 4 toNR_OF_CPUS = 1 (or, NR_OF_CPUS

= 2)

• One is all set to build the uImage now. Proceed in the following manner
to build the uImage:

� Open the terminal and navigate to <genode-dir>/build/wand_quad
directory using:

cd <genode-dir>/build/wand_quad

� Run the following command:

make cleanall

� Now, run the following command:

make run/log

11

Note: �log.run� runscript has been used here. One could as well try other
runscripts like run/demo etc. located in <genode-dir>/repos/os/run folder.
The following is a brief about 2 of the runscripts:

� Log runscript

This is the most basic runscript available in the Genode code base.
It only has the essential components for the Operating system to
get running. It builds the core and init components which are the
most necessary components. After building these components, it
prints a set of messages indicating that the build was successful. This
runscript can be found under <genode-dir>/repos/base/run/log.run

� Demo runscript

Demo runscript is a slightly more complex runscript than the log run-
script. It builds the timer, nitpicker, pointer, status bar, xray trigger,
rom �lter, report rom modules along with core and init. When run
on a suitable hardware, this runscript generates a user interface (UI)
of the launchpad which has interactive buttons. This runscript can
be found under <genode-dir>/repos/os/run/demo.run

More information about the how a runscript functions can be found in
Section 2.5.4 of [11]

• After following the above steps, the uImage can be found in the following
folder:

<genode-dir>/build/wand_quad/var/run/log

2.4 Resolved Build issues

1. Build not successful in Genode - 15.02 (IIT Madras repository

[3]):

If the Genode - 15 repository is used and a uImage is built with it, it may

pop up a compilation error. The build error will look like the following:

12

Fix:

In case of such errors make the following change in<genode-dir>/repos/base-

hw/include/base/native_types.h �le:

Remove constexpr from line 318 (or, the line which is 2 lines prior to the

line mentioned in the error)

Now, make a clean (make cleanall) and make a fresh build. The com-

pilation error will not be encountered.

2. Build error while trying to generate .img disk image:

When one tries to build a �.img� format image (RUN_OPT += �include

13

image/disk), an error regarding missing directory (/usr/local/genode-rump)

might be encountered. The rump toolchain has to be installed to build a

.img �le.

Fix:

To install the rump toolchain, run the following commands in the termi-

nal:

- cd <genode-dir>/tool

- ./tool_chain_rump build

- ./tool_chain_rump install

These commands will set up the rump toolchain on the system and com-

pilation error will be resolved. Please note that one may have to look into

some relevant �.mk� �les and comment out the problem causing lines if the

toolchain is not getting built properly.

14

3 Flashing the uImage

3.1 Flashing Tool & Procedure

MfgTool

With the uImage in hand (as mentioned in the previous part), one can go ahead

with �ashing it onto the device. Flashing the uImage onto the device essentially

means that the uImage will be stored onto the device's ROM and this part will

be loaded by the bootloader (uboot in our case) everytime we bootup the device.

The eMMC Flash available on the device is utilized for this purpose.

For �ashing the uImage using the eMMC �ash, MfgTool with MX6Q Linux

Update is required. It is a tool which runs on the Windows Operating System.

The following is a screenshot of how the tool looks:

The MfgTool is generally used to �ash Android onto the tablets. The tool

has to be tweaked at some parts to make it compatible with the Operating Sys-

tem that is being �ashed (Genode). The following are the steps to be followed

for setting up the MfgTool:

• Download the MfgTool with MX6Q Linux Update from the internet [15]

(or, it is available in the systems in Network Systems Lab, Department

of Computer Science and Engineering, IIT Madras under the name In-

dus2012)

15

• Let the downloaded MfgTool directory be <MfgTool-folder>

• Remove all (except ucl2.xml) theXML �les (*.xml extension) in<MfgTool-

folder>/Pro�les/MX6Q Linux Update/OS Firmware folder

Now, changes have to be made in the ucl2.xml �le to make it compatible with

the OS being �ashed. The code which has to replace all the content present in

ucl2.xml �le has been presented �rst. The following is the code:

<UCL>

<CFG>

<STATE name="BootStrap" dev="MX6Q" vid="15A2" pid="0054"/>

<STATE name="Updater" dev="MSC" vid="066F" pid="37FF"/>

</CFG>

<LIST name="Android-SabreSD-eMMC" desc="Choose eMMC android as media">

<CMD state="BootStrap" type="boot" body="BootStrap" file ="u-boot-mx6q-sabresd.bin" >

Loading U-boot</CMD>

<CMD state="BootStrap" type="load" file="uImage" address="0x10800000"

loadSection="OTH" setSection="OTH" HasFlashHeader="FALSE" >

Loading Kernel.</CMD>

<CMD state="BootStrap" type="load" file="initramfs.cpio.gz.uboot"

address="0x10C00000" loadSection="OTH" setSection="OTH"

HasFlashHeader="FALSE" >Loading Initramfs.</CMD>

<CMD state="BootStrap" type="jump" > Jumping to OS image. </CMD>

<CMD state="Updater" type="push" body="$ dd if=/dev/zero of=/dev/mmcblk0

bs=512 seek=1536 count=16">clean up u-boot parameter</CMD>

<CMD state="Updater" type="push" body="$ echo 0 > /sys/block/mmcblk0boot0/force_ro">

access boot partition 1</CMD>

<CMD state="Updater" type="push" body="send" file="files/android/u-boot-6q.bin">

Sending U-Boot</CMD>

<CMD state="Updater" type="push" body="$ dd if=$FILE of=/dev/mmcblk0boot0

bs=1k seek=1 skip=1 conv=fsync">write U-Boot to sd card</CMD>

<CMD state="Updater" type="push" body="$ echo 8 >

/sys/devices/platform/sdhci-esdhc-imx.3/mmc_host/mmc0/mmc0:0001/boot_config">

access user partition and enable boot partion 1 to boot</CMD>

<CMD state="Updater" type="push" body="send" file="mksdcard-android.sh.tar">

Sending partition shell</CMD>

<CMD state="Updater" type="push" body="$ tar xf $FILE "> Partitioning...</CMD>

<CMD state="Updater" type="push" body="$ sh mksdcard-android.sh /dev/mmcblk0">

Partitioning...</CMD>

<CMD state="Updater" type="push" body="$ ls -l /dev/mmc* ">

Formatting sd partition</CMD>

<CMD state="Updater" type="push" body="$ mkfs.ext2 /dev/mmcblk0p1">

16

Creating ext2 file system</CMD>

<CMD state="Updater" type="push" body="$ mkdir -p /mnt/mmcblk0p1"/>

<CMD state="Updater" type="push" body="$ mount -t ext2 /dev/mmcblk0p1

/mnt/mmcblk0p1"/>

<CMD state="Updater" type="push" body="pipe tar -jxv -C /mnt/mmcblk0p1"

file="files/uImage.tar.bz2">Sending and writing rootfs</CMD>

<CMD state="Updater" type="push" body="frf">Finishing rootfs write</CMD>

<CMD state="Updater" type="push" body="$ umount /mnt/mmcblk0p1">

Unmounting rootfs partition</CMD>

<CMD state="Updater" type="push" body="$ echo Update Complete!">Done</CMD>

</LIST>

</UCL>

Explanation: The �ashing procedure is described by the above XML script.

It is divided into 2 parts:

• Loading the Linux kernel (for operations)

• Flashing the Genode kernel uImage

Loading the Linux kernel: The �rst part of the XML script involves

loading the Linux kernel uImage via the uboot (bootloader). This is es-

sential because the device that is at hand is purely hardware and there

is no software built on it. Some basic functionalities (like the �le sys-

tem and partitioning commands) are required to �ash the uImage suc-

cessfully. The u-boot-mx6q-sabresd.bin �le is the Linux kernel image.

initramfs.cpio.gz.uboot �le has the �lesystem functionalities. This part

of the �ashing procedure plays an important part.

Flashing the Genode kernel uImage: This is the part of the �ashing

procedure where the uImage is �ashed onto the device's ROM. It is done

by �rst partitioning the device to create a boot partition. Then, an ext2

�le system is created on the boot partition. Once the �le system has been

created, the uImage is placed in this partition. It is from this partition

that the kernel is loaded on boot up.

Note: All the content in the ucl2.xml �le has to be replaced with the XML code

given above.

17

3.2 Flashing procedure

One can now move ahead with the �ashing procedure.

Proceed with the following steps paying close attention (one mistake can
lead to unsuccessful �ashing) in a serial order :

• Compress the uImage (built in<genode-dir>/build/wand_quad/var/run/log

folder) to uImage.tar.bz2 using a compression tool. (Note: compressing it

to .tar.bz2 format is necessary. Otherwise, �ashing will not be successful.

Also, the compressed �le name has to be uImage.tar.bz2)

• Place the compressed �le in <MfgTool-folder>/Pro�les/MX6Q Linux Up-

date/OS Firmware/�les folder

• Connect the tablet to the system running MfgTool with a USB cable

• Switch on the tablet by pressing the Volume Down + Power buttons (Vol-

ume down �rst immediately followed by Power Button)

• Now, start the MfgTool2.exe in the <MfgTool-folder>. �HID-compliant

device� should be seen (if �HID-compliant device� is not seen, switch o�

the tablet and switch it on as mentioned above)

• Hit the �start� button. The image starts �ashing onto the device

• Hit �stop� when green coloured bars and a message saying �Done� appear
on the tool

• Switch o� the device (Long press power button)

3.3 Resolved �ashing problems:

1. Image size is greater than 8 MB:

The image generated from the build process of Genode can sometimes

be over 8 MB. In such cases, �ashing will not be successful because the

boot partition can only hold 8 MB of data. This is the usually the case

when one wants to use *.img format for the image (because the Android

counterpart of �ashing uses .img format). �.img� format Genode image is

generated when the following is included

RUN_OPT += �include image/disk (instead of RUN_OPT += �include

image/uboot)

18

in the <genode-dir>/build/wand_quad/etc/build.conf �le.

Fix:

In such cases, the partitioning has to be changed. sfdisk has to be used in

the XML script to adjust the partitions to include the image. Look into

the sfdisk man page (man sfdisk) for more details.

2. Wrong image format for bootm:

This is the common error which is encountered when the device is booted

after �ashing. The most probable cause for this problem is that the �ash-

ing was unsuccessful. It can be due to the non-existence of a �lesystem

on the boot partition. Because of the absence of a valid �lesystem, the

placing of uImage into the ROM will not be successful. Hence, the boot

error.

Fix:

Create a �lesystem in the boot partition before �ashing the uImage onto

it. An ext2 �lesystem has been created in the boot partition before the

actual �ashing was done. This modi�cation has been incorporated in the

XML script given above.

3. Can't get kernel image:

This message is accompanied by the error stated in the previous point.

If the above solution doesn't �x the problem, then the possible cause for

the problem is the corruption of uImage (either while generation or in the

transition from a Linux system to Windows system).

Fix:

Generate the uImage freshly after making a clean (make cleanall). Copy

the uImage into a USB stick with NTFS �le system from the Linux system.

Use this USB stick to paste the uImage onto the Windows system.

19

4 Booting up Genode

4.1 Boot settings & Issues

Setting Uboot environment & Booting

One is now equipped with a tablet which can boot Genode. The boot partition

has been set on the device and Genode image has been �ashed onto it. But the

bootloader has to identify the correct location to load the uImage. For this, few

command have to be passed in the uboot prompt. Before moving to that part,

a brief of uboot has been provided.

Uboot

Uboot is a bootloader which is the �rst component to get loaded from the ROM.

Uboot acts as a framework to load the kernel and the operating system on the

device. There is a hierarchy: Operating system works on the foundation of the

kernel. The kernel itself is loaded from the uboot. Uboot becomes an essential

component in booting up the Genode OS on the device.

Now, one can move on to booting up the device.

Booting

The following are the steps to successfully boot up Genode on the tablet:

• Before turning on the device, connect it to a system via serial port. Make
the connections according to the following:

� Black pin (Ground or GND)

� Grey pin (Receive or RX)

� Yellow pin (Transmit or TX)

• Con�gure gtkTerm or TeraTerm on the system to the following settings:

20

This can be done by opening gtkterm via terminal (sudo gtkterm) and

then Con�guration->Port

• Now, switch on the device (Press power button)

• In the gtkterm, stop the autoboot by pressing any key (in case autoboot

isn't halted, reboot the device and try again. If the problem still persists,

make sure that the TX/RX connections are properly in place)

• Once autoboot is halted, the uboot prompt is presented. Execute the
following commands in the uboot prompt to run the uImage:

- ext2load mmc 3:1 0x30000000 uImage

- bootm 0x30000000

The above steps will get the kernel image running and it gets initialized. Genode

will be successfully running on the tablet once the above procedure has been

completed.

4.2 Boot up Issues

This section of the document deals with the possible problems at boot up. The

�xes for these problems have also been provided. However, there might be

some problems which may not be completely �xed by the solutions provided.

21

Hence, a list of solutions that have been tested (and their results) have also

been provided. It could help get some insight about the �ow of things in the

Genode boot up process.

1. System hangs after �Starting kernel ...�:

When the device is booted up as per the procedure mentioned above, the

system hanging after �Starting kernel ...� message. The log will look some-

thing like this:

MX6Q SABRESD U-Boot > bootm 0x30000000

Booting kernel from Legacy Image at 30000000 ...

Image Name: Image Type: ARM Linux Kernel Image (gzip compressed)

Data Size: 608176 Bytes = 593.9 kB

Load Address: 10001000

Entry Point: 10001000

Verifying Checksum ... OK

Uncompressing Kernel Image ... OK

Starting kernel ...

The reason for this problem can be due to 4 reasons:

(a) UART port settings are not correctly set

(b) Setting number of cores to a value more than physically available

(c) SMP variable might have been set to false

(d) �Log� message before in Bootstrap code

UART port settings are not correctly set:

The proprietory tablet device's pins correspond to the UART1 port

which has a base address of 0x02020000 and an interrupt value of 58.

These have to be correctly de�ned in the<genode-dir>/repos/base/include/spec/imx6/

drivers/board_base.h �le. If these values are incorrectly de�ned, such

a problem might arise (where no further output is observed).

However, if Sabrelite development board is being used, the pins cor-

respond to the UART2 port. In such a case, the UART base address

22

should be 0x021e8000 and the interrupt value should be 59.

Setting number of cores to a value more than physically

available:

When the NR_OF_CPUS value is set to a value greater than 2 in

<genode-dir>/repos/base-hw/lib/mk/spec/imx6/*.mk �les, this issue

may arise. Make sure that the value of NR_OF_CPUS = 1 or

NR_OF_CPUS = 2 in both the �les.

SMP variable might have been set to false:

The system can hang at �Starting kernel ...� message if the SMP vari-

able has been set to false in<genode-dir>/repos/base-hw/src/core/include/spec/

cortex_a9/board_support.h �le (line 29). Make sure that this vari-

able has been set to true .

�Log� message before in Bootstrap code:

There might not be any ouput if there is a log message (Genode::log(��))

in any part of the code in the<genode-dir>/repos/base-hw/src/bootstrap/init.cc

�le. Check this parameter if the above two �xes are already in place.

Note: Once the Memory Management Unit (MMU) has been en-

abled, the LOG service cannot be utilized until core is started. This

is because there is a mismatch between virtual address and physical

address when LOG service is used. Once the core has started, the

mapping between virtual address and physical address has been es-

tablished. So, the LOG service after the core has started. In the

light of such event, the Genode::error(��) function (discussed later)

can be utilized.

2. Error: page fault in core thread (core):

While booting up the device, one may encounter a page fault in the core

thread. The error may look like the following:

23

MX6Q SABRESD U-Boot > bootm 0x30000000

Booting kernel from Legacy Image at 30000000 ...

Image Name:

Image Type: ARM Linux Kernel Image (gzip compressed)

Data Size: 608176 Bytes = 593.9 kB

Load Address: 10001000

Entry Point: 10001000

Verifying Checksum ... OK

Uncompressing Kernel Image ... OK

Starting kernel ...

:virt_alloc: Allocator 0x200c40b8 dump:

Block: [00001000,10001000) size=256M avail=256M max_avail=256M

Block: [10585000,20001000) size=256496K avail=256496K max_avail=3144208K

Block: [2017b000,2017c000) size=4K avail=0 max_avail=0

Block: [2017c000,e0000000) size=3144208K avail=3144208K max_avail=3144208K

Block: [f0004000,f0005000) size=4K avail=0 max_avail=3144208K

Block: [f0007000,f0008000) size=4K avail=0 max_avail=0

Block: [f0009000,f000a000) size=4K avail=0 max_avail=262036K

Block: [f000a000,�fef000) size=262036K avail=262036K max_avail=262036K

=> mem_size=4019097600 (3832 MB) / mem_avail=4019081216 (3832

MB)

:phys_alloc: Allocator 0x200c304c dump:

Block: [10585000,10586000) size=4K avail=0 max_avail=0

Block: [10586000,10587000) size=4K avail=0 max_avail=1042644K

Block: [10587000,10588000) size=4K avail=0 max_avail=0

Block: [105ca000,105cb000) size=4K avail=0 max_avail=1042644K

Block: [105cb000,50000000) size=1042644K avail=1042644K max_avail=1042644K

=> mem_size=1067683840 (1018 MB) / mem_avail=1067667456 (1018

MB)

:io_mem_alloc: Allocator 0x200c5130 dump:

Block: [00000000,10585000) size=267796K avail=267796K max_avail=267796K

Block: [10588000,105ca000) size=264K avail=264K max_avail=2952790015

24

Block: [50000000,����) size=2952790015 avail=2952790015 max_avail=2952790015

=> mem_size=3227283455 (3077 MB) / mem_avail=3227283455 (3077

MB)

:io_port_alloc: Allocator 0x200c619c dump:

=> mem_size=0 (0 MB) / mem_avail=0 (0 MB)

:irq_alloc: Allocator 0x200c7208 dump:

Block: [00000000,00000001) size=1 avail=1 max_avail=1

Block: [00000002,0000001d) size=27 avail=27 max_avail=994

Block: [0000001e,00000400) size=994 avail=994 max_avail=994

=> mem_size=1022 (0 MB) / mem_avail=1022 (0 MB)

:rom_fs: ROM modules:

ROM: [1017e000,1017e158) con�g

ROM: [10154000,1017a900) init

ROM: [100d6000,10153b64) ld.lib.so

ROM: [1017b000,1017d598) test-log

kernel initialized

Error: page fault in core thread (core): ip=0x20037b34 fault=0x68c88038

Fix:

In such cases, the problem could be with the device. Try changing the

device. This should resolve the problem. The cause for this problem is

not clear yet. It seems to be working with some devices and it shows up

a pagefault in some others. It could be an issue with the way the devices

have been manufactured or it could be an issue with the memory of the

device.

4.3 Tested Solutions & their outcomes

From now on, a tablet which successfully runs Genode is referred as �working

tablet� and the tablet which gives out a pagefault is referred as �faulty tablet�.

25

1. Comparing Genode 15, 16 & 17 in case of Pagefault

All Genode codebases (15.05, 16.05, 17.02) seem to give out pagefault

when a faulty device is used. It can be inferred that, fundamentally, the

�ow of execution of the code has not much dependency on the version of

Genode source code used. Only the organization of the �les is di�erent

across the di�erent versions of Genode source code.

From this, it can be inferred that the problem is with the device and

not the source code itself.

2. Case of hard-coded values in Uboot source code

Uboot is a bootloader which we are using for for booting up the RISE

Lab's tablet. It has a source code of its own. The source code of Uboot

has been examined for any hard-coding of addresses which might have

caused the pagefault (on devices which gave out a pagefault).

It was found that there is NO hard-coding of any address in the Uboot

source code. All the addresses have been initialized by the Genode source

code itself. There is no reason to suspect the Uboot source code in any

case. One can be almost be sure that the problem is not with Uboot (if

any such problem arises in future).

3. Comparison between addresses in Linux Kernel and Genode

Android runs on Linux kernel. Android has been successfully �ashed onto

the tablet and it runs without any problems. A thorough comparison be-

tween the addresses mentioned in the Linux Kernel side and the Genode

side has been made. All the relevant addresses (UART, SDHC, EPIT2,

AIPS1, AIPS2, CORTEX_A9_PRIVATE_MEM, PL310, SRC) on the

Genode side match exactly with the Linux kernel side.

Hence, one can be sure that there is no problem with the addresses men-

tioned in the Genode codebase if any problem arises in future (unless, the

addresses have been changed in newer versions of Genode).

4. Usage of objdump and its output

26

A way to �nd out the cause for the pagefault is to run objdump on the

image that has been built by the Genode source code. The steps to be

followed to use objdump have been mentioned below:

• Once the image is successfully built, open the terminal and run the
following commands:

cd /usr/local/genode-gcc/bin

./genode-arm-objdump -DCl <genode-dir>/build/wand_quad/var/run/log.core

Upon running these commands, the output of objdump shows up on the

terminal. Stop the execution once the pagefault address (ip mentioned in

the output log) is crossed. Search for the ip in the objdump output. The

objdump output of the corresponding ip will be similar to:

_ZN6Genode17Native_capabilityaSERKS0_():

/home/kranthitej/Desktop/BTP/BTP_Latest/genode-master/repos/base/include/

base/native_capability.h:93

200374f4: e7975003 ldr r5, [r7, r3]

This output suggests that the pagefault is occuring due to the above as-

sembly code. However, it has been veri�ed with the developers of

Genode that there is no problem with the assembly instructions

whatsoever.

It shows that objdump output can be misleading sometimes. It must

be used with caution. Also, the assembly instructions should not be sus-

pected. If the objdump output suggests a problem with the assemble

instruction, one can almost be sure that it is not the cause of the problem.

5. Correctness of Entrypoint Address

The entrypoint address and load address which are a part of the uboot

output have been determined to be 0x10001000 and 0x10001000 respec-

tively. These addresses are correct because they have been veri�ed on

the tablet which is running Genode successfully. Moreover, these are the

addresses mentioned by most people on the Genode mailing lists.

27

Based on this, one can be sure that the addresses are the following:

Entrypoint Address : 0x10001000

Load Address : 0x10001000

Please note that the entrypoint address can be changed in <genode-

dir>/tool/run/boot_dir/hw �le in the following manner (in case there

is a need to change it for some reason):

/* In line 13, change the value that has been mentioned for wand_quad */

if {[have_spec "wand_quad"]} { return "0x10001000" }

6. Disabling Alignment Check

Genode 16.05 (and newer) version has introduced a new bit for alignment

check in the System Control Register (Sctlr) which is not to be found in

the 15.05 or earlier versions. This bit used to be disabled by default in

the 15.05 and earlier versions. However, from the 16.05 (and newer ver-

sions) this bit has been enabled. The Sctlr data structure can be found in

<genode-dir>/repos/base-hw/src/core/include/spec/arm/cpu_support.h �le.

Genode seems to run successfully with the alignment check enabled as

well as disabled on the working tablets. However, the faulty tablets still

seem to give out the pagefault (irrespective of enabling or disabling the

alignment check bit). For now, it can be said that this bit does not a�ect

the functioning of Genode. However, in future, it is quite possible that this

part can cause a problem. In such cases, one can disable the alignment

bit by adding the following code snippet at the relevant place:

access_t v = read();

/* disable alignment checks */

A::set(v, 0);

7. Issues with write function in Sctlr structure

There might be a stage where one can �nd a problem with the write func-

tion under Sctlr structure in<genode-dir>/repos/base-hw/src/core/include/spec/

arm/cpu_support.h �le. The write function may not seem function as per

the expectation. This is the case where LOG messages (Genode::log(��))

28

are placed at each step for debugging.

However, it should be noted that there isNOTHING WRONG with the

write function. This has been con�rmed with the developers at Genode

Labs. The issue can be with the LOG messages placed in the bootstrap

code in <genode-dir>/repos/base-hw/src/bootstrap/init.cc �le.

Hence, if in future, a similar problem arises, the functions that have been

written in the Genode source code should not be suspected. Check for

any stray parts of code that may have been placed for the purpose of

debugging.

8. Enabling/Disabling SMP (Symmetric Multiprocessing)

Symmetric Multiprocessing (SMP) can either be set to true or false.

This can be done by changing it in line 29 of <genode-dir>/repos/base-

hw/src/core/include/spec/

cortex_a9/board_support.h �le.

It has been observed that this parameter hasn't had any e�ect on the

faulty tablets (as opposed what has been mentioned in [4]). We still get

the pagefault irrespective of what the SMP variable has been set to. In

the case of working tablets, the system hangs at �Starting kernel ...� mes-

sage (for any value of NR_OF_CPUS > 2). This parameter can be an

area of investigation incase a problem arises in the future.

9. M, C, I combinations in Sctlr

The M, C, I bits of the System Control Register (Sctlr) can be set to either

0 or 1 giving rise to 8 possible combinations. These bits can be found under

Sctlr structure in <genode-dir>/repos/base-hw/src/core/include/spec/

arm/cpu_support.h �le. The bits stand for the following:

M - Enabling/Disabling MMU cache

C - Enabling/Disabling Data cache

I - Enabling/Disabling Instruction cache

29

These bits shouldn't be meddled with unless extremely necessary. How-

ever, if they have to be modi�ed, the valid combinations are mentioned

below with reference to the information given in ARM Infocenter. The bit

combinations given below correspond to MCI bits respectively (in that

order):

000 - valid

001- valid

100 - valid

110 - valid

101 - valid

111 - valid

010 - invalid

011 - invalid

For more information, please refer to [5].

10. Finding the Memory map initializations in Boot output

The boot output of a working tablet looks like the following:

MX6Q SABRESD U-Boot > bootm 0x30000000

Booting kernel from Legacy Image at 30000000 ...

Image Name:

Image Type: ARM Linux Kernel Image (gzip compressed)

Data Size: 608730 Bytes = 594.5 kB

Load Address: 10001000

Entry Point: 10001000

Verifying Checksum ... OK

Uncompressing Kernel Image ... OK

Starting kernel ...

:virt_alloc: Allocator 0x200d40b8 dump:

Block: [00001000,10001000) size=256M avail=256M max_avail=256M

Block: [10595000,20001000) size=256432K avail=256432K max_avail=3144144K

Block: [2018b000,2018c000) size=4K avail=0 max_avail=0

30

Block: [2018c000,e0000000) size=3144144K avail=3144144K max_avail=3144144K

Block: [f0004000,f0005000) size=4K avail=0 max_avail=3144144K

Block: [f0007000,f0008000) size=4K avail=0 max_avail=0

Block: [f0009000,f000a000) size=4K avail=0 max_avail=262036K

Block: [f000a000,�fef000) size=262036K avail=262036K max_avail=262036K

=> mem_size=4018966528 (3832 MB) / mem_avail=4018950144 (3832

MB)

:phys_alloc: Allocator 0x200d304c dump:

Block: [10595000,10596000) size=4K avail=0 max_avail=0

Block: [10596000,10597000) size=4K avail=0 max_avail=1042516K

Block: [10597000,10598000) size=4K avail=0 max_avail=0 Block:

[105ea000,105eb000) size=4K avail=0 max_avail=1042516K

Block: [105eb000,50000000) size=1042516K avail=1042516K max_avail=1042516K

=> mem_size=1067552768 (1018 MB) / mem_avail=1067536384 (1018

MB)

:io_mem_alloc: Allocator 0x200d5130 dump:

Block: [00000000,10595000) size=267860K avail=267860K max_avail=267860K

Block: [10598000,105ea000) size=328K avail=328K max_avail=2952790015

Block: [50000000,����) size=2952790015 avail=2952790015 max_avail=2952790015

=> mem_size=3227414527 (3077 MB) / mem_avail=3227414527 (3077

MB)

:io_port_alloc: Allocator 0x200d619c dump:

=> mem_size=0 (0 MB) / mem_avail=0 (0 MB)

:irq_alloc: Allocator 0x200d7208 dump:

Block: [00000000,00000001) size=1 avail=1 max_avail=1

Block: [00000002,0000001d) size=27 avail=27 max_avail=994

Block: [0000001e,00000400) size=994 avail=994 max_avail=994

=> mem_size=1022 (0 MB) / mem_avail=1022 (0 MB)

:rom_fs: ROM modules:

ROM: [1018e000,1018e158) con�g

ROM: [10164000,1018a900) init

ROM: [100e6000,10163b64) ld.lib.so

31

ROM: [1018b000,1018d598) test-log

kernel initialized

Genode 17.02-127-gf6386c6 <local changes>

1017 MiB RAM assigned to init

[init -> test-log] hex range: [0e00,1680)

[init -> test-log] empty hex range: [0abc0000,0abc0000) (empty!)

[init -> test-log] hex range to limit: [f8,�]

[init -> test-log] invalid hex range: [f8,08) (over�ow!)

[init -> test-log] negative hex char: 0xfe

[init -> test-log] positive hex char: 0x02

[init -> test-log] multiarg string: "parent -> child.7"

[init -> test-log] String(Hex(3)): 0x3

[init -> test-log] Test done.

The address ranges seen in the output have been generated as a part

of calculation in the code. However, the start and size of Virtual Memory

Allocation (virt_alloc) have been identi�ed to be mentioned in <genode-

dir>/repos/base-hw/src/include/base/internal/native_utcb.h �le (lines 34

and 35) under the names - VIRT_ADDR_SPACE_START &

VIRT_ADDR_SPACE_SIZE. These memory addresses may come in handy

in future.

The other address range start and end points could not be identi�ed as

they have been calculated on the go. This area may be a good point to

start investigating the pagefault that is encountered on faulty tablets be-

cause there has been a consistent o�set in the address ranges between the

working and faulty tablet outputs.

11. �Error� function as a debugging tool: An alternative to the LOG

service is the Genode::error(��) function. It is similar to the LOG service

except that, it can also be used even when the core isn't started. It's usage

is exactly the same as the LOG service. This function may come in handy

for debugging. An example of its usage has been given below:

32

/* Print the value of v */

int v = 10;

Genode::error(�Value of v = �, v);

33

5 Touchscreen Speci�cation

5.1 Overview

The secure tablet is a project undertaken by IIT Madras in collaboration with

Defence Research and Development Organization (DRDO). It is designed by

RISE Lab of IIT Madras. The tablet has a touchscreen with a 2-point capac-

itive multi-touch sensor (Focaltech FT5X06). The touchscreen drivers for this

device have already been implemented for Android in the Linux Kernel. The

corresponding driver �les can be found in [6] under the names ft5x06_ts.c and

ft5x06_ts.h. The focus of this project is on the development of the touchscreen

drivers for the device in Genode.

The touchscreen drivers make use of the Framebu�er as the foundation. Be-

fore describing how framebu�er is useful for the display and touchscreen driver

implementations, a brief about Framebu�er has been provided below.

Framebu�er is a portion of memory which holds a complete bitmap of the

image which is sent to the monitor (or, display device) to be displayed. This

part of the memory generally resides in the memory chips on the video adapter.

It is sometimes integrated into the motherboard. There exists at least one bit

for each pixel in the image. The amount of such memory is called the bit plane.

Information is passed from the framebu�er onto a Digital to Analog Converter

(DAC). This is passed on to the electron gun which �res the electrons accord-

ingly to light up the screen.

34

*picture has been taken from [7]

For more details on framebu�er, refer to [7].

The framebu�er driver has already been implemented in Genode for i.MX53

processor. The corresponding code has been incorporated into the Genode

source code. This can be taken as reference for the implementation of frame-

bu�er for i.MX6 processor as well as the touchscreen driver in Genode. The

framebu�er itself is built on the Image Processing Unit (IPU). To learn about

the IPU, refer to chapter 37 of [8].

35

5.2 Capacitive Touch Panel Module (CTPM)

This part has been referred from [9]. This section comprises of two parts:

1. Capacitive Touch Panel (CTP)

2. Capacitive Touch Panel Controller (FT5x06)

The Capacitive Touch Panel Module is responsible for all the communication

between the host (which is the component calling the display/touch function)

and the touchscreen component. Whenever, a touch event is detected on the

touch panel (CTP), it is communicated suitably to the controller (FT5x06).

The FT5x06 controller module then generates an interrupt and sends it to the

host system to communicate the event of touch. This interrupt tells the host

that the data is ready for the host to receive. This basically acts as a channel

of communication between the Host system and the Controller. The host can

also send an interrupt signal to the FT5x06 controller module in the event of

having to wake up the module from hibernation.

The data input and output from the CTPM to the host takes place through

a serial interface. It can be I2C interface or the SPI interface. In this case, the

I2C interface is used. I2C interface is a protocol which has been developed by

Philips. This utilizes only 2 wires for communicating between the ICs. It is a

half duplex serial communication protocol and hence, the data can �ow in both

the directions. The 2 bidirectional wires used are referred to as SDA (Serial

Data) and SCL (Serial Clock). For more information on the I2C interface, refer

to [10].

The following is the block diagram of the Capacitive Touch Panel Module which

describes all the �ow of information which has been describe above:

36

37

6 Mapping between Linux and Genode - Touch-

screen Drivers

In the previous part, the Capacitive Touch Panel Module and its role of taking

the input and passing on the information to the host system in suitable form

has been described. In this part, insights are drawn from the touchscreen driver

implementation of i.MX53 processor on Genode and suitable suggestions on the

necessary interfaces and structures are mentioned to implement the same for

i.MX6 processor.

As it has been mentioned in the earlier part, the touchscreen driver for the

i.MX6 processor has already been implemented on the Linux kernel. In the

further sections of this part, some commonalities are drawn between the Linux

kernel implementation and the Genode implementation (for i.MX53 processor).

This will give a brief idea on how to organize the code and data for implemen-

tation on Genode.

The corresponding Linux kernel driver �les can be found in [6] under the names

ft5x06_ts.c and ft5x06_ts.h. All the register addresses and macros have been

provided in the header �le in [6]. Any touch screen event is captured in a

structure. The following data is captured in the structure:

• x coordinate (of the event on the CTP)

• y coordinate (of the event on the CTP)

• Touch event type

• Touch ID

• Pressure

• Touch Point

38

The touchscreen driver implementation on the Genode side for i.MX53 proces-

sor can be found in the following �les:

<genode-dir>/repos/os/src/drivers/input/spec/imx53/egalax_ts.h and<genode-

dir>/repos/os/src/drivers/input/spec/imx53/driver.h

Please note that, these �les have implemented the touchscreen driver for a screen

which has been manufactured from a di�erent vendor. So, suitable changes have

to be made for accounting for the change of screen as well as change of processor.

However, there are some similarities between the touchscreen drivers of these 2

processors. Some of the relevant similarities have been identi�ed and a mapping

has been provided.

The following mapping has been identi�ed between Linux kernel and Genode:

1. I2C interface:

I2C interface is the basic component which is essential for the communi-

cation between the host and the CTP controller (FT5x06). In the linux

kernel implementation of the driver, this interface has been used. The

implementation of I2C interface already exists in the Genode source code.

It can be found in the following �le:

<genode-dir>/repos/os/src/drivers/input/spec/imx53/i2c.h

Genode implementation of the I2C interface includes write, send, receive,

start and stop functions. The send and receive (recv) functions are ex-

tensively utilized for the serial communication between the host and the

CTP controller.

2. Touchscreen event structure:

The touchscreen event (ts_event) structure which has been mentioned

39

above has it's Linux kernel implementation of it in the following �le:

kernel-imx/drivers/input/touchscreen/ft5x06.c

It's counterpart on the Genode side of implementation has been found in

the following �le:

<genode-dir>/repos/os/include/input/event.h

This event implementation has some additional features like the relative

x and y coordinates and keycodes. These may not be necessary for the

driver implementation because they haven't been used in the Linux side

of implementation.

Note: The event type de�nitions have been de�ned in the following �le on

the Linux side:

kernel-imx/include/linux/input.h

The event type values may come in handy while implementing the drivers

3. Work queue:

All the touch events whose data are stored in the structure (mentioned

above) are added to a queue before they are processed. This will ensure

that all the touch events are captured and are given the appropriate re-

sponse. As the queue has a FIFO (First In First Out) implementation,

all the touch events will be processed in the serial order. The linux ker-

nel implementation uses a structure workqueue_struct to implement the

queue. It is de�ned under ft5x0x_ts_data structure in the C �le in [6].

In Genode, the event queue has already been implemented in the following

�le:

<genode-dir>/repos/os/include/input/event_queue.h

This implementation provides the basic enqueue (add) function, dequeue

(get) function as well as functions for returning if the queue is empty

(empty), available capacity (avail_capacity) and also for resetting the

40

queue (reset) and submitting a signal (submit_signal).

4. Support Key:

In the Linux kernel implementation of the driver (i.e., in the C �le of

[6]), one can �nd the parameter - CFG_SUPPORT_TOUCH_KEY at

several places. For now, it's value has been set to 0 in the header �le in

[6]. However, in future, if one wants to make use of the HOME, SEARCH,

RETURN and touch key functions on the tablet, this will be set to 1.

(This is essentially if the tablet has buttons along with the touchscreen.

The device currently designed by RISE Lab of IIT Madras does not have

these buttons).

It's counterpart in Genode can be found in the following �le:

<genode-dir>/repos/os/include/input/mpr121.h

This may not be useful immediately and it can be avoided for time being.

5. Interrupts:

All the interrupts which have been used in the C �le in [6] have a counter-

part in Genode. Genode implements something called as interrupt handler

to take care of the interrupts called upon by functions. For the i.MX53

processor, the interrupt handler can be found in the following �le:

<genode-dir>/repos/os/src/drivers/input/spec/imx53/irq_handler.h

This interrupt handler can be utilized as it is without any changes. All

the changes which arise due to the di�erences between i.MX53 and i.MX6

processors will be in the interrupt numbers beings passed to the functions

in the interrupt handler.

I've identi�ed some interrupt values for the i.MX6 processor taken from

the reference manual of i.MX6 [8]. The interrupt values are:

41

• GPIO1 INT0 interrupt request = 97

6. Factory mode:

When the tablet has to function in the factory mode, a function under the

name ft5x0x_enter_factory has to be called. This function can be found

in the C �le in [6]. This function uses a �ush_workqueue function which

�ushes the existing queue of touchscreen events. This is on the Linux ker-

nel implementation side of it. On Genode, the �ush_workqueue's coun-

terpart resides in the following �le:

<genode-dir>/repos/os/include/input/component.h

This function �ushes the entire work queue which has the information

of the touchscreen events accumulated. This is an essential step for the

tablet to be put in factory mode.

7. GPIO interface:

The Linux kernel implementation uses the GPIO interface to write and

read suitable values to the registers of the device. It's Genode counterpart

can be found in the following �le:

<genode-dir>/repos/os/include/gpio/component.h

This interface has write, direction and read functions. These are the same

functions used in the C �le in [6] for writing to the registers.

42

Mapping of functions between Linux and Genode

Function Name in
Linux

Purpose of
Function

Interfaces used Genode
implementation

i2c_transfer
Returns number of
messages processed

I2C (De�nition) I2C Interface
(mentioned above)

ft5x0x_i2c_rxdata
Returns number of
messages received

i2c_transfer NA

ft5x0x_i2c_txdata
Returns number of
messages transmitted

i2c_transfer NA

ft5x0x_write_reg Write to register i2c_transfer NA

ft5x0x_read_reg Read from register i2c_transfer NA

delay_qt_ms Delay in milliseconds - Can be
implemented using

for loop

i2c_master_recv
Returns number of
bytes read

I2C de�nition I2C Interface

i2c_read_interface
Read data from
CTPM. Returns true
if successful

I2C NA

i2c_master_send
Returns number of
bytes written to the
slave

I2C de�nition I2C Interface

i2c_write_interface
Write data to CTPM.
Returns true if
successful

I2C NA

cmd_write
Sending a command
to CTPM

i2c_write_interface NA

byte_write Write to CTPM i2c_write_interface NA

byte_read
Read out data from
CTPM

i2c_read_interface NA

fts_ctpm_fw_upgrade
Burn the Firmware to
CTPM

ft5x0x_write_reg,
cmd_write,
byte_read,

delay_qt_ms,
byte_write,

ft5x0x_i2c_txdata

NA

i2c_get_clientdata
Fetch client data (in
touchscreen event
structure)

I2C de�nition To be added to I2C
Interface

fts_ctpm_auto_clb
Enable CTPM Auto
Calibration mode

ft5x0x_write_reg,
ft5x0x_read_reg

NA

continued next page.

43

ft5x0x_read_data
Read Touchsreen
event data into the
de�ned structure

ft5x0x_i2c_rxdata,
ts_event

NA (touchscreen
event structure is
implemented -

mentioned above)

input_event
Reports new input
event to the Host

spin_lock,
spin_unlock,

input_handle_event

Spinlock and
spinunlock have

been de�ned under
the names -

spinlock_lock &
spinlock_unlock in

[12]

input_report_abs
Report absolute

data about input to
Host

input_event NA

input_sync
Report Synchronous

input data
input_event NA

ft5x0x_report_value
Report touch point

data
input_report_abs,

input_sync

NA (touchscreen
event structure is
implemented -

mentioned above)

enable_irq Enable interrupts -

NA - Interrupt
Handler

implemented
(mentioned above)

ft5x0x_ts_pen_irq_work Pen interrupt
ft5x0x_read_data,
ft5x0x_report_value,

enable_irq

NA - Interrupt
Handler

implemented

ft5x0x_ts_interrupt
Send touchscreen
interrupt to host

disable_irq_nosync,
queue_work

NA - Interrupt
Handler, Event

queue implemented

ft5x0x_enter_factory
Function for

entering factory
mode

�ush_workqueue,
disable_irq_nosync,
ft5x0x_write_reg

NA -
�ush_workqueue
implemented in
component.h

(mentioned above)

ft5x0x_enter_work
Function to return
to normal mode

ft5x0x_write_reg,
ft5x0x_read_reg,

enable_irq

NA - Interrupt
Handler

implemented

ft5x0x_ts_init

Read and write
using registers using
GPIO interface - See
kernel-imx/drivers/
input/touchscreen/

ft5x06.c

gpio_request,
gpio_direction_output,
gpio_direction_in,
put, gpio_set_value,

I2C

NA - GPIO
interface has been
implemented in

[13]

*Some irrelevant functions have been omitted. Please refer to the C �le in [6].

44

Di�erences between i.MX53 and i.MX6 Processors (Image
Processing Unit)

The framebu�er for i.MX53 processor has already been implemented in Genode

and can be found in the following directory:

<genode-dir>/repos/os/src/drivers/framebu�er/spec/imx53

Since, i.MX53 and i.MX6 processors are very similar, one can make use of

the framebu�er of i.MX53 processor. However, some changes have to be made to

get it fully functioning. Fundamentally, these two processors di�er in the Image

Processing Unit (IPU) as far as the framebu�er is concerned. It was found from

the reference manuals of both the processors that the Image Processing Unit

memory map is di�erent.

The IPU memory map of i.MX6 processor can be found in section 37.5 in

[8] while the memory map of i.MX53 processor can be found in section 45.5.1

in [14]. There is a de�nite change in the memory addresses between both the

processors. This has to be accommodated when framebu�er for the i.MX6 is

implemented. The other modules are identical between the processors.

The memory addresses for i.MX53 processor on the Genode side can be

found in the following �le:

<genode-dir>/repos/os/src/drivers/framebu�er/spec/imx53/ipu.h

The above �le can be taken as a reference for the implementation of frame-

bu�er for i.MX6 processor. The touchscreen driver can be implemented using

the interfaces described above.

45

7 Future Scope

Genode is now successfully running on the tablet which is a proprietory device

designed by RISE Lab of IIT Madras. The next step is to develop drivers to

get all the hardware components of the tablet fully functioning. This docu-

ments provides the common interfaces and the mapping between Linux kernel

implementation and Genode implementation of the touchscreen driver. Other

components which also need support are:

• Wi�

• Audio

• GPRS

• USB

to name a few. Once all the devices are fully functional with adequate support,

it can be expected to move ahead with the idea of changing the kernel foundation

under Android from Linux kernel to microkernel.

Conclusion

Microkernel has complete knowledge of the memory access by components and

essentially places a lock on the memory. An attacker can get into the memory

through a vulnerability in the code. The microkernel doesn't allow the required

memory access in the event of an attack. Thus, a microkernel makes the oper-

ating system more secure. Hence, going forward with Genode is a step towards

a secure future.

46

The organization of the code makes it comfortable to integrate code into

Genode. This makes it an ideal setup to port Android onto microkernel. The

secure tablet (product of IIT Madras) runs Genode successfully. Device drivers

for the peripherals will result in a fully functioning secure tablet. This is meant

to be an end product for the consumer. The same functionalities can be achieved

with enhanced security on this tablet.

Summary

• Microkernels enhance security by restricting access to the memory

• Genode OS Framework allows integration of code while not compromising
on security with ease

• Secure tablet hardware speci�cations have been identi�ed

• Genode Operating System successfully runs on the secure tablet (designed
by RISE Lab of IIT Madras)

• Flashing is done with the help of MfgTool

• Uboot is the boot-loader used to bring up the kernel on the device

• Framebu�er can be utilized to develop display and touchscreen drivers for
the tablet

• Device drivers can be developed on Genode by drawing insights from the
Linux kernel implementation

47

Appendix

This appendix gives the technical details of the customized Secure tablet. The
following are the technical speci�cations of the device:

• Uses an i.MX6Q processor (Quad core)

• The motherboard is SabreSD with 1 GB of physical RAM

• The pins coming out of the tablet correspond to UART1 port (Base ad-
dress = 0x02020000, Interrupt = 58) and stand for the following:

� Black - Ground or GND

� Grey - Receive or RX

� Yellow - Transmit or TX

Please refer to the picture below for the location of pins on the tablet.

48

References

[1] Genode's git repository - https://github.com/genodelabs/genode

[2] Genode toolchain - https://sourceforge.net/projects/genode/�les/genode-
toolchain/16.05/

[3] IIT Madras' Genode git repository - https://github.com/iitmadras/genode

[4] Praveen Srinivas' query - https://sourceforge.net/p/genode/mailman/message/33648061/

[5] System Control Register - http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ddi0464f/BABJAHDA.html

[6] Linux kernel directory for i.MX6 (Available in Network Systems Lab,
Department of Computer Science & Engineering, IIT Madras) -
hki/myandroid/kernel_imx/drivers/input/touchscreen

[7] Picture credits - http://ecomputernotes.com/computer-graphics/basic-of-
computer-graphics/what-is-frame-bu�er

[8] i.MX6 Processor Reference Manual - https://community.nxp.com/docs/DOC-
101840

[9] FocalTech Capacitive Touch Panel Controller -
https://www.newhavendisplay.com/app_notes/FT5x06.pdf

[10] I2C Interface - https://www.engineersgarage.com/tutorials/twi-i2c-
interface

[11] Genode Foundations - 16.05 - http://genode.org/documentation/genode-
foundations-16-05.pdf

[12] Spin Lock Header - <genode-dir>/repos/base/src/include/base/internal/spin_lock.h

[13] GPIO Component Header - <genode-dir>/repos/os/include/gpio/component.h

[14] i.MX53 Reference Manual - https://cache.freescale.com/�les/32bit/doc/ref_manual/iMX53RM.pdf

[15] MfgTool Download link - https://www.nxp.com/webapp/sps/download/
license.jsp?colCode=IMX_6DQ_MFG_TOOL

49

	Introduction
	Motivation
	Objective
	Organization of this Document

	Building the Image for Tablet
	Generation of uImage
	Setting up the Build environment
	Building the uImage
	Resolved Build issues

	Flashing the uImage
	Flashing Tool & Procedure
	Flashing procedure
	Resolved flashing problems:

	Booting up Genode
	Boot settings & Issues
	Boot up Issues
	Tested Solutions & their outcomes

	Touchscreen Specification
	Overview
	Capacitive Touch Panel Module (CTPM)

	Mapping between Linux and Genode - Touchscreen Drivers
	Future Scope

