

Implementing GSM Base Transceiver Station

for Disaster Management

A Project Report

submitted by

Hari Venkat Kiran
EE13B026

under the guidance of
Dr.Devendra Jalihal

in partial fulfilment of the requirement for

the award of the degree of

 Bachelor of Technology

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

 JUNE 2017

Contents

1. Abstract 3

2. Abbreviations 3

3. List of Tables 3

4. Introduction 4

5. BTS System Overview 4

6. Installation and Troubleshooting YateBTS 8

7. Installation of Asterisk for VoIP 22

8. Power Requirement of the BTS 27

9. Range of the BTS 28

10. Conclusion and Future Scope 30

11. References 30

Page Number 2

ABSTRACT

This project is aimed at implementing a small scale private GSM network using open
source software and hardware enabled with WiFi and support for VoIP protocols.The project
also aims to investigate features of such a GSM base station including robustness, the range of
coverage and power consumption. The typical base transceiver station will require a host
processor to run the telephony engine that takes care of the GSM protocols and connects to the
VoIP Server. Raspberry Pi Model 3B, Model 2B and a HP laptop are the three different host
processors used here to compare their relative features. The telephony engine used here is the
open source project Yate and the interface with the GSM layer is through its extension
YateBTS. The radio transceiver used to communicate at the various GSM bands is implemented
using a Software Defined Radio. The radio in use is Nuand’s BladeRF x40. The VoIP server is
setup using the Raspberry Pi Distro called RasPBX on a Model 2B. The phone application
CSipSimple is used for registering the SIP clients. The BTS setup using the above components
is able to broadcast a network, place GSM calls within the network and connect to SIP clients
through an outbound VoIP server successfully. USB power meters are used to test the power
consumption for the BTS under different configurations and different processors. Range tests
are conducted by measuring the RSSI of the network on different connected phones.

ABBREVIATIONS:

BTS Base Transceiver Station

IAX Inter Asterisk Exchange

NIB Network in a Box

PBX Private Branch Exchange

SDR Software Defined Radio

SIP Session Initiation Protocol

VoIP Voice Over Internet Protocol

LIST OF TABLES

Table 1 Specifications of Raspberry Pi 2 Model B, Raspberry Pi 3 Model B:

Table 2 Power Measurement

Page Number 3

INTRODUCTION

Today GSM network has found widespread coverage all over India and even includes
most of the rural regions of the country. However there are still many remote places such as
along railway tracks in rural places containing little to almost zero population, where there is no
network coverage. Under normal conditions the lack of coverage in such places do not raise any
concern. However these locations which are cut-off from the rest of the world present a serious
problem during times of emergency when lack of real time communications adversely affect
relief efforts. One way to resolve this is by creating a fast deployable local network that will
enable communication in the local area and also have a dedicated backhaul to the rest of the
world. This local network should work without the need for specialised handsets so that it is
easily adaptable with the existing mobile phones and hence using the GSM/GPRS framework
alongside wireless VoIP protocols through WiFi will be the best fit solution.This private network
can then be connected to the existing GSM/LTE networks through a dedicated backhaul. The
components involved in setting up this Base Transceiver Station will be determined by the range
of coverage required, the number of channels and also the power requirements of the system.

BTS SYSTEM OVERVIEW

The Base Transceiver Station here consists of a Raspberry Pi acting as a linux server

that runs a set of open source software components developed under the Yate and YateBTS
project. It also consists of a Software Defined Radio which acts as the transceiver in the system.
Additionally Asterisk is also included to form a PBX that allows gateway to the outside world
through VoIP. Incidentally Yate alone is sufficient to connect through VoIP but Asterisk is used
here to make the system modular.

Yate and YateBTS:

Yate is a telephony engine whose name stands for ​Y​et ​A​nother ​T​elephony ​E​ngine. It
has a flexible routing engine that can easily be extended to voice, data, video and instant
messaging. Yate is mainly written in C++ and supports various scripting languages. Yate is
licensed under GNU General Public License.

YateBTS is a software implementation of the GSM/GPRS Radio network based on Yate.
As per the official documentation of yateBTS, there are two main parts : ​“ the lower layer
managed by the MBTS and the radio transceiver which handles the GSM part of the system and
the Network layer handled by Yate and consists of Yate Module, YBTS and other yate
application modules (Network in a Box, Javascript, accfile for outbound calls on SIP/IAX). The

Page Number 4

MBTS module connects to the Radio transceiver using a socket interface similar to the
connection with Network layer. The Javascript module handles RTP and SIP.”

Fig. Block Diagram of YateBTS System from official yate wiki

The MBTS is the radio resource manager handling the GSM aspects of the
communication and is interfaced with the VoIP features of Yate such as IAX/SIP through
yateBTS. When YateBTS is used as a standalone GSM/GPRS network connected by VoIP to
the outside world then it is called ​Network in a Box (NIB)

Software Defined Radios (SDR) :

As digital signal processing started becoming more and more powerful, conventional
radio hardwares like mixers, filters, amplifiers etc. could be replaced by software
implementations of the same. These software implementation essentially create a radio system
that could be programmed to transmit and receive a wide variety of protocols as per the
requirement. Originally developed for military applications, the decreasing cost of computing
resources has made the device an affordable and viable option replacing expensive hardware.

There are quite a few different SDRs available right now and for the purpose of this
project, ​Nuand’s BladeRF x40 is chosen. The device costs around USD420 and is an open

Page Number 5

source hardware with the design files made available to the public. The manufacturer
specifications of the BladeRF x40 are as follows:

Frequency Range: 300MHz to 3.8GHz

 FPGA: Altera Cyclone IV 40kLE

Power Options: Fully Bus Powered over USB 3.0

External Power Option via 5V DC barrel Jack

The BladeRF x40 contains a 40kLE FPGA that will run the software containing the signal
processing algorithms and control the Transceiver for example: GNU Radio etc.
BladeRF has stable software support in Windows, Mac and Linux. The firmware version can be
upgraded using a command line interface called ​bladeRF-cli

Fig. BladeRFx40 Fig. Raspberry Pi 2

Asterisk and FreePBX:

Asterisk is a software implementation of a Private Branch eXchange ​(PBX)​. Asterisk
provides features like voice call, Interactive Voice Response, conference calling etc. Asterisk
can also act as a proxy and provide communication between different protocols including Voice
over Internet Protocols ​(VoIP) like Session Initiation Protocol ​(SIP)​, Inter Asterisk eXchange
(IAX)​, and also as a gateway to Public Switched Telephone Networks ​(PSTN) with the help of
specialised hardware example: Sangoma cards for PSTN. Asterisk is released under dual
licence model using GNU General Public License for free software distribution and also a
proprietary software license to distribute commercially for unpublished components.

Page Number 6

FreePBX is a web based open source graphical user interface for Asterisk. The

graphical UI allows easier registration of users, configuration of extensions and other
administrative tasks. It is licensed under the GNU General Public License version 3. It supports
installation in Raspberry Pi.

Raspberry Pi:

Raspberry Pi is a credit card sized single board computer. They now form a series of
computers with varying processing power, memory, wireless adapters and power consumption.
The Pi hardware consists of a Broadcomm System on Chip which includes an ARM based
CPU, USB 2.0 peripherals, one Ethernet Port, Wireless adapter-Wifi Bluetooth.

Specifications of Raspberry Pi 2 Model B and Raspberry Pi 3 Model B :

Specs Pi 3 Model B Pi 2 Model B

SoC BCM 2837 BCM 2836

CPU Quad COrtex A53 @ 1.2GHz Quad COrtex A7 @ 900 MHz

RAM 1GB SDRAM 1GB SDRAM

Wireless 802.11n / Bluetooth 4.0 None

The Raspberry Pi is recommended to be powered with a 5V 2A power supply for Pi 3
model B according to the official documentation from the Raspberry Pi Foundation.

Page Number 7

Fig. Block Diagram of the Yate System (Green-WiFi, Blue GSM 2.5G)

INSTALLATION AND TROUBLESHOOTING -YATEBTS

Downloading the Raspbian Image:
The operating system can be downloaded at ​https://www.raspberrypi.org/downloads/raspbian/
The operating system used in this guide is Raspbian Jessie lite.
The image has to be installed in a memory card and the easier way to do it is by using an image
writing tool. The official page of Raspberry Pi suggest using “​Etcher​” available at
https://etcher.io/​ .
Ensure to download the appropriate version of the software based on your operating system,

and extract it.

Page Number 8

https://www.raspberrypi.org/downloads/raspbian/
https://etcher.io/

● Connect the removable device onto which the operating system is to be loaded. A
memory card reader can be used, if the memory card slot is unavailable.

● Open Etcher and Select the Raspbian operating system zip file in the first step.
● Select the correct device to create the live image.

Please make sure that the device selected is the “correct” one or you risk erasing any
other drive accidentally selected.

Remote Access of Raspberry Pi:

This following step is not required if an HDMI monitor is available during first boot. For
security reasons, ​SSH is disabled by default in the newer versions of Raspbian. If a monitor is
available then after a normal booting up of the Pi. It can be enabled by accessing the Raspberry
Pi configuration page by typing “​sudo raspi-config​” in the raspberry pi terminal. Otherwise it
can be enabled by modifying the Raspian Live image. After setting up the memory card with the
Raspbian image, mount it in your laptop and open the boot partition.In the ​boot partition of the
image, place an empty file called “​ssh​” without any extension. This will enable ​SSH in the Pi for
remote login.

Network Sharing and IP address

The Pi can be accessed remotely if it is part of the same network as your laptop. This
can be done in multiple ways. In Pi2 and older versions the Pi does not have onboard wifi
hardware. However it can be added by using USB WiFi ​adapters. If connected to a WiFi network
then the IP address can be looked up in the Router home page or directly from the Pi. In our
setup we use an ethernet cable directly connecting the Pi to the laptop and sharing the WiFi of
the laptop to the ethernet port.

Page Number 9

● In windows this can be done by opening Network and Sharing Centre after connecting
the laptop to a WiFi router. Right clicking the WiFi details will open a dropdown menu.
Clicking on ​Properties option will open a new window where on the top, a tab called
“Sharing” will be available. In the tab, we can check the option to share the WiFi to the
ethernet port. The laptop will then assign a valid IP address to the Pi through the
ethernet port. The IP address can be found out by opening the command prompt and
typing the following command “​arp -a​”. The command will show two sets of IP addresses
and the Pi can be recognised through the MAC address. All Raspberry Pi have a
recognisable MAC address with a fixed format. It can be looked up on the internet.

Fig. WiFi Sharing Settings in Windows

● In Ubuntu ​the network can be shared by accessing the network drop down menu from
the toolbar. When the Pi is connected through the ethernet port, select the ​edit
connections and further select the ​Wired Connection​. In the newly opened ​Edit
window under the ​IPv4 settings tab, Select the ​Method as ​Shared to other
computers​.This will share the WiFi connection to the ethernet port. The IP address of
the device connected to the ethernet port can be figured out by opening and the
Terminal and typing the following command ​“arp -a”. As in the previous case the
command will show two sets of IP addresses and the Pi can be recognised through the
MAC address. All Raspberry Pi have a recognisable MAC address with a fixed format. It
can be looked up on the internet.

Page Number 10

Fig. WiFi Sharing Settings in Ubuntu

SSH into the Pi:

In Windows ​a software called PuTTy can be downloaded at ​http://www.putty.org/ This is
an executable that will allow us to SSH into any device from Windows.

Fig. Putty on Windows

Page Number 11

http://www.putty.org/

The IP address of the Pi should be entered into the field and then the clicking on ​Open will
create a terminal running on the Pi. The default username is ​“Pi” ​and the default password is
“​raspberry​”.

In Ubuntu the Terminal has a command to SSH into the Pi. The format of the command
is: ​ssh username@ipaddress​. So for example: ​ssh pi@10.42.0.75 And then type in the
default password if it has not been changed by anyone.

Note: The PuTTy terminal will close the connection if it remains idle for long. This will
create issues during the installation of software packages in the Pi where the terminal
will be busy for long durations. If the connection is terminated then all the processes will
also be halted resulting in incomplete installations and other issues.

To work around the above mentioned issues it is possible by pushing the processes to the

background or by dissociating them from the terminal. An easy way to do is by using an
application called ​“screen”​. A new window from the putty terminal can be opened by typing in
“screen bash” . And when the terminal is held busy for a long time it can be disconnected by
pressing ​“Ctrl +A +D”​. If the PuTTy connection closes then the process will not be affected.
A list of such processes can be found by typing ​screen -ls. ​A “screen” can be reconnected to
work further by typing ​screen -r ​<name>​. No such issues occur in Ubuntu. But the same is still
recommended.

Installing BladeRF, yate , yateBTS

The following steps are after the successful booting into a Raspberry Pi either using a monitor
or by SSH-ing into the system. Reminder to share WiFi to the RPi if ethernet is used for SSH.

Installing BladeRF related libraries and tools:
First the bladeRF related libraries are to be installed in Rpi. It can be installed using the
following commands in the RPi Terminal

sudo apt-get update

sudo apt-get install git apache2 php5 bladerf libbladerf-dev libbladerf0 automake

Then we can test if the required libraries to recognize and run commands related to bladeRF
are present. Connect the bladeRF to the USB port (designed for 3.0 but RPi does not have a
USB3.0 port) and open the bladeRF command line interface.
(Note: In later versions of the repository for installation in ubuntu etc. the bladeRF CLI is not
included in the distribution)

sudo bladeRF-cli -i

Page Number 12

In the CLI you can type the command “version” to find out details about the Firmware and FPGA
version after type quit to exit bladeRF cli.
Prerequisite software required for the installation:

Now before we proceed further in the installation of Yate and yateBTS we need to install
additional applications that will be needed to download and build the source code for yate and
yateBTS

This is needed to checkout the yate and yateBTS source

sudo apt-get install subversion

This ​configuration script builder. After fetching Yate you will have to run autogen.sh to generate
the configure file

sudo apt-get install autoconf

The following two commands are very important to establish proper connection to baldeRF
while running yate and yateBTS.

sudo apt-get install libusb-1.0-0-dev
sudo apt-get install libgsm1-dev

Fetching yate and yateBTS using svn:

Yate is maintained by an active set of developers who updated the repository regularly to fix
bugs and other issues. Earlier versions had issues with compatibility with bladeRF and there
was a strong dependence on the version number of yate and the FPGA version on bladeRF.
This created difficulties and allowed only certain versions to work properly. However recently
yate provides tested bladeRF FPGA images and hence the version numbers should not be of
issue.

To continue with the installation fetch the yate source from the link
http://voip.null.ro/svn/yate/trunk

svn checkout​ ​http://voip.null.ro/svn/yate/trunk​ yate-SVN

cd yate-SVN
svn up
./autogen.sh

Page Number 13

http://voip.null.ro/svn/yate/trunk
http://voip.null.ro/svn/yate/trunk

./configure --prefix=/usr/local

make -j4

sudo make install-noapi

sudo ldconfig

 cd ..

The above step will take 10-15 minutes depending on the RPi version. In the yate-SVN folder
we can check the version of the repository and a lot more details by typing ​“svn info”​. The
repository version can be controlled by using standard svn commands like
svn up -r <version number>

The command above work by doing the following: ​autogen.sh will generate the ​configure
script ​which in turn checks the dependencies. This is very useful in debugging the installation
process in case the setup doesn’t work. The most important two are l​ibgsm1 and libusb which
are included as part of the prerequisites.

Note: You should look at the configure output and check that all features you need are
detected. If they are not you should first check if you are not missing the corresponding
development packages. ​If there are errors in ./configure step then you may need to install
additional packages indicated from the error messages in the terminal. This is the best way to
troubleshoot and also the most common cause of issues because necessary dependencies may
not have been present.
The image below captures the ./configure command and next to the dependencies we can
check if the necessary ones are present. If it doesn’t throw up any errors then checking for the
two main ones mentioned above should be sufficient.

Page Number 14

Fig. Terminal while running the ./configure command

The command make install-noapi is required when Doxygen or Kdoc are not available. They are
useful for documentation purposes and are not necessary for installation

Now fetch the yateBTS source from the link ​http://voip.null.ro/svn/yatebts/trunk

svn checkout​ ​http://voip.null.ro/svn/yatebts/trunk​ yatebts-SVN

cd yatebts-SVN
svn up ​ (​required for downloading latest version​)
./autogen.sh

Page Number 15

http://voip.null.ro/svn/yatebts/trunk
http://voip.null.ro/svn/yatebts/trunk
http://voip.null.ro/svn/yatebts/trunk

./configure --prefix=/usr/local

make -j4

sudo make install

sudo ldconfig

cd ..

The above step will also take 10-15 minutes depending on the RPi version.

Next, we will symlink the NIB web UI into our apache www folder:

cd /var/www/html/

sudo ln -s /usr/local/share/yate/nib_web nib

And provide “write” permission to the configuration files:
 sudo chmod -R a+w /usr/local/etc/yate

You can now access your BTS web User Interface from the browser in your laptop by typing the

following URL in the search bar. This is a webpage hosted in the Pi and was why apache was

downloaded as one of the prerequisite software.

http://ip-of-your-rpi/nib

Configuration

● Set the following values in the NIB web interface. For testing purposes. Note : We are
using the GSM-R (Railways band) to reduce interference with existing commercial
carriers. The GSM bands are all licensed and hence the experiment should ideally be
conducted in a Faraday cage.

● Open the ​/usr/local/etc/yate/ybts.conf​ file either with nano or vi

sudo nano /usr/local/etc/yate/ybts.conf

● And update the following values:(See Screenshot below for values)

Radio.Band=900

Page Number 16

Radio.C0=91

Identity.MCC=YOUR_COUNTRY_MCC (001)

Identity.MNC=YOUR_OPERATOR_MNC (01)

Identity.ShortName=yateBTS

Radio.PowerManager.MaxAttenDB=10

Radio.PowerManager.MinAttenDB=10

● Now, edit the ​/usr/local/etc/yate/subscribers.conf​: To do so the terminal based text editor

“nano” can be used. The following command can be used to access the file.

sudo nano /usr/local/etc/yate/subscribers.conf

● Now change to following entries in the file to the ones specified below

country_code=YOUR_CONTRY_CODE

regexp=.*

● The commands to save the file will be displayed in the bottom in the terminal.

Page Number 17

WARNING Using the ​.* regular expression will make() ​EVERY GSM phone in your area connect

to your BTS.Please set the final values as seen here

Fig. Network in a Box (NIB) Settings

The Options for the MCC and MNC are the generally used ones for testing purposes.
The short name only works for a paid version of the software and will generally default to the
name “Test”.
The Radio Power manager Manager sets the power output by the transceiver and is actually the
attenuated range of operation . It means that the actual transmit power is from -Min dB to -Max
dB attenuated with respect to the maximum possible transmit power.
The call logs option can be switched on to help examine the durations of the calls and the
frequency of successful ones over dropped ones. Yate has a non queueing system for
non-emergency calls meaning calls will be dropped if the network is busy. This can be used to

Page Number 18

figure out problems with the robustness of the system.

The option LAC is “​local Area Code​” and is assigned arbitrarily. Incase of multiple BTS units
then the LAC has to be unique to each of them. The remaining parameters are also useful in
case of multiple cells, and multiple BTS units.

● Finally, we can start the new BTS by executing the command (with the BladeRF

plugged in)

sudo yate -s

● If everything was configured correctly, the following messages will be displayed,

Starting MBTS...

Yate engine is initialized and starting up on raspberrypi

RTNETLINK answers: File exists

MBTS ready

At this point, the middle LED for the bladeRF should start blinking. This indicates that the FPGA

is properly loaded and that the system is up and running. In case there are issues present, then

running the command ​sudo yate -vvv CDa -s ​will provide verbose output messages that are

color coded.

Connecting to the Network:

Now if the above settings displayed in the NIB web UI are used then the network setup will have

the name ​TEST -001 - 01​. Any phone can be connected to the network by accessing

“​Settings​”. Under that select the option related to ​Cellular networks or other similarly named

options. And under that search for network operators. Don’t forget to disable the

“automatic” option. Also it would help to set the preference to ​2G networks​. The network setup

from our BTS will be a 2.5G network. The system works with​ dual SIM phones ​too.

Note: It has been claimed in another study that the phone softwares are designed to connect to

the faster networks in case of resets, which are the 3G and 4G networks .This may affect the

Page Number 19

phone’s connection to our BTS but it hasn’t been observed conclusively. This plays a more

important role in network spoofing and not related to the goal of our setup.

Under the available networks select the Test Network broadcast from our BTS. Since it is not

the home network of the SIM card being used the phone will consider it to be under ​roaming

conditions​.

The signal strength, RSSI and other related parameters can be measured using an application

called Network Cell Info lite available in Android play store. This will give us an approximate

indication of the strength of the signal (doesn’t update fast enough to test the range. Needs to

be reopened for more accuracy) and will help in rough estimation of the range.

The Phone number is also assigned by yate through a message sent while connecting to the

network for the first time. It is a 9 digit number where the first 2 digits are the country code

specified in the settings. While the number hasn’t changed generally, it has been observed that

the number assigned had changed abruptly once without any indication.

Page Number 20

Fig.Settings to connect to Base Station. And monitoring on Cell Info App

Page Number 21

The above images show the setup on the phone for connecting to the BTS and also checking its
signal strength and other related parameters. It is to be noted that SMS functionality is also
available.

INSTALLING ASTERISK SERVER FOR​ ​VoIP :

 Note: Will require a router to allow for SIP clients .

Yate also allows for outbound VoIP setup. To test the same an asterisk server can be setup on
another system including another Pi or even on the same one. Presently the more stable of
installations of asterix is through a pre-installed image of Raspbian called RasPBX.

The RasPBX OS can be downloaded from the following page:
http://www.raspberry-asterisk.org/downloads/ And installed following the process mentioned
earlier using etcher directly without any need for modifying or addition of any file after mounting
it. The login credentials have been updated during their pre-installation into:
User name: root
Password: raspberry

Upon sshing into the RasPBX system type the following commands to update the system

 raspbx-upgrade

Accept the upgrade prompt and the step may take a few minutes to complete. Follow this by
configuring the timezone for the Pi.

configure-timezone

Note: the above step will work in ubuntu but may have issues in PuTTy depending on opening
the graphical window for configuring.

Now to configure the timezone for Asterisk/FreePBX by manually editing through the console.
First view the contents of the directory ​/usr/share/zoneinfo ​and find your timezone.

ls /usr/share/zoneinfo

ls /usr/share/zoneinfo/Asia

And then copy your timezone over to /etc/localtime .This has to be done by properly selecting
the appropriate timezone and replace the command with the appropriate country/timezone.

Page Number 22

http://www.raspberry-asterisk.org/downloads/

cp /usr/share/zoneinfo/Asia/Kolkata /etc/localtime

Then reboot the system by typing ​reboot​ in the terminal

Expanding the file system. This needs to be done to allow the OS to make use of the full size of

the memory card. It is done by first viewing the size of the partition called /dev/root by using the

command ​df -h If the root partition shown is around 4GB and the memory card is for a much

larger size then it can expanded.

Then by running the ​raspi-config command and choosing the ​Advanced options to expand

the filesystem. Then upon rebooting the root partition will fill to the size of the memory card.

Note: Again the raspi-config command will open a graphical window and that may cause issues

in PuTTy.

Asterix/ FreePBX Configuration:

Similar to the NIB interface , FreePBX is a graphical UI that can be accessed through a browser

since it is hosted in the RasPBX system. This will be the home page of the server and hence

can be accessed by just typing in the IP address of the RasPBX system in the browser of your

laptop.

Click on the icon titled “​FreePBX administration​” and the login and password for it is “​admin​”

both times. Upon logging into the FreePBX we can add new SIP extensions. Under the menu

“​Applications​” click on ​Extensions​. And then click on ​Add Extension > Add New Chan_SIP
Extension​.

In order to register a SIP Client, we need to create a SIP extension. Edit the fields under New
Chan_SIP Extension appropriately: Given below is an example:

User Extension: ​This will be the number assigned to the SIP Client and can be any number.
For our example we can start with 2001.
Display name: ​ This field is for the name to be assigned to the SIP extension.
Secret: ​This is the password to be used to authenticate/register a new SIP client to this
extension.

Page Number 23

Fig. FreePBX Settings to Create New Extension

Page Number 24

Note​: When all the necessary fields have been entered, Click on ​Submit ​and also follow it by
clicking on ​Apply-Config​ located on the top right of the screen.

The process can be repeated to set up another extension to allow two users to connect and test
the system.

Registering a SIP Client:

The SIP client has to be part of the same network as the Pi. The SIP Client can be registered on
a computer or a phone. In android systems there are quite a few popular apps for SIP clients
and we use one called ​CSipSimple​.

Fig. CSipSimple Application Settings and GSM to VoIP Inbound Call

While registering the SIP client the following information will be needed
IP Address of the Pi, UserName/AccountName, Password to authenticate the SIP Client to use
the particular extension.

In the CSipSimple app, click on the ​Add Account > Basic

Account Name : ​<Name to be given>
User:​ <any extension number created in FreePBX> example: 2001
Server:​ <IP Address of the Pi> example: 10.42.0.90

Page Number 25

Password:​ <Password set in the FreePBX for that particular extension>

Now the Client will be registered to RaspBX VoIP Server.

VoIP Outbound Calls from YateBTS to SIP Server:

YateBTS can also be registered as a SIP client and the GSM handsets on the Yate side can

call other SIP clients outside the GSM network through this outbound option. The option to
register YateBTS as a SIP client can be found in NIB of the yateBTS Raspberry Pi.The user
name will be the extension number to be associated with the BTS and the password will be the
one used for the extension setup in FreePBX. The server address will be the IP Address of the
RasPBX VoIP Server. If yateBTS is installed in the same Pi as Asterisk then the loopback
address 127.0.0.1 can be used instead.

Fig. NIB Settings for Outgoing VoIP

If NIB is not accessible then the outbound settings can be configured in the file
/usr/local/etc/yate/accfile.conf ​.The file entry should be according to the image below.

Page Number 26

Fig. Contents of accfile.conf

The section should be renamed to ​outbound​. And the line should be changed to ​enabled=yes​.
The field ​registrar ​should contain the IP Address of the VoIP Server and should be
uncommented. The other fields need not be disturbed.

Essentially the YateBTS will search for the dialed number in the GSM registry and upon not

finding it, Yate will then connect on the outbound line through the internet (of the yateBTS
Raspberry Pi) to the RasPBX VoIP server and then the VoIP server will place the call.

Presently this allows for calls to go one way from the GSM network to the outside. However the
reverse is not possible through the existing setup because the current setup has the BTS itself
registered as a client which abstracts all the GSM phones on its side of the network from the
VoIP server. Additionally multiple simultaneous phone calls can be placed to the VoIP network
from behind the BTS and this was tested by placing two simultaneous calls between four
phones.

VoIP Server can also be connected to the outside world through a trunk by purchasing a
license/lease from commercial SIP service providers.

POWER REQUIREMENT OF THE BTS
​The power drawn is measured by a couple of USB Power meters which are generally used to

measure the strength of power sources. Their accuracy is not exactly known, however they do
provide a reasonable estimate of the power consumed at the source and also by the BladeRF.
The power is measured at the source for both the Raspberry Pi Model 2B and Model 3B as well
as at the USB port powering the BladeRF. As for the laptop instance, the power is only
measured at the BladeRF USB port. The power delivered to BladeRF’s Transceivers can be

Page Number 27

controlled through the software and YateBTS allows the settings to attenuate the TRX power
with respect to the D/A converters. The settings can be changed either using the NIB_WEB tool
or by changing the values in the file ​/usr/local/etc/yate/ybts.conf​.

Power Measurement:

Radio Power
Attenuation

(dBm)

Source (W) BladeRF (W)

Pi Model 2B Pi Model 3B Pi Model 2B Pi Model 3B HP Laptop

0 6.00 6.10 3.37 3.38 3.56

10 5.51 5.50 2.93 2.94 2.96

20 5.36 5.4 2.91 2.90 2.86

35 5.16 5.4 2.86 2.86 2.77

Note: For higher values of attenuation the change is current drawn will be much smaller and
hence the power meters may not be as accurate as desired at these higher attenuation values.

As can be inferred here there is no significant change in power consumed and supplied by the

two Raspberry Pi models and as such provide the same effect. However while conducting the
tests it had been noticed that when the attenuation is kept zero at the TRX, the BladeRF is reset
multiples times by the software and this could be due to insufficient power supply from the
Raspberry Pi. It can also be noticed from the table that the power supplied by the laptop is
higher than the other two at zero TRX attenuation. Since the power supplied under the
remaining attenuation conditions are very similar, this reinforces the inference about insufficient
power supply at zero TRX attenuation.

RANGE OF THE BTS :

The range of any BTS is dependent on a multitude of factors which include transmit power,
frequency used, height of the antenna over surrounding terrain, antenna characteristics and
gains, density of the obstacles in the region eg: suburban, cities, etc. A few of these parameters
are within control of the BTS system and can be tuned for optimum range. The range is tested
here by measuring the Received Signal Strength Index (RSSI) on the phone. The app used is
Network Cell Info Lite. For a phone to be able to communicate over GSM the RSSI should be
above -110dBm below which the phone will drop the connection with the network. For our BTS
system running on a HP laptop with normal antennas found in WiFi routers and configured at
zero attenuation from the maximum for TRX power, the RSSI measurements were carried out
on the roof of the Electrical Sciences Building(ESB) IITM. The BTS was placed on a table on top
of the water tank which was the highest point on the terrace. The phones remained connected

Page Number 28

to the network all through the terrace of ESB and occasionally disconnected when behind the
array of solar panels. However at the farthest boundaries of the ESB the phones were
disconnected from the network.

There are a couple of ways to increase the coverage of the network.

 ​Antenna :
The antenna plays an important role in the gain introduced to the system. Directional antennas
increase the gain of a system along one direction, whereas omni directional antennas radiate
uniform power in all the directions. The antennas can also be placed at a much higher location
than the base station and can further increase the range of the system.

Power Amplifier :
A power amplifier can significantly increase the transmit power of the BTS and can increase the
gain of the system which in turn will increase the distance too. Typically a 6dBm increase in
transmit power should see a doubling of the range.

Fig. Power Amplifier RFMD6886

In our BTS, the power amplifier RFMD6886 had been used to increase the transmit power. It
had been tuned to add a gain of 20dBm to the BTS. The power amplifier has an output
saturation power of 36.5dBm. The BTS should be configured to input within the limit, taking into
consideration its tuned gain, to ensure saturation does not occur in the power amplifier.

Page Number 29

CONCLUSION AND FUTURE SCOPE

The project has been able successfully to set up a private GSM network enabled with wifi for
VoIP communication. The system is portable and very easy to deploy within a short time. The
current hardware supports one 200KHz channel and hence 7 calls can be placed
simultaneously. At present the system supports two way GSM phone calls, SMS functionality
and GSM to SIP calls. With an appropriately tuned Power amplifier the TRX of the bladeRF can
be run at attenuation values that are stable with the Raspberry Pi models, thus ensuring the
portability of the system. The success rates for the calls placed are not uniform over time and
the reason behind the dropping of calls or network congestion have not been exactly
established. As for possible improvements to the system, a much more powerful
omnidirectional antenna can easily double the coverage of the system. Also if the linux server
could supply more power then it can itself be configured to run as a wireless access point
thereby removing the need for a router for the VoIP communication. The Raspberry Pi model 3B
does have a wireless adapter that can be configured as an access point. However adding
another antenna for the wifi will seriously strain the Pi when it is already powering the BladeRF.
Other single board computers whose specifications are more powerful than the Pi model 3B can
be tested. An aspect that had not been properly investigated is the LTE backhaul from the BTS
to connect it to the rest of the world’s GSM network. While the best way to introduce this is via
dedicated hardware for the LTE backhaul, alternative plausible solutions are also present which
include using voice enabled 4G USB dongles. The dongles communicate with VoIP servers and
outbound calls can be made from the BTS. The effectiveness of this alternative has not been
tested here. In conclusion the BTS established here has the potential to be a viable and field
deployable solution provided the necessary avenues for increasing range and robustness are
explored further.

REFERENCES:

1. Kenneth van Rijsbergen, The effectiveness of a homemade IMSI catcher build with
YateBTS and a BladeRF, University of Amsterdam
http://www.delaat.net/rp/2015-2016/p86/report.pdf

Page Number 30

http://www.delaat.net/rp/2015-2016/p86/report.pdf

