
Breaking AES using
DPA and CNN Techniques

A Project Report

submitted by

Devendra Vamsi Korikana
(EE13B022)

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGYMADRAS

MAY 2017

THESIS CERTIFICATE

This is to certify that the thesis titled Breaking AES using DPA and CNN Techniques,

submitted by Devendra Vamsi Korikana, to the Indian Institute of Technology, Madras, for

the award of the degree of Bachelor of Technology, is a bonafide record of the research work

done by him under our supervision. The contents of this thesis, in full or in parts, have not

been submitted to any other Institute or University for the award of any degree or diploma.

Prof.Chester Rebeiro
Research Guide
Professor
Dept. of Computer Science
IIT-Madras, 600036

Prof.Andrew Thangaraj
Research Co-Guide
Professor Place: Chennai
Dept. of Electrical Engineering Date:
IIT-Madras, 600036

ACKNOWLEDGEMENTS

This work would not have been possible without the guidance and the help of several peo-

ple. I take this opportunity to extend my sincere gratitude to all those who made this thesis

possible.

First, I would like to thank all my teachers who bestowed me with good academic knowl-

edge. I am indebted to my advisor Prof. Chester Rebeiro whose expertise, generous guidance

and support made it possible for me to work on a topic that was of great interest to me.

I would like to thank my family for giving support and guidance all through my life. I

would also like to thank all my friends and well-wishers for helping me in difficult times and

being a good source of support and guidance.

2

Contents

Acknowledgments

Abstract

1 Introduction

1.1 AES

1.2 Side Channel Attacks

2 Overview of Techniques

2.1 DPA

2.2 CNN

3 Experiment

3.1 DPA

3.1.1 Procedure

3.1.2 Result

3.2 CNN

3.2.1 Procedure

3.2.2 Result

4 Conclusion and Future work

Abstract

Template attack is the most common and powerful pro�led side chan-

nel attack. It relies on a realistic assumption regarding the noise of the

device under attack: the probability density function of the data is a mul-

tivariate Gaussian distribution. To relax this assumption, a recent line

of research has investigated new pro�ling approaches mainly by apply-

ing machine learning techniques. The obtained results are commensurate,

and in some particular cases better, compared to template attack. In this

work, we propose to continue this recent line of research by applying more

sophisticated pro�ling techniques based on deep learning.

1 Introduction

1.1 AES

The Advanced Encryption Standard, or AES, is a symmetric block cipher es-
tablished by the U.S. National Institute of Standards and Technology (NIST)
in 2001. It is based on a design principle known as a substitution-permutation
network, a combination of both substitution and permutation, and is fast in
both software and hardware. Following are the three major variants of AES in
use

Key length No.of Rounds

AES-128 16 bytes 10
AES-192 24 bytes 12
AES-256 32 bytes 14

Table 1: Three Major Variants of AES in use

AES takes 16 bytes of plain text at once and arranges them in a 4Ö4 matrix
of bytes, termed the state. All the operations are performed in the �eld GF(28).
The �eld's irreducible polynomial is x8 + x4 + x3 + x+ 1. Each round consists
of the following steps as shown in Figure 1.

� Byte Substitution - In this step each byte ai,j in the state matrix is
replaced with a byte S(ai,j) using an 8-bit substitution box, the Rijndael
S-box[1]. This operation provides the non-linearity in the cipher. The
S-box used is derived from the multiplicative inverse over GF(28), known
to have good non-linearity properties. To avoid attacks based on simple
algebraic properties, the S-box is constructed by combining the inverse
function with an invertible a�ne transformation. The S-box is also chosen
to avoid any �xed points, i.e., S(ai,j) 6= ai,jand also any opposite �xed
points, i.e., S(ai,j)⊕ ai,j 6= FF16.

1

Figure 1: AES-128 Encryption

� Shift Rows - The Shift Rows step operates on the rows of the state, it
cyclically shifts the bytes in each row by a certain o�set. For AES, the �rst
row is left unchanged. Each byte of the second row is shifted one to the
left. Similarly, the third and fourth rows are shifted by o�sets of two and
three respectively. For blocks of sizes 128 bits and 192 bits, the shifting
pattern is the same. Row n is shifted left circular by n− 1 bytes. In this
way, each column of the output state of the Shift Rows step is composed
of bytes from each column of the input state. For a 256-bit block, the �rst
row is unchanged and the shifting for the second, third and fourth row
is 1 byte, 3 bytes and 4 bytes respectively. The importance of this step
is to avoid the columns being linearly independent, in which case, AES
degenerates into four independent block ciphers.

� Mix columns - In the Mix Columns step, the four bytes of each column of
the state are combined using an invertible linear transformation. The Mix
Columns function takes four bytes as input and outputs four bytes, where
each input byte a�ects all four output bytes. Together with Shift Rows,
MixColumns provides di�usion in the cipher. During this operation, each
column is transformed using a �xed MDS matrix. Matrix multiplication is
composed of multiplication and addition of the entries. The MixColumns
step can also be viewed as a multiplication by the below shown particular
MDS matrix in the �nite �eld GF(28).

2

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

This process is described further in the article Rijndael mix columns[2].

� Add RoundKey - In the Add RoundKey step, the subkey is combined
with the state. For each round, a subkey is derived from the main key using
Rijndael's key schedule[3], each subkey is the same size as the state. The
subkey is added by combining each byte of the state with the corresponding
byte of the subkey using bitwise XOR.

On systems with 32-bit or larger words, it is possible to speed up execution of
this cipher by combining the Byte Substitution and Shift Rows steps with the
Mix Columns step by transforming them into a sequence of table lookups. This
requires four 256-entry 32-bit tables, and utilizes a total of four kilobytes(4096
bytes) of memory - one kilobyte for each table. A round can then be done
with 16 table lookups and 12 32-bit xor operations, followed by four 32-bit
xor operations in the Add RoundKey step. If the resulting four-kilobyte table
size is too large for a given target platform, the table lookup operation can
be performed with a single 256-entry 32-bit (i.e. 1 kilobyte) table by the use
of circular rotates. Using a byte-oriented approach, it is possible to combine
the Byte Substitution, Shift Rows, and Mix Columns steps into a single round
operation[4].

1.2 Side Channel Attacks

Side Channel attacks(SCA) are nowadays well known and most designers of
secure embedded systems are aware of them. They exploit information leak-
ing from the physical implementations of cryptographic algorithms. Since, this
leakage(e.g. the power consumption or the electromagnetic emanations) de-
pends on the internally used secret key, the adversary may perform an e�cient
key-recovery attack to reveal these sensitive data. SCA attacks have been proven
to be several orders of magnitude more e�ective than the conventional mathe-
matical analysis based attacks and are much more practical to mount. Amongst
side channel attacks, two classes may be distinguished.

� The so-called pro�ling SCA are the most powerful kind of SCA and consist
of two steps. First, the adversary procures a copy of the target device and
uses it to characterize the dependency between the manipulated data and
the device behavior. Secondly, he performs a key-recovery attack on the
target device. The set of pro�led attacks includes Template attacks[5] and
Stochastic cryptanalyses (aka Linear Regression Analyses) [16,47,48].

� The set of so-called non-pro�ling SCA corresponds to a much weaker ad-
versary who has only access to the physical leakage captured on the target

3

device. To recover the secret key in use, he performs some statistical anal-
yses to detect dependency between the leakage measurements and this
sensitive variable. The set of non-pro�led attacks includes Di�erential
Power Analysis (DPA)[6], Correlation Power Analysis (CPA)[7] and Mu-
tual Information Analysis (MIA)[8].

A recent line of works has investigated new pro�ling attacks based on Machine
Learning (ML) techniques to defeat both unprotected and protected crypto-
graphic implementations. These contributions focus mainly on two techniques:
the Support Vector Machine (SVM)[9, 10]and the Random Forest (RF)[11].
Practical results on several data-sets have demonstrated the ability of these at-
tacks to perform successful key recoveries. Over the past few years, there has
been a resurgence of interest in using Deep Learning (DL) techniques which
have been applied in several signal processing areas where they have produced
interesting results. Deep learning is a parallel branch of machine learning which
relies on sets of algorithms that attempt to model high-level abstractions in
data by using model architectures with multiple processing layers, composed of
a sequence of scalar products and non-linear transformations called activation
functions. Several recent results have demonstrated that DL techniques have
convincingly outperformed other existing machine learning approaches in im-
age and automatic speech recognition. In this work, we propose to apply DL
techniques in side channel context.

2 Overview on Techniques

2.1 DPA

Di�erential Power Analysis(DPA) attacks are the most popular type of power
analysis attacks. This is due to the fact that DPA attacks do not require detailed
knowledge about the attacked device. Futhermore, they can reveal the secret
key of a device even if the recorded power traces are extremely noisy. The goal
of DPA attacks is to reveal secret keys of cryptographic devices based on a large
number of power traces that have been recorded while the device encrypt or
decrypt di�erent data blocks. In case of DPA attacks, the shape of the traces
along the time axis is not so important. It analyzes how the power consumption
at �xed points of time depends on the processed data. Hence, DPA attacks
depend exclusively on the data dependency of the power traces. Following is
the strategy followed in a DPA attack:

Step1: Choosing an Intermediate Result of the Executed algorithm.
The �rst step of a DPA attack is to choose an intermediate result of the cryp-
tographic algorithm that is executed by the attacked device. This intermediate
result needs to be a function f(d, k), where d is a known non-constant data value
and k is a small part of the key. Intermediate resuts that ful�ll this condition
can be used to reveal k . In most attack scenarios, d is either the plaintext or
the ciphertext.

4

Step2: Measuring the Power Consumption. The second step of a DPA
attack is to measure the power consumption of the cryptographic device while
it encrypts or decrypts D di�erent data blocks. For each of these encryption
or decryption runs, the attacker needs to know the corresponding data value d
that is involved in the calculation of the intermediate result chosen in step1. We
write these data values as vector d= (d1, d2,, dD), where di denotes the data
value in the ith encryption or decyption run. During each of these runs the
attacker records a power trace. We refer to the power trace that corresponds
to data block di as t

′

i = (ti,1,ti,T) , where T denotes the length of the trace.
The attacker measures a trace for each of the D data blocks, and hence, the
traces can be written as matrix T of size D × T . It is important for DPA
attacks that the power traces are correctly aligned. This means that the power
consumption values of each column tjof the matrix T need to be caused by the
same operation. In order to obtain aligned power traces, the trigger signal for
the oscilloscope needs to be generated in such a way that the oscilloscope records
the power consumption of exactly the same sequence of operations during each
encryption or decryption run.

Step3: Calculating Hypothetical Intermediate Values. The next step of
the attack is to calculate a hypothetical intermediate value for every possible
choice of k. We write these possible choices as vector k= (k1,, kK), where
K denotes the total number of possible choices fork. In the context of DPA
attacks, we usually refer to the elements of this vector as key hypotheses. Given
the data vector d and the key hypoteses k, an attacker can easily calculate
hypothetical intermedite values f(d, k) for all D encryption runs and for all K
key hypoteses. The following formula is used for this and it results in a matrix
V of size D ×K.

vi,j = f(di, kj) where i = 1,D j = 1,K Column j of V contains the
intermediate results that have been calculated based on the key hypoteses kj .
It is clear that one column of V contains those intermediate values that have
been calculated in the device during the Dencryption or decryption runs. k

contains all possible choices for k. Hence, the value that is used in the device is
an element of k. We refer to the index of this element as ck. Hence, kck refers
to the key of the device. The goal of DPA attacks is to �nd out which column
of V has been processed during the D encryption or decryption runs.

5

Figure 2: Block Diagram Illustrating the steps 3 to 5 of a DPA attack

Step4: Mapping Intermediate Values to Power Consumption values.
The next step of the attack is to map hypothetical Intermediate values V to
a matrix H of hypothetical power consumption values. For this purpose, the
attacker uses the power models like Hamming-distance and Hamming-weight
models. There are also many other ways to map data values to power consump-
tion values, the mentioned are the most commonly used ones.

Step5: Comparing the Hypothetical Power consumption Values with

the Power Traces. After having mapped V to H, the �nal step of a DPA
attack can be performed. In this step, each column hi of the matrix H is
compared with each column tjof the matrix T. The reult of this comparison
is a matrix R of size K × T , where each element ri,jcontains the result of the
comparison between the columnshi and tj . Higher the value ri,j , the better the

6

columns hiand tj match. The key of the attacked device can hence be revealed
based on the following observation. The power traces correspond to the power
consumption of the device while it executes a cryptographic algorithm using
di�erent data inputs. The intermediate result that has been chosen in step 1
is a part of this algorithm. Hence, the device needs to calculate vck during the
di�erent executions of the algorithm. Consequently, also the recorded traces
depend on these intermediate values at some position. We refer to this position
of the power traces as ct, i.e, the column tct contains the power consumption
values that depend on the intermediate values vck.

The hypothetical power consumption values hck have been simulated by the
attacker based on the values vck. Therefore the columns hckand tctare strongly
related. In fact, these two columns lead to the highest value in R, i.e, the
highest value of the matrix R is the value rck,ct. An attacker can hence reveal
the index of the correct key ck and the moment of time ct by simply looking for
the highest value in the matrix R. It can also happen that all values of R are
approximately the same. In this case, the attacker has usually not measured
enough power traces to estimate the relationship between the columns of H and
T. The more traces an attacker measures, the more precisely the attacker can
determine the relationship between the columns.

2.2 CNN

2.2.1 Perceptron

The perceptron is the simplest neural network model[12]. It is a linear classi�er
that uses a learning algorithm to tune its weights in order to minimize a so-
called loss function1 as described in below diagram. We detail hereafter how
perceptron works to perform classi�cation:

� �rst, an input vector X = (x1, ...xn)∈ Rn is presented as an entry to the
perceptron.

� then, components of X are summed over the weights wi∈R of the percep-
tron connections (i.e. w0 +

∑n
i=1 wixi, with w0being a bias).

� �nally, the output of the perceptron is computed by passing the previously
computed sum to an activation function2 denoted f .

1The loss (aka cost, error) function quanti�es in a supervised learning problem the compat-
ibility between a prediction and the ground truth label (output). The loss function is typically
de�ned as the negative log-likelihood or the mean squared error.

2In the case of the perceptron, the activation function is commonly a Heaviside function.
In more complex models (e.g. the multilayer perceptron that we will describe in the next
section), this function can be chosen to be a sigmoid function (tanh).

7

Figure 3: Representation of a Perceptron

During the training phase, the perceptron weights, initialized at zeros or
small random values, are learned and adjusted according to the pro�ling data-
set (X(i), yi). By e.g. applying a gradient descent algorithm, the goal is to
�nd/learn the optimal connecting weights moving the perceptron outputs as
close as possible to the correct labels/scores (e.g. to minimize the sum of squared
di�erences between the labels yiand the corresponding perceptron's output).

2.2.2 Multilayer Perceptron

A Multilayer Perceptron (MLP) is nothing more than a speci�c way to combine
perceptrons in order to build a classi�er for more complex data-sets. As shown
in Figure 4, the information is propagated from the left to the right and each
units (perceptrons) of a layer is connected to every unit of the previous layer in
this model. This is called a fully connected network. Each neuron belongs to a
layer and the number of layers is a parameter which has to be carefully chosen
by the user.

Figure 4: Example of MLP, where each node is a perceptron

8

An MLP is made of three di�erent types of layers:

� Input Layer: in the traditional model, this layer is only an intermediate
between the input data and the rest of the network. Thus the output of
the neurons belonging to this layer is simply the input vector itself.

� Hidden layer: this layer aims at introducing some non-linearity in the
model so that the MLP will be able to �t a non-linear separable data-
set. Indeed, if the data that have to be learned are linearly separable,
there is no need for any hidden layer. Depending on the non-linearity
and the complexity of the data model that has to be �t, the number
of neurons on the hidden layer or even the number of these layers can
be increased. However, one hidden layer is su�cient for a large number
of natural problems. Regarding the number of neurons on the hidden
layers, it has been demonstrated that using a huge number of neurons
can lead to over-�tting if the model that has to be learned is close to a
linear one. It means that the algorithm is able to correctly learn weights
leading to a perfect �t with the training data-set while these weights are
not representative of the whole data. On the other hand, the opposite
may happen: for a complex data-set, using too few neurons on the hidden
layers may lead the gradient minimization approach to fail in returning
an accurate solution.

� Output layer: this is the last layer of the network. The output of the
nodes on this layer are directly mapped to classes that the user intends to
predict.

Training a multilayer perceptron requires, for each layer, the learning of the
weighting parameters minimizing the loss function. To do so, the so-called
backpropagation[12] can be applied. It consists in computing the derivative of
the loss function with respect to the weights, one layer after another, and then
in modifying the corresponding weights by using the following formula:

4wi,j = − ∂E

∂wi,j

where E is the loss function and wi,jdenotes the weight of the connection
between two neurons of indices (i, j).

2.2.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a speci�c kind of neural network
built by stacking the following layers:

� A convolutional layer: On this layer, during the forward computation
phase, the input data are convoluted with some �lters. The output of
the convolution is commonly called a feature map. It shows where the
features detected by the �lter can be found on the input data. Figure 5

9

shows an example of a convolutional layer where the input vector (X is
represented as a matrix X = (xi,j) ∈ Rt×t where t is smallest square
integer greater than the size n of X viewed as a vector) and padded
with zeros around the border. The output values can be expressed as
yi,j =

∑m
a=1

∑m
b=1 wa,bxi+a,j+b,where wa,b denotes the weights of the �l-

ter viewed as an m-by-m matrix. During the backward computation, the
�lter weights are learned by trying to minimize the overall loss.

Figure 5: Example of Convolutional Layer where n=25, t=5 and m=3

� A Max Pooling layer: this is a sub-sampling layer. The feature map is
divided into regions and the output of this layer is the concatenation of
the maximum values of all these regions. Such layers can help reducing
computation complexity and enhance the robustness of the model with
respect to a translation of the input.

� A SoftMax layer: it is added on the top of the previous stacked layers. It
converts scores from the previous layer to a probability distribution over
the classes.

Learning the �lters enables to extract high level features from the data. This
step may therefore be used as a dimensionality reduction or a Points Of Interest
(POI) selection technique (e.g. a PCA).

3 Experiment

A board, titled the �SASEBO GII� has been used to acquire the traces and its
full hardware FPGA design is available. In the following section, we mention
the procedure and analyse the results for DPA and CNN implementations.

10

3.1 DPA

Input to this attack is a set of power traces obtained during encryption of
di�erent plaintexts with the same key. In our context each trace is a �le containg
the power samples at di�erent points of time during the process of encryption,
plaintext and ciphertext.

3.1.1 Procedure -

The �rst step in the AES attack program is to split the 128-bit ciphertext
message into byte long blocks. The AES-128 algorithm operates on each byte
individually, which allows us to guess the 8-bit portion of the round key used
for each byte individually. Focusing on one byte at a time, we take each byte of
the ciphertext and run through the AES decryption method 256 times (once for
each possible key). The result is an array of 256 potential values for the �nal
round input.

Using the initial and �nal states we quantize the sensititve transition using
the hamming weight model as senstivetransition = initalstate ⊕ finalstate.
We already have the power trace containing some samples. Now it is possi-
ble to determine a sample correlation between the power consumption and the
Hamming distance data. We calculate the correlation between the power trace
and the sensitive data using Pearson's sample correlation coe�cient, given by:

rsb =

∑n
i=1(h

(sb)
i − h(sb))(pi(tj)− p(tj))

(n− 1)σhσp(tj)

The mean value across all traces of a point tj is given as p(tj) and the
standard deviation of these values at a point tj is given as σp(tj). For each trace
i, there exists sensitive data which can be exploited. The sensitive data for a
trace i is denoted as hi, with the mean sensitive data over all traces hi, and
standard deviation σh. Using this equation to correlate the power information
to the sensitive data, We calculate this coe�cient across every point(j=1 to
3253) in each power trace. Finally we get correlation coe�cient between each of
the 256 sensitive data values and the 3253 samples in power trace. This process
is repeated using many power traces to build up the correlation coe�cient.
After a su�cient number of traces, there exists a peak in the correlation which
corresponds to the correct key. Similarly every byte of the key can be obtained
using the same procedure.

3.1.2 Results

Experiment is conducted with a set of 20,000 traces. All the 20,000 traces
are obtained during encryption of di�erent plain texts with the same key. We
analyse 1st, 8thand 16thbyte of the 10throundkey, although it can be done for
any byte of any roundkey. Following are the results obtained.

11

Figure 6: Evolution of Correct Key rank with increase in number of traces

On doing this experiment for di�erent set of traces, we obtained the cor-
rect key(16 bytes) values for an average of 10000 traces, with 5700 being the
minimum number of traces required, and 12000 being the maximum.

3.2 CNN based attack

Here we are dealing with pro�led attack, we assume an attacker who has full
control of a training device during the pro�ling phase and is able to measure the
power consumption during the execution of a cryptographic algorithm. Then
during the attack phase, the adversary aims at recovering the unknown secret
key, processed by the same device, by collecting a new set of power consumption
traces. To guarantee a fair and realistic attack comparison, we stress the fact
that the training and the attack data-sets must be di�erent. This attack contains
two steps - Pro�ling phase and Attack phase. For pro�ling phase we give a large
set of power traces with each trace containing 3253 samples, key, plain text and
ciphertext. Large set of traces(in our case 10lakh traces) are required to obtain
a better model. In attack phase we provide another set of power traces obtained
during encryption of di�erent plaintexts with the same key.

3.2.1 Procedure

Consider we are trying to �nd a particular byte of the key. And the operation,
we are targeting on is AES SBox output at the end of 1st round and it is stored
in variable Z = Sbox[X⊕k∗] where X and k∗ respectively denote the plaintext
and the secret key. We motivate our choice towards targeting this non-linear

12

operation by the fact that it is a common target in side channel analysis and
that it has a high level of confusion.

Pro�ling phase - We create �les like Z=0.txt, Z=1.txt,....Z=256.txt since
there are the 256 di�erent possible values of Z. For each power trace the value of
Z = Sbox[X⊕k∗] is calculated and the trace data is written into corresponding
�le. By the end of reading in all the power traces(in our case 10lakh traces)
there is certain amount of data in each �le(in our case 3000-4000 traces), the
data in each of these 256 �les are used for training corresponding model. In
the end there will be 256 di�erent models. The network used for training each
model is shown in Figure 6. The input to the network is a powertrace of length
3253 and groudtruth key.

Figure 7: Network Model Used

Layer1: Convolutional Layer - It is used to get the local features within
the powertrace. The CNN used is of kernel size 16 and there are 10 outputs
coming out of it.

Layer2: ReLu - It is Recti�ed Linear Unit, used to introduce non-linearty
in the �tting process which makes the network easier to �t complex functions.

Layer3: Pooling - It is used to reduce the complexity by reducing the
e�ective length of powertrace. Max pooling of size 2 with stride 2 is used i.e.
it takes the maximum of two adjacent values in the input and places it in the
output, so the size reduces by half. It is used where there is no much dependence
in the �nal output with respect to the adjacent values.

13

Layer4: Convolutional Layer - It is used to get the local features within
the powertrace. The CNN used is of kernel size 10 and there are 20 outputs
coming out of it.

Layer5: Tanh - It is Hyperbolic tangent function. It is used to introduce
non-linearty in the �tting process which makes the network easier to �t complex
functions.

Layer6: Inner Product - This layer takes the output obtained at the end
of layer5 as input and maps those input values to 256 output values, with output
values quantitatively representing the prob(k = 0), prob(k=1),.......prob(k=255).

Layer7: Loss - Loss between predicted key and groudtruth key is calculated
and the loss is backpropagated to the previous layers to re-adjust the weights
to reduce loss.

Attack Phase - In training phase we have obtained 256 models . Now in
attack phase, we consider a trace, so we know plaintext x and we assume k =
0, 1,, 255. For each key assumption we calculate Z = Sbox[X ⊕ k∗]. Now we
consider that particular Z model and obtain the probability of the same assumed
key from the model. This way we get probability for each key assumption for a
trace. We follow the same procedure for a set of traces obtained with same key.
Now the �nal probabilities for each key asssumption is calculated by multiplying
the corresponding key probabilities of all the traces. As the probabilities are
small and might be negligble to compare, we take log of the probabilities and
add them instead of multiplying the direct probabilities. Finally the result is
an array of size 256, with each element proportionally representing the P(key =
index of element). The index of the element with highest value is the predicted
key. We can sort the array to �nd the rank of groundtruth key. This whole
process can be repeated for predicting each byte of the key.

3.2.2 Results

In the experiment we are trying to predict the 1st byte of the key, although it
can be repeated to obtain any byte of the key. Experiment is conducted with
two sets of traces. One set contains power traces with 1st byte of key = 0 and
another set of traces with 1stbyte of key = 19. Following are the reults obtained:

14

Figure 8: Evolution of Correct key rank with increase in number of traces

As we can see from the above graph that the rank of the groundtruth key
is decreasing with increasing number of traces, but these are not the proper
results. This happened because of choosing wrong parametric values like �lter
length, number of channels in convolutional layer etc. This model is predicting
a key(although it is not equal to groundtruth key) for around 200 traces and the
same key is obtained even after increasing the number of traces. This means
that the groundtruth key can be predicted with around 200 traces if we set
optimal parametric values. Pro�ling phase takes around 10-15 hours for those
10lakh training power traces, so it is di�cult to �nd the optimal parameters
by trail and error method. Techniques like evolutionary algorithms and genetic
algorithms can be used and is considered as part of future work.

4 Conclusion and Future Work

In completing the project we were successfully able to recover the AES-128
cryptosystem keys by mounting a DPA attack. For AES-128, we were able
to recover the subkey used with average of 10000 traces. From the success of
our attack on the power traces from the DPA contest, it is clear that these
types of side-channel attacks are very powerful when it comes to breaking a
cryptosystem. What makes a DPA attack so powerful is that it can make
plaintext or ciphertext only attacks, which greatly increase the versatility when
attacking a target device. DPA-based attacks also perform much faster than
other techniques such as exhaustive search. However, this type of side-channel

15

attack requires access to the physical hardware in order to obtain the traces
required for its execution.

As part of this project we study the application of deep learning techniques
in the context of side channel attacks. The deep learning techniques are based on
some nice features suitable to perform successful key recovery. The parametres
like �lter length, no.of channels etc. used for training models greatly e�ect
the results, i.e, the predicted key doesn't match with the groundtruth key and
even the rank of the groundtruth key in the obtained results will be high. The
predicted key will not be equal to groundtruth key even if we use a large set of
traces if the set of parameters chosen are not the optimal parameters.

Given the success of the attack on AES-128 implementations, there are a
few directions in which this project could go towards future work. In current
research, some of the only reliable models for power consumption to lead to
a cryptosystems key have been the Hamming Weight and Hamming Distance
models. One excellent way of improving our attack could come directly from
a new power model or better utilization of the existing power models. This
would allow higher correlations in the power traces and lead to more correct
key guesses, resulting in the key space being narrowed down further to make
exhaustive search techniques feasible. The way power traces are statistically
correlated after the power model has been utilized is another source for ad-
ditional work. More complex statistical methods could be explored in order
to improve the correlations even further and allow for more information to be
obtained from the power traces.

An alternative method to explore power analysis side-channel attacks for
breaking cryptographic implementations would be template-based attacks[16].
Template-based attacks are considered to be one of the most powerful types of
side-channel attacks. This is because the statistical functions involved capture
a large amount of data from the power traces and utilize probability density
functions in order to obtain correct key guesses.

Considering the CNN based attack, we can try to obtain a better model
while pro�ling by choosing the optimal parametric values. One common tech-
nique to �nd the optimal parameters is to use evolutionary algorithms[13] and
more precisely the so-called genetic algorithm[14]. These can be implemented
as part of the code to �nd the optimal parameters, which would give proper
results and also the key could be detected with less number of traces. We can
even try di�erent other deep learning techniques like Autoencoder(AE), Recur-
rent Neural Networks(RNN), Long and Short Term Memory Units(LSTM) for
pro�ling and compare with the CNN method[15].

16

References

[1] Rijndael S-box . https://en.wikipedia.org/wiki/Rijndael_S-box.

[2] Rijndael mix columns.https://en.wikipedia.org/wiki/Rijn-
dael_mix_columns.

[3] Rijndael key schedule. https://en.wikipedia.org/wiki/Rijn-
dael_key_schedule.

[4] byte-oriented-aes � A public domain byte-oriented implementation of AES
in C � Google Project Hosting. Code.google.com. Retrieved 2012-12-23.

[5] S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In CHES, volume
2523 of LNCS, pages 13�28. Springer, August 2002. San Francisco Bay
(Redwood City), USA.

[6] P. C. Kocher, J. Ja�e, and B. Jun. Di�erential Power Analysis. In
CRYPTO, volume 1666 of LNCS, pages pp 388�397. Springer, 1999.

[7] E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a
Leakage Model. In CHES, volume 3156 of LNCS, pages 16�29. Springer,
August 11�13 2004. Cambridge, MA, USA.

[8] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual information anal-
ysis. In CHES, 10th International Workshop, volume 5154 of Lecture Notes
in Computer Science, pages 426�442. Springer, August 10-13 2008. Wash-
ington, D.C., USA.

[9] C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn.,
20(3):273�297, Sept. 1995.

[10] J. Weston and C. Watkins. Multi-class support vector machines, 1998.

[11] L. Rokach and O. Maimon. Data Mining with Decision Trees: Theroy and
Applications. World Scienti�c Publishing Co., Inc., River Edge, NJ, USA,
2008.

[12] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, Inc., New York, NY, USA, 1995.

[13] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
SpringerVerlag, 2003.

[14] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cam-
bridge, MA, USA, 1998.

[15] Breaking Cryptographic Implementations Using Deep Learning Tech-
niques. https://eprint.iacr.org/2016/921.pdf

[16] Template Attacks. https://wiki.newae.com/Template_Attacks.

17

