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ABSTRACT

Light field photography captures rich structural information that may facilitate a number

of traditional image processing and computer vision tasks. A crucial ingredient in such

endeavors is accurate depth recovery. Light field photography has gained a significant

research interest in the last two decades.However, there is an inherent trade-off between

the angular and spatial resolution, and thus, our method tries to increase the spatial

resolution by reconstructing entire 5x5 light field using coded image and centerview.We

use deep learning along with compressive light field capture to get the novel views.We

first warp the centerview using the disparity we obtain as a outpur from our network

and interpolate the holes resulted present in warped image to get the novel view.
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CHAPTER 1

INTRODUCTION

1.1 Light Field

Light fields provide a rich representation of real-world scenes, enabling exciting ap-

plications such as refocusing and viewpoint change. Generally, they are obtained by

capturing a set of 2D images from different views Levoy and Hanrahan [1996],Wilburn

et al. [2005] or using a microlens array Adelson and Wang [1992],Ng et al. [2005],Georgiev

and Intwala [2006]. The early light field cameras required custom-made camera setups

(a) taken form Marwah et al. [2013]

(b) taken from Levoy and Hanrahan [1996]

Figure 1.1: a)Different perspective shifts of image of pens in pot.
b)Refocussing of the flowers after the images have been taken from Lytro
Illium camera

which were bulky and expensive, and thus, not available to the general public. Recently,

there has been renewed interest in light field imaging with the introduction of commer-

cial light field cameras such as Lytro [2016] and RayTrix [2016].However, because of



the limited resolution of the sensors, there is an inherent trade-off between angular and

spatial resolution, which means the light field cameras sample sparsely in either the

angular or spatial domain.

(a) taken frm Levoy and Hanrahan [1996]

(b) taken from Ng et al. [2005]

Figure 1.2: a)Stanford array of cameras used to take images at different view points,
which is bulky. b)New technique which uses microlens array to get images
with different perspective shifts

1.1.1 Compressive Light Field Capture

An image i(x) captured by a camera sensor is the projection of an incident spatio-

angular light field l(x, ν) along its angular dimension ν over the aperture area V:

i(x) =

∫
ν

l(x, ν)∂ν (1.1)

We adopt a two-plane parameterization Levoy and Hanrahan [1996], Gortler et al.

[1996] for the light field where x is the 2D spatial dimension on the sensor plane and

ν denotes the 2D position on the aperture plane at distance da (see Fig. 1.3, left). For

brevity of notation, the light field in Equation 1 absorbs vignetting and other angle-

dependent factors Ng et al. [2005]. We propose to insert a coded attenuation mask

f(ξ) at a distance dl from the sensor, which optically modulates the light field prior to

3



projection as

i(x) =

∫
ν

f(x+ s(ν − x))l(x, ν)∂ν, (1.2)

where s = dl = da is the shear of the mask pattern with respect to the light field (see

Fig. 1.3, center). In discretized form, coded light field projection can be expressed as a

matrix-vector multiplication:

i = Φl,Φ = [Φ1Φ2...Φp2ν
] (1.3)

where i ∈ Rm and l ∈ Rn are the vectorized sensor image and light field, respec-

tively. All pνxpν angular light field views lj(j = 1...p2ν) are stacked in l. Note that

each submatrix Φj ∈ Rm×m is a sparse matrix containing the sheared mask code on

its diagonal (see Fig. 1.3, right). For multiple recorded sensor images, the individual

photographs and corresponding measurement matrices are stacked in i and Φ. The ob-

served image i =
∑

j Φjlj sums the light field views, each multiplied with the same

mask code but sheared by different amounts. If the mask is mounted directly on the

sensor, the shear vanishes (s = 0) and the views are averaged. If the mask is located

in the aperture (s = 1), the diagonals of each submatrix Φj become constants which

results in a weighted average of all light field views. In this case, however, the angular

weights do not change over the sensor area. Intuitively, the most random, or similarly

incoherent, sampling of different angular samples happens when the mask is located

between sensor and aperture.

Equations 1–3 model a captured sensor image as the angular projection of the inci-

dent light field. These equations can be interpreted to either describe the entire sensor

image or small neighborhoods of sensor pixels—2D patches—as the projection of the

corresponding 4D light field patch. The sparsity priors discussed in the following sec-

tions exclusively operate on such small two-dimensional and four-dimensional patches.

1.2 Related Work

Inspired by the recent success of usage deep learning in a light field and depth recon-

struction applications, such as Kalantari et al. [2016], Flynn et al. [2016] and Garg

4



Figure 1.3: The proposed optical setup comprises a conventional camera with a coded
attenuation mask mounted at a slight offset in front of the sensor (left). This
mask optically modulates the light field (center) before it is projected onto
the sensor. The coded projection operator is expressed as a sparse matrix
Φ, here illustrated for a 2D light field with three views projected onto a 1D
sensor (right). It is taken from Marwah et al. [2013]

et al. [2016], we propose to use convolutional neural networks (CNN) along with com-

pressive light field photography to predict novel views using the coded image and the

position of the novel view in the light field. However, the major challenge is that train-

ing a single end-to-end CNN for this task is difficult, producing novel views that are

quite blurry. Existing view synthesis approaches Chaurasia et al. [2013], Wanner and

Goldluecke [2014] and light field view typically first estimate the depth at the input

views and use it to warp the input images to the novel view. They then combine these

images in a specific way (e.g., by weighting each warped image Chaurasia et al. [2013])

to obtain the final novel view image). To make the learning more tractable, we build

upon these methods and break down the task into disparity and in-painting components.

The main contribution of our work is to use machine learning to model these two com-

ponents and train both models by directly minimizing the error between the synthesized

and ground truth images. Our system could potentially be used to decrease the required

angular resolution of current cameras, which allows their spatial resolution to increase.

The output of our first network is disparity and typically we would need ground truth

disparities to train this network. However, we show how to train both networks simul-

taneously by directly minimizing the error between the synthesized and ground truth

images. We propose a computational light field camera architecture that allows for high

resolution light fields to be reconstructed from a single coded image and centerview.

This is facilitated by exploring the co-design of camera optics and compressive compu-

tational processing.
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CHAPTER 2

Neural Networks and Deep learning

Neural networks are a class of machine learning models that are used to approximate

real valued, discrete valued and vector-valued functions. Motivated by the biological

neural networks which are a set of interconnected neurons that enable information pro-

cessing in organisms, artificial neural networks are presented as a set of interconnected

nodes (also called neurons) which exchange messages with each other. The connec-

tions have numeric weights that can be tuned based on experience, making neural nets

adaptive to inputs and capable of learning.

A deep neural network (DNN) is an artificial neural network with multiple hidden

layers of units between input and output layers. DNNs attempt to model highlevel ab-

straction in data by using multiple processing layers, with complex structures composed

of multiple non-linear transformations. Deep learning is a part of a family of machine

learning methods based on learning representations of data. An observation (e.g., an

image) can be represented in many ways such as a vector of intensity values per pixel,

or in a more abstract way as a set of edges, regions of particular shape, etc. Some rep-

resentations are better than the others at simplifying the learning task from examples.

One of the promises of deep learning methods is replacing hand-crafted features with

better feature representations that are automatically learnt for a given task.

Deep learning methods have seen a recent surge in success and popularity due to

advances in Graphics Processing Units (GPU) hardware as well as new and improved

methods for training them. A type of feed-forward neural network called convolutional

neural network (CNN) is extensively used in computer vision and has shown state-of-

the-art results in many problems such as object detection, image classification, image

denoising, etc. In this work, we explore the use of CNNs in non-bind deblurring of

images.



2.1 Modeling one neuron

One of the popular models for neurons in an Artificial Neural Network is the sigmoid

model. The perceptrons (neurons) with out this sigmoid function at the end are essen-

tially linear classifiers. The perceptron training rule will converge if the data is linearly

separable. However, for overlapping data, convergence is not assured. Here we require

our neural network to learn non-linear functions. A new model of neuron (the sigmoid

Figure 2.1: Artificial Neuron

model) was introduced to circumvent the problem. The sigmoid model is illustrated in

Fig.2.1. The sigmoid unit first computes a linear combination of its inputs, then applies

a threshold to the result. In the case of sigmoid unit, however, the threshold output is a

continuous function of its input. More precisely, the sig- moid unit computes its output

O as

o(
→
x) = σ(

→
w,
→
x)

σ(y) = 1
1+e−y

The sigmoid function has a very useful property that its derivative is easily expressed

in terms of its output.

∂σ(y)
∂y

= σ(y)(1-σ(y))

Other activation functions which are generally used include tanh function.

2.1.1 Training sigmoid neurons

For the sigmoid neurons to predict output given an input vector, it becomes necessary to

estimate the weights {wi}n0 based on a set of training examplesD. Let us denote td to be
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the target output for the training example d. The set D is essentially the set of ordered

pairs (d, td). In order to optimize wi’s, we need to specify a measure of training error

relative to the training examples. One common measure of error between the predicted

and the true output is the mean square error between them.

E(
→
w) = 1

2

∑
d∈D

(td - od)2

Here
→
w = (

→
w0,

→
w1...

→
wn) is the weight vector to be learnt. We can optimize this error

using the Gradient Descent Algorithm. In gradient descent, the error function is mini-

mized by starting with an arbitrary weight vector, then iteratively updating the weight

vector by moving in the direction of steepest descent along the error surface. The di-

rection of the steepest descent is essentially the vector derivative of E with respect to
→
w.

∆E(
→
w) = ( ∂E

∂w0
, ∂E
∂w1

, .., ∂E
∂wn

)

∂E
∂wi

=
∑
d∈D

(td − od)2 = ∂
∂wi

1
2

∑
d∈D

(td − σ(
→
w,
→
xd))

2

∂E
∂wi

=
∑
d∈D

(td − σ(
→
w,
→
xd))(od(1− od)(−xd))

Here xid is the ith component of the vector
→
xd. Now the iterative training rule can be

written as

wi ← wi + η
∑
d∈D

(td − σ(
→
w,
→
xd))(od(1− od)(−xd))

2.2 Multilayer network

In the previous section, we have discussed a prominent model for neuron which is the

fundamental unit in an ANN. By combining multiple units in a cascade, we obtain a

model that will learn complex functions. Fig 2.2 shows one such network composed of

4 layers - one input layer, followed by 2 hidden layers which is then connected to an

output layer. For the rest of this chapter, we shall consider only sigmoid neurons.

8



2.2.1 Backpropagation Algorithm

In 2.1.1 we have discussed gradient descent algorithm for training single sigmoid unit.

To train multilayered network, we follow a similiar approach, but apply gradient updates

in a layered fashion - for layer j, gradient output from layer j+1 is taken as input, gradient

is then computed with respect to this output and then it is passed in to layer j-1. Since

gradient propagates backwards, this algorithm is called ”Backpropagation Algorithm”.

Let us now derive the update rules for the backpropagation algorithm.

Figure 2.2: A neural network

The notation adopted for this section is given below.

• xij = ith input to unit j

• wij = weight associated with ith input to unit j

• netj = the weighted sum of inputs for unit j(
∑
i

wjixji)

• oj = output computed by unit j

• tj = target output for unit j

As before, we use mean squared error between the target and output units as our

error function. But now, since the output layer consist of multiple units, we need to

compute the average error over all the units.

∂E
∂wi

= 1
2

∑
d∈D

∑
k∈outputs

(td − od)2

Let us derive the update rule for a single training example- the overall gradient is the

summation of gradients corresponding to all training examples.

9



Ed = 1
2

∑
k∈outputs

(td − od)2

∂Ed
∂wij

= ∂Ed
∂netj

∂netj
∂wij

= ∂Ed
∂netj

xij

Case 1: Training rule for output weights

In case of output weights, wij can influence the network only through netj and netj can

influence the network only through oj . Hence,

∂Ed
∂netj

= ∂Ed
∂oj

∂oj
∂netj

∂Ed
∂oj

= ∂
∂oj

1
2

∑
k∈outputs

(td − od)2

= −(tj − oj)
∂oj
∂netj

=
∂σ(netj)

∂netj
= oj(1− oj)

Summing everything, we get

∂Ed
∂netj

= −(tj − oj)(oj(1− oj))

Case 2: Training rule for hidden unit weights

In case of hidden units, the derivative of the training rule for wji must take into account

the indirect ways in which wji can influence the network outputs and hence Ed. For this

reason, we will find it useful to refer to the set of all units immediately downstream of

unit j in the network. We can then write

∂Ed
∂netj

=
∑

k∈Downstreamsi

∂Ed
∂netk

∂netk
∂netj

Let δk denote − ∂Ed
∂netj

then

δk = −
∑

k∈Downstreamsi

∂Ed
∂netk

∂netk
∂netj

= −
∑

k∈Downstreamsi
δk

∂netk
∂oj

∂oj
∂netj

= oj(1− oj)
∑

k∈Downstreamsi
δkwkj

We can combine all these derived update rules to obtain the Backpropagation algo-

rithm.

10



CHAPTER 3

Approach

The work by Marwah et al. [2013] states that coded image has enough information

to recover the novel view. We propose a deep learning approach instead of dictionary

learning used by Marwah et al. [2013]. The proposed method is shown below:

Figure 3.1: Proposed method

3.1 Network Architectures

Getting to optimal network architecture is a iterative process.We have tried different

network architectures and tried to improve the results.The main Network architectures

are shown below:



3.1.1 Network 1

Figure 3.2: Network 1

3.1.2 Network 2

Figure 3.3: Network 2

3.1.3 Network 3

Figure 3.4: Network 3
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3.1.4 Network 4

Figure 3.5: Network 4

3.1.5 Network 5 (final architecture)

Figure 3.6: Network 5 (final architecture)

3.2 Performance of the networks

Table 3.1: Table showing performance of different network architectures

Newtork
Architec-
ture

Train error
(avg)

Validation
error (avg)

Test error
(avg)

1 4 8 7
2 3 8 6
3 1 4 3.1
4 2 4 3.2
5 1.5 3.5 2.6
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Though the errors of network 3 are less but the qualitative results are not good com-

pared to network 4 and network 5 which implies that contextual knowledge is required

to get good disparity maps in turn good lf images. Direct CNN network like network 1

gave blurry results as it is unable to learn the disparity.

3.3 Data Generation and Training

The coded images should ideally be obtained from compressive light field camera, but

due to the unavailability of the hardware we have simulated the coded images by multi-

plying the light field views with the code which in this case is random normal gaussian

code or mura code. centerviews are used groudtruth views. Centerviews can also be

generated from coded images using series of convolutional layers but groudtruth cen-

terviews are used as of now to get sharp disparity and light field views. other views of

light field are used as the reference views.

The dataset we used is same as the dataset used by Kalantari et al. [2016], the light

field images are captured using lytro illium camera which produces 14x14 views but

only middle 8x8 views are usable because of microlens drawback at corners. we use

only 5x5 views of 8x8 views so there are 16 possible 5x5 views in which we take 10

random 5x5 views in each light field for training.The training is done patchwise with the

patch size of 60x60 so this makes the training set bigger and makes easier for network

to learn parameters.Coming to implementation details we used caffe framework to train

and Adam solver is used.

14



CHAPTER 4

Results

The best results are obtained by network 5, the qualitative results are shown below.

(a) psnr:31.4123 ssim:0.9516

(b) psnr:33.7650 ssim:0.9303

(c) psnr:26.9835 ssim:0.7196

(d) psnr:20.7460 ssim:0.7665

Figure 4.1: Topright (tr) views generated from coded image and cneter views, the edges
of warped images matches with the ground truth views but the intepolation
of the occlusion edges is inconsistent when there are high gradients in its
neighbourhood which can be seen in 4.1c and 4.1d

The refocusing results obtained from the 5x5 light fields generated.



(a)

(b)

(c)

Figure 4.2: Refocusing the above images using the generated 5x5 light fields by warp-
ing the centerview with the generated disparity map

4.1 Conclusion and Future Work

The proposed method produces consistent disparity maps but decrease in psnr and ssim

in 4.1c and 4.1d is due to contrast differences in predicted view and topright view. As of

now we are using normal interpolation technique used in opencv but in future we will

build a interpolation network which will do good job.

We are reconstructing light field views from both coded image and centerview, in

our future work we will use only coded image and centerview will be reconstructed

from coded image.
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