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ABSTRACT

KEYWORDS: Photometric Stereo, SEM, Scanning Electronic Microscopy, Deep

Learning, Gradient, SVD, Support Vector Decomposition, Convo-

lutional Neural Networks, CNN

Photometric stereo, which deals with recovering depth from multiple images of an

object captured from different lighting directions, is a problem studied extensively over

the past few decades. Traditional approaches to solve this problem use priors to over-

come the bas-relief ambiguity that arises due to ill-posedness of the problem. In this

work, two novel techniques are discussed to avoid the ambiguity. The first technique is

a classical approach that is only applicable to scenes containing symmetric objects. The

second technique is a deep-learning based extension of the first technique that applies

to scenes containing general space. These approaches outperform classical techniques

by converting them into a two-step procedure to solve for light source directions and

surface normals without ambiguity.
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CHAPTER 1

NOVEL CLASSICAL PHOTOMETRIC STEREO

TECHNIQUE

In this chapter, we present a Photometric Stereo based technique to estimate depth of

objects.

1.1 Recovering depth from SEM Images

1.1.1 Scanning Electron Microscope(SEM)

Recovering depth information from images has become hugely significant over the past

few decades. Potential applications in the fields of areas ranging from medical imaging

to autonomous vehicles has made it an interesting area of research.

Traditional optical microscopy has been developed in the 17th century has led to

a vastly improved understanding of the microbial world. The use of visible light to

magnify smaller and smaller objects ran into trouble due to the physical limitations

relating the wavelength of the objects and the size of the sample being magnified. SEM

or Scanning Electron Microscope imaging deals with magnification of objects smaller

than a nanometer. SEM shines a beam of electrons on the sample instead of photons as

is the case in an optical microscope. The electrons are absorbed and reflected back by

the substrate and are captured by the detector. The intensity of the image thus formed

is a function of the energy and the density of the electrons reflected.

SEM imaging has since been used widely in the fields of chemistry, physics and

molecular biology. The invention of transistor and its miniaturization ever since have

made SEM imaging an indispensable tool to study the properties of semiconductors

and in their inspection. One of the interesting applications is to understand the topol-

ogy of the object under inspection. Such an understanding could enable the automated

detection and classification of defects in the semiconductor.



The setup of the SEM makes it possible to image the object of interest using electron

beams that illuminate the scene. The reflected light is captured by detectors placed in

different directions. This makes the shading information in the images under varying

lighting conditions an obvious cue to find the depth of the object. This technique is

referred to as Photometric Stereo. The amount of noise and the variation of intensity of

electron beams however makes the task of finding the depth information a difficult task.

Traditional Photometric Stereo techniques fall short in uniquely characterizing depth

and the unknown light directions simultaneously because of the ill-posedness of the

problem. We aim to overcome that by making assumptions about the symmetry of the

objects. The main contribution of this paper is the proposed two-step approach to the

problem of uncalibrated Photometric Stereo. In the first step we identify the directions

of light source for each image. In the second step, the surface normal( and therefore

the depth) is computed. We show that our method removes the ambiguity that other

approaches suffer.

1.1.2 Image based depth recovery

Popular techniques

Various cues embedded in the images have been exploited for the purpose of extracting

the information about the depth. The classic stereo based depth estimation [1] uses the

disparity as a cue to estimate depth. Depth from Defocus [2] extracts depth based on the

amount of defocus. It has also been shown that depth can be found from an image under

motion blur [3]. In recent years, a notable volume of work has shown the application

of deep learning for the purpose of finding depth from just one image in absence of the

above mentioned cues. Works [4],[5] and [6] are examples of this approach.

Photometric Stereo

Photometric Stereo is based on the shading information in images under various lighting

conditions. When a stationary scene that is of interest is illuminated by various sources

of light and assuming a Lambertian surface, the intensity observed by a detector such

as a camera sensor is proportional to the dot product between the surface normal and

the light direction. The surface normals can then be integrated to find the depth map of
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the scene.

1.2 Background Knowledge

1.2.1 Lambertian Reflectance Model

Human vision is based on perception of light reflected off objects. It is hence important

to study the behavior of objects under incident light. Many objects around us do not

vary in their intensity as we look at them from various angles. This is because these

objects reflect light in all directions. This type of reflection is referred to as diffuse

reflection. Lambertian reflectance model is a popular model used to explain diffuse

reflection.

Lambertian reflectance model assumes that the intensity of an object I under a light

source is proportional to the dot-product of the surface normaln̂ of the object and the

light vector L. The magnitude of the light vector denotes the intensity of the light

source and the direction indicates the direction of incident light. Further, according

to the model, the intensity observed is independent of where the sensor is positioned.

The constant of proportionality in the relation described is known as albedo a and is

a property of the material. Albedo can be understood as the amount of incident light

that a surface reflects. Note that dot-product can be negative when the angle between

incident light and surface normal is obtuse. This doesn’t make physical sense since

intensity observed by a sensor cannot be negative. Eq 1 is mathematical representation

of the lambertian model

I = max(a(n̂.~l), 0) (1.1)

We often omit the non-linearity introduced by introducing a comparison operation

for the sake of ease.

While a surface that adheres to the lambertian assumption doesn’t exhibit directional

preference as it reflects light, some surfaces reflect light predominantly in a certain

direction. Such surfaces create specular artifacts in the images. Fig 1.1 contrasts the

two phenomena

3



Figure 1.1: Lambertian vs Specular reflection

1.2.2 Photometric Stereo Setup

Mathematical Formulation

The discussion on behavior of objects under incident light makes it clear that a same

object behaves differently when light is incident on it from different directions. Pho-

tometric Stereo exploits this difference in behavior to estimate the surface normals and

hence the depth.

A typical Photometric Stereo setup involves multiple light sources, a detector(camera)

and the object. We use the matrix L of order 3×k to represent the light source direction

where k is the number of light sources. i = 1, 2, 3..., k is used as an index to refer to

individual light sources. The object is imaged by the detector under the illumination of

each light source. The matricesN andA of orders p×3 and p×1 respectively represents

the matrix of unit surface normals and albedo respectively for each of the p pixels in

the image. Finally, I is the p× k matrix used to denote the matrix of intensities of each

pixel under each light source. Index j = 1, 2, 3..., p is used to refer to individual pixels.

It is assumed that the object and detector are stationary during the course of experiment

so as not to introduce motion blur in the images. Under the Lambertian assumption, we

have:

I = A� (N · L) (1.2)

The equation is further simplified by merging the element wise product between

albedo and unit surface normals. M is used to represent this new matrix. M = A�N .

4



Eq 2 now simplifies into:

I = M · L (1.3)

where

M = A�N (1.4)

the element wise product is taken across x,y,z components of the normal for each pixel.

Uncalibrated and Calibrated Photometric Stereo

From the discussion above, Photometric Stereo boils down to studying techniques to

extract the matrix M given matrix I . Photometric Stereo is broadly classified into cal-

ibrated and uncalibrated Photometric Stereo. Under Uncalibrated Photometric Stereo,

the Light Source Matrix L is assumed to be unknown. Under Calibrated Photometric

Stereo, it assumed that the Light Source Matrix L is known a priori. Common sense

suggests that Calibrated Photometric Stereo is a problem much simpler to solve than

the problem of Uncalibrated Photometric Stereo. We study the problem of Uncalibrated

Photometric Stereo for SEM Images in this work.

1.2.3 SEM Imaging Setup

SEM Images are formed by reflected electrons rather than reflected photons. However,

we can apply the same principles used for images formed by reflected photons. A highly

simplified version of SEM Imaging Setup is shown in fig 1.2 . In case of SEM Imaging,

the equivalent of Light Vectors lie along the surface of a cone. L is in this case a 4× 3

matrix. The light matrix can be characterized by just two angles α and β as shown in

the fig 1.3 . β is the half angle of the cone and α is the position w.r.t x-axis.

The light matrix in case of a SEM Imaging setup boils down to 1.3. Moreover, the

5



Figure 1.2: Simplified SEM Imaging Setup

Figure 1.3: α and β parameters
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parameter β is known. So the only unknown in the light matrix is the parameter α.

L =


cos(α)sin(β) sin(α)sin(β) −cos(α)sin(β) −sin(α)sin(β)

sin(α)sin(β) −cos(α)sin(β) −sin(α)sin(β) cos(α)sin(β)

cos(β) cos(β) cos(β) cos(β)

 (1.5)

1.3 Previous Work

We discuss some of the most popular popular approaches to solve the problem of Pho-

tometric Stereo in this section. Broadly speaking, the techniques can be divided into

Classical and Learning based techniques. We will introduce classical techniques in

this section and delay the discussion on Learning based techniques till the following

chapter. Note that the discussion is limited to Uncalibrated Photometric Stereo under

Lambertian assumption.

1.3.1 Classical Methods

Classical techniques use techniques of linear algebra to solve the problem of Photomet-

ric Stereo. 1.3 shows the relationship between matrices I , M and L. Remember that the

matrix M is a element wise product between albedo matrix A and unit surface normal

matrix N . This implies that once M is estimated, A is the magnitude of each row of M

and N is the unit vector corresponding to each row of M .

Aj = ||Mj||2 (1.6)

Nj =
Mj

||Mj||2
(1.7)

where j is the index used to identify a pixel as described in section 1.2.2
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Singular Value Decomposition

Observe that the matrices M and L are of rank 3. This implies that according to eqn

1.3, matrix I is also of rank 3. But the rank of matrix M is never strictly equal to 3 in

practice because of added noise and other non-linearities.

This property of rank of matricesM and L is exploited in many classical techniques.

Singular Value Decomposition(SVD) is a technique used to factorize a matrix and helps

us find the best low rank estimate of a matrix. SVD decomposes any matrixA into three

matrices U , S and V such that

A = U · S · V T (1.8)

The columns of matrix U are the eigenvectors of matrix AAT . The columns of

matrix V are the eigenvectors of matrix ATA. The matrix S is a diagonal matrix whose

entries are referred to as singular values of the matrix A. Further, singular values are

the square root of eigenvalues of AAT .

Low rank estimate of a matrix

As mentioned above, in practice, the rank of the matrix I is never equal to 3. So, in

order to enforce lambertian reflectance assumption, we find a matrix Ī that is close to I

but is of rank 3. Eckart-Young theorem shows that the Ī is obtained by retaining only

the top-3 singular values of I and zeroing out the lower singular values. In other words,

without loss of generality, if the diagonal elements of S are in a descending order, then

Ī =
3∑

i=1

SiiUi ⊗ Vi (1.9)

where Ui and Vi are the ith columns of matrices U and V respectively. ⊗ represents

the outer-product of the two column vectors. Sii denotes the ith largest singular value

of the matrix I .

Let us define a matrix S̄ which is identical to S except for all singular values other

the top-3 singular values being replaced with zeros. Similarly, we define matrices Ū

and V̄ of orders P × 3 and 3× n that contain just the first three columns of matrices U

8



and V . This means that

Ī = Ū · S̄ · V̄ T (1.10)

Classical techniques

The matrix Ī is now decomposed into matrices M and L that are unknown such that

Ī = M · L (1.11)

Equations 1.10 and 1.11 imply that

M · L = Ū · S̄ · V̄ T (1.12)

Consider two 3× 3 matrices C and D. From Eqn 1.12, we can say that

M = Ū · C L = D · V̄ T s.t C ·D = S̄ (1.13)

Now the problem is simplified into solving for matrices C andD rather than solving

for much larger unknown matrices M and L. The constraint connecting C and D is the

equation C ·D = S̄.

Obviously, there are infinitely many ways to construct two matrices whose product

equals a diagonal square matrix S̄. An obvious solution to this problem lies in imposing

additional constraints by using reasonable priors.

In [7], Yuille et al, use integrability constraint to solve for matrices C. While this

doesn’t uniquely identify the matrix C, it reduces the number of unknowns from 9 to 3.

This transformation to withC can be reduced to is called Generalized Bass Relief(GBR)

ambiguity. The ambiguity matrix G is given by

G =


1 0 0

0 1 0

ν τ λ

 (1.14)
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G is then solved for assuming some prior knowledge on the direction of light

sources.

In [8], QuÃl’au et al propose a prior on Total Variation of depth. This translates

to imposing a smoothness prior on the depth map of the object. In [9], Alldrin et al.

impose a prior over the entropy of albedo to eliminate the ambiguity.

1.4 Our Method

1.4.1 Problems with previous works

As pointed out in section 1.2.2, calibrated Photometric Stereo is a much simpler prob-

lem to solve. If we know the matrix L a priori, the system of over constrained equations

given by I = M · L can be solved to find the matrix M . In absence of any knowledge

of matrix L, we are forced to use prior information to find matrices M and L.

Each of the priors described above rely on vaguely defined rules formed by inspec-

tion and observation. The Total Variation prior is a product of observation that in most

images, depth doesn’t vary abruptly too often. We give mathematical meaning to these

vaguely defined rules in the form of priors. But a prior doesn’t necessarily result in

accurate results in all scenarios. In our case, it is possible to construct an object or a

scene that leads to poor results when Total Variation prior technique is used.

In this work, we discuss and develop exact techniques for the problem of Uncali-

brated Photometric Stereo for SEM Imaging setup without using any priors under cer-

tain assumptions discussed in sections that follow.

1.4.2 Our approach

Our work hinges on converting the Uncalibrated Photometric Stereo problem into a

two step process. In the first step, we find the light matrix L without ambiguity. In

the second step we simply solve the over-constrained set of equations I = M · L to

estimate M and hence N . Figure 1.4 represents the difference in approach between

classical techniques and our novel method.

10



Figure 1.4: Classical approach and Our Approach

1.4.3 Assumptions

In the work, we assume that the objects in the figure are limited to symmetric objects.

Specifically, we assume that the objects in the scene are either flat surfaces or spheri-

cal surfaces. Under these assumptions, the light matrix L can be estimated accurately

without any need for priors. Fig 1.5 shows a set of 4 images with multiple spheres that

are imaged under lighting conditions similar to those in SEM Imaging setup discussed

previously.

Figure 1.5: A sample of 4 synthetic images of spheres

1.4.4 Mathematical formulation

Consider a light vector Lj corresponding to the jth light source. Each light vector is a

column vector that has x,y,z components.

Lj =
[
Lx
j , L

y
j , L

z
j

]
(1.15)

From eq 1.15, we see that the light direction can be decomposed into Lx
j , Ly

j and

Lz
j . In the special case of SEM imaging, Lz

j which indicates the cosine of angle β is

known as mentioned in section 1.2.3. So, if we find the other two components of light

directions, Lx
j and Ly

j ,the light vector direction is fully determined.

11



The symmetry of the objects under consideration makes the computation of Lx
j and

Ly
j extremely easy. As described in [12], light direction can be identified for a sphere

without any prior knowledge about it’s position or radius. Without loss of generality,

consider a sphere centered at along the axis of camera that is illuminated by a light

source with light vector Lj . Fig 1.6 shows such a sphere and Fig 3(b) shows the gra-

dient vectors in x and y directions. Simple observation reveals that these vectors are

distributed symmetrically w.r.t the light vector’s direction. So, the average of all the

gradient vectors over the image will point in the direction of the 2d-vector
[
Lx
j , L

y
j

]
.

Figure 1.6: Image of a sphere and the image gradient vectors

Intuition and arguments based on symmetry should convince this simple relation-

ship between direction of light vector and the average of gradients. Refer [12] for the

formal proof.

Images span two physical dimensions. But we used Ij to denote a row matrix con-

taining the image intensities. In other words, Ij is formed by reshaping the image into

a one dimensional matrix. Let Ij denote the two dimensional version of the row vector

Ij . Gj be the gradient of the image Ij captured using the source j. The relationship be-

tween light direction and the gradients can be described using equations 1.16 and 1.17.

Eq 1.16 describes the definition of gradient while eq 1.17 describes the light vector

components Lx
j and Ly

j as a function of Gj .

Gj = ∇Ij (1.16)

12



[Lx
j , L

y
j ] = sin(β)×

∑p
i=1 Gj

||
∑p

i=1 Gj||2
(1.17)

Here the sum runs over gradients at all p pixels. The sum of gradients in the numer-

ator is divided by the magnitude of gradient in the denominator in order to normalize.

The normalized sum of gradients is then multiplied with sin(β) in accordance with

light vectors in a SEM Setup as described in section 1.2.3.

With this the entire light vector Lj of the jth light source is fully determined. The

same process is repeated for all light sources to construct the light matrix L

[Lx
j , L

y
j , L

z
j ] =

[
sin(β)×

∑p
i=1 Gj

||
∑p

i=1 Gj||2
, cos(β)

]
(1.18)

Once we identify the light matrix, we turn to the problem of finding the matrix M .

The relationship between intensity, surface normals and the light direction is given by

eq 1.2.and more concisely by equations 1.3 and 1.4. The matrix M is computed by

solving the system of linear equations I = M · L. If L+ denotes the pseudo inverse of

the matrix L, then M is given by:

M = I · L+ (1.19)

1.5 Results

1.5.1 Robustness to Noise

SEM Images are formed by enhancing faint signals of reflected electrons. Hence, SEM

Images are characterized by high noise levels and hence low SNR. In this section, we

study the effect of noise on the calculation of light source directions using our method.

The computation of light vector direction using average of gradients makes it robust

to noise assuming that the noise is symmetrically distributed about it’s mean. In fig 1.7

we show synthetically generated images with varying levels of noise.

We computed the light vectors in images containing spheres using our method and

13



Figure 1.7: Images of spheres with increasing levels of noise

TV-prior method. We steadily increase noise level and compute the angular deviation θ

between true light direction l̂true and computed light direction l̂calc. Our method gives

robust results compared to TV-prior based method. Eq 18 describes the computation of

θ

θ = cos−1(l̂true · l̂calc) (1.20)

Figure 1.8: Angular deviation between ground truth and computed vector

The height of objects in the scene is an important parameter used in semiconductor

verification process to detect and classify manufacturing defects. We analyze the ratio

of radii of two spheres under increasing levels of noise. Our method gives superior

results compared to TV-prior based method as seen in fig 1.9 .

14



Figure 1.9: Ratio of radii for our method and TV-Prior based method

1.5.2 Results on the SEM Dataset

Here we present results of our method on actual SEM Dataset. The four images from

the SEM detectors are shown in fig 1.10 .

The output of our method is shown in fig 1.11 .

It is easy to see that the spheres in the input image closely correspond to the spheres

in the depth map. This demonstrates the effectiveness of our method in images with

multiple spheres.
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Figure 1.10: Data from SEM containing spheres

Figure 1.11: Normalized depth map from our method
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CHAPTER 2

NOVEL DEEP LEARNING BASED PHOTOMETRIC

STEREO TECHNIQUES

In this chapter, we present the second part of the thesis, a method to solve the problem

of uncalibrated photometric stereo using our Deep Learning based technique.

2.1 Background Knowledge

The discussion on lambertian reflection, Photometric Stereo and SEM Imaging setup in

sections 1.2.1 , 1.2.2 and 1.2.3 are worth revisiting as we proceed with our discussion

on Deep Learning based techniques.

2.1.1 Machine Learning

Machine Learning is the study of techniques that leverage data to give machines the

ability to make decisions rather than through hard coded rules. A machine learning sys-

tem is first trained using available data. The trained system is then tested on previously

unseen examples known as test data. Machine Learning systems are prone to over per-

forming on seen data and under performing on unseen data. This problem is known as

over-fitting. The aim of the system is to produce good results on unseen data. The goal

of machine learning is generalization over unseen data.

A typical machine learning system involves a vector of inputs xi and a vector of

outputs yi corresponding to the input xi. The goal is to estimate the transformation or

the function f : x→ y corresponding to the system that transforms input xi to input yi.

Obviously the function of the underlying system that converts xi to yi is unknown.

Hence, we perform a guided search in the space of a class of functions to get closer to

the true function. One example of such class of functions could be a function that is



linear in the input feature vector xi. Such classes of functions are characterized by set

of weights w. So the estimated output yest
i is given by

yest
i = f(xi,w) (2.1)

The unknown set of weights w characterize the function. We define a loss function

L(w) that tells us how well our function behaves on unseen data. The best estimate of

w is the weights that correspond to lowest possible loss. In other words,

woptimal = min
w
L(w) (2.2)

A good choice of L(w) is the mean squared error between estimated output yesti and

true output yi.

L(w) =
∑
x

p(x)||yest − y||22 (2.3)

or

L(w) =
∑
x

p(x)||f(w, x)− y||22 (2.4)

where p(x) is the probability that x is the input. The sum is over all possible x.

This formulation of L(w) is problematic since we do not know output y for all possible

x. A more practical formulation is to restrict the summation only to seen or training

examples. This formulation results in:

L(w) =
i=n∑
i=1

||f(w, xi)− yi||22 (2.5)

While this problem is better that formulation given by eqn 2.4 , it is skewed to

produce excellent results on training data and that need not necessarily generalize to

unseen data. This could be because out function f agrees with outliers in training

examples. A characteristic of functions that agree with outliers is that some of their

weights w are very large in magnitude. This is plausible because outliers lie far away
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from the bulk of the data. In order for our function to stay closer to the outliers, some

of the weights need to be abnormally large. This suggests that a good way to avoid

over-fitting is by introducing a new term into our loss function L(w) that discourages

large weights. Our modified loss function becomes:

L(w) =
i=n∑
i=1

||f(w, xi)− yi||22 + λ× ||w||22 (2.6)

where λ is a hyper-parameter that decides the balance between competing interests.

L(w) =
i=n∑
i=1

||f(w, xi)− yi||22︸ ︷︷ ︸
data loss

+ λ× ||w||22︸ ︷︷ ︸
regularization loss

(2.7)

There are various choices for the regularization loss term. L2, L1 and a combination

of both have been studied.

The optimal weight vector w is obtained by minimizing the loss function given by

eq 2.7 . We begin with randomly initialized weights and we iteratively reduce the loss

function. This is accomplished by various methods. The most commonly used method

is gradient descent. We move the weight vector in the direction opposite to the direction

of gradient of L(w) w.r.t w ,i.e,∇wL(w).

wt ← wt−1 − α×∇wt−1L(wt−1) (2.8)

α is the learning rate.

2.1.2 Deep Learning

Machine learning has had great successes in producing sate-of-the-art results in various

fields such as as risk management, biometrics, medicine, computer vision etc. But very

often, raw data from systems is unsuitable for training by machine learning algorithms.

Data pre-processing is often needed to pick relevant features and discard the rest. It

is often very unclear which features to include and which ones to discard. This is

particularly a problem for image data.
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Deep Learning addresses the problem by turning the machine learning system into a

hierarchy of layers. The initial layers process the data and pick out useful features that

are complex transformations of input vector x. The later layers combine these useful

features to estimate the output y. Fig 2.1 shows the hierarchy. The layers in-between

are known as hidden layers. Each hidden layer contains a number of nodes known as

neurons.

Figure 2.1: Deep Learning framework Source:Internet

Each neuron computes a non-linear transformation of input vector to produce the

output. Each neuron is associated with a set of weights w and a bias b. The output of

the ith neuron is given by:

yi = f(w · xT + b) (2.9)

The function f is non-linear. Popular choices of f are sigmoid, tanh and ReLU as

shown in equations 2.10, 2.11 and 2.12 respectively.

f(x) =
1

1 + e−x
(2.10)

f(x) =
e2x − 1

e2x + 1
(2.11)

f(x) = max(0, x) (2.12)

If the problem is a regression problem, we use a loss function similar to the one

we used in classic Machine Learning techniques as described in eqn 2.7 . But if the
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problem is a classification problem, we use sigmoid cross-entropy loss to compute the

loss. Sigmoid is a function used to convert the output at the last layer to probabilities

of input belonging to each class. If yi where i = 1, 2, 3, ....n is the output of ith output

node, then the probability that input x belongs to class i is given by

P (i|x) =
eyi∑n
j=1 e

yi
(2.13)

and the cross-entropy loss is defined as:

L(w) =
1

N
×

n∑
i=1

(yi × ytruei + (1− yi)× (1− ytruei ) (2.14)

Just like in case of classic machine learning techniques, we compute the gradient of

loss w.r.t each unknown weight and bias to update the weights.

wt ← wt−1 − α×∇wt−1L(wt−1) (2.15)

But computation of gradient ∇wL(w) is much harder because of the depth of the

network. It is impractical to write down closed form expressions for the gradient. How-

ever, we can exploit the hierarchal nature of the network to simplify the computation

of gradients. The gradients of loss w.r.t weights at one layer are a function of gradients

at the next layer. This algorithm, known as the back propagation algorithm helps us

update weights effectively.

One disadvantage of Deep Networks in comparison with traditional techniques is

the large number of weights involved. Networks typically have millions of parameters

to be trained which is rarely the case in traditional techniques. However, this potential

drawback is overcome in recent years by the availability of large datasets that help us

train deep networks effectively. Moreover, deep networks are a lot slower compared to

traditional algorithms which usually involve a simple dot product followed by a non-

linearity. This problem is overcome by massive parallelization using GPUs.
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Convolutional Neural Networks

Convolutional Neural Networks or CNNs are a special modification of Deep Networks

that have broken records in performing several image processing tasks such as object

detection, semantic segmentation, depth estimation etc. CNNs are a modified version

of Deep Networks that make use of the fact that features in images are local. Local

structures combine to produce higher order patterns. For example, different parts of the

face are positioned in a certain pattern to produce a human face. In Deep Networks,

each output node is a function of each of its input node. But these connections are

modified into local connections in a CNN. Moreover the weights involved are same for

all input patches at a node. This property is known as weight-sharing. The fig 2.2 .

Figure 2.2: CNN framework Source:Internet

Pooling layers are used to reduce the size of input image and introduce translational

invariance. The last few layers are fully connected layers like in the case of Deep Learn-

ing framework. The back-propagation algorithm used for Deep Learning algorithms is

slightly modified for CNNs.

2.2 Previous Work

Santo et al. [10] describe a solution to compute surface normals in a per-pixel fashion.

While this deals with the problem of cast shadows in a novel way, it assumes that the

light- directions are known a priori making it unsuitable for our application. Tang et al.

[11] uses a generative model to describe the distribution of surface normals of human-

face data and is of little use in SEM based applications with widely varying object

shapes unlike in case of human face data.
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2.3 Our Approach

Our approach in Chapter 1 is only applicable to the case of symmetric objects such as

spheres. Can we predict accurately, the directions of light source if the objects in the

scene are not symmetric? As shown in equations 1.17 and 1.20, the light direction boils

down to the direction of sum of gradients in the image under assumptions of symmetry.

In case of non symmetric objects, it is plausible to imagine that the function relating the

direction of light source Lj with the image Ij is far more complex than sum of gradients.

We use a CNN to estimate this complex function f .

Lj = f(Ij) (2.16)

2.3.1 Mathematical Formulation

The input to our network is an image of a scene that is captured under a light source.

The output is the light vector that illuminates the object. This is shown in fig 2.3 .

Figure 2.3: Our framework Source:Internet

The details of various parameters of the network are summarized in table 2.1 .

Table 2.1: Network Structure and Parameters

Input Data Synthetically Generated
Activation ReLU

No of Conv Layers 7
No of FC Layers 3

No of weights 10 mi
Loss L2 loss with L2 regularization

Learning Adam Optimizer
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2.4 Results

We used downloaded data from Staford’s Photometric Stereo Database. We relighted

the objects with lighting from randomly chosen directions to generate test data. This is

a regression problem. So the loss function is given by:

L(w) =
N∑
i=1

||~lesti −~ltruei ||22 (2.17)

Some of the input images to the network are shown below.

Figure 2.4: Synthetic Data relighted from different directions

The training is performed with parameters mentioned in table 2.1 and drop-out reg-

ularization with probability of 0.5. The networks trains very well producing excellent

results on test data. The average angular variation between ~lesti and ~ltruei is about 0.5o.

The training and test loss at different iterations during training process are shown in fig

2.5 .
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Figure 2.5: Training and Test loss
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CHAPTER 3

Future work

The work shown in this chapter cannot be applied to SEM Images directly since the

ground truth light directions is not known. A way forward to use the power of deep

learning in the case of SEM images is to use semi-supervised learning approach. Such

an approach would have to simultaneously estimate matrices L and M and use reason-

able priors to propagate the loss. The framework for such a system is shown in figure

2.6 .

Figure 3.1: A framework for semi-supervised learning
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