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ABSTRACT

Defining similarity between two nodes is a highly subjective area of research. We de-

fine similarity between two nodes in a network as the measure of how similar these two

nodes are perceived to be, by every other node in the network. We call this similarity

measure as GSim. We develop a random walk based metric to quantify the above rela-

tion. We provide a simple matrix formulation for GSim. We study various aspects of

performance of GSim with other state-of-the-art similarity measures.

KEYWORDS: Complex networks ; Similarity; Random walk.
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CHAPTER 1

INTRODUCTION

A network is a mathematical construct with nodes, entities in a system, intercon-

nected with edges based on pre-defined relationship. Consider the railway system of

India. Players in the system are the stations. Suppose we define a relation as existence

of a direct train between two stations, then, two nodes (stations) are connected if there

is direct train between them with no intermediate station on the route. Thus a network is

formed. Once we have this construct, we can perform various analyses to help design,

maintain and modify the network. A famous among them is to quantize how similar

two nodes in a network are. One needs to note that the answers to this question are

highly subjective, i.e., the similarity between two nodes depends on how one defines

the notion of similarity. As an illustration, consider the political network of Members

of Parliament of India. Let us define two nodes to be similar if the measure of their im-

portance in the network is similar. This definition will say that the Leader of the House

and the Leader of the Opposition to be most similar nodes in the network. However,

this is counter-intuitive as both of them will belong to rival parties. Thus one needs to

carefully define the relation of similarity between nodes in a network. This definition

will also depend on the kind of network we have at hand.

Similarity between two nodes in a network can be computed either purely based

on the structure of the network or a combination of structure of the network (9; 1; 23)

and machine learning techniques based on meta data of the network (2; 3). Through

this work, we attempt to develop a structure based similarity measure called GSim.

The relation that we use to define similarity between two nodes in a network is the

possibility of reaching two nodes of interest in the network from every other node in the

network. We use random walk based measure to quantize this similarity relation. The

outline of this report is as follows: we present the prior research works in the field in

Section 2, then discuss the motivation, formulation, properties and algorithm for GSim

in Section 3. In Section 4, we present the performance of GSim as compared to other

state-of-the-art measures.



CHAPTER 2

Related Work

Several similarity measures have been specifically designed for certain networks.

However, these can be extended to other network types. Consider citation networks.

The references among the body of academic publications form the citation network.

The research papers are represented as nodes and a directed edge from a paper i to

paper j exists if i cites j. The problem of finding similarity between two papers is found

generally in the context of information retrieval and recommender systems. An intuitive

similarity measure would incorporate both textual and structural properties of the papers

in the network. Hybrid approaches of combining both textual and structural similarities

have been tested in (13; 14). A text-based measure uses meta-data such as the title and

the abstract as modeled in (15; 16) and also the full text as in (17). On the other end,

finding similarity between papers in a citation network based purely on the structure of

the network is widely studied and is found to give promising results.

Historical visualizations of citation network are CoCitation (9) and Bibliographic

Coupling (10). In CoCitation, two papers a and b are similar to the extent of the number

of papers that cite both a and b. In Bibliographic Coupling, two papers a and b are

similar to the extent of the number of papers that are cited by both a and b. Neither

CoCitation nor Bibliographic Coupling take the global structure of the network, i.e.

overall paths between papers a and b, into account. MatchSim (11) is a local neighbor-

based similarity measure built on the idea of measuring similarity of two nodes by the

similarities of their pairwise matched neighbors instead of just calculating the number

of common papers among the neighborhood of two papers. Thus, it is an iterative

measure.

In (18), an iterative metric is proposed, which aims to define similarity between

two nodes transitively, i.e., if papers (a, b) and (b, c) are similar then (a, c) are simi-

lar, known as transitive node similarity. In the formulation of GSim, it will be shown

later that, as α, the decay parameter, tends to zero, GSim imitates the transitive node

similarity in terms of formulation.



SimRank (1) is a widely reported global similarity measure due to its intuitive

and sound mathematical basis. The main proposition of SimRank is that ‘two objects

are similar if they are referenced by similar objects’. Here, if there is a directed edge

from a node i to node j, then i is said to reference j. Similarity between nodes a and b

is calculated based on existence of equal length paths from nodes a and b to a node c,

thus leaving paths that have unequal lengths. Having an objective relation for calculat-

ing similarity led to many extensions of this measure overcoming some of the serious

drawbacks with SimRank, like, Limited Information problem, Zero Similarity problem

and high computational complexity, which are later discussed in detail.

A variation of SimRank is pursued by P-Rank (4). P-Rank includes the effect of

references made by the nodes of interest as well, i.e., ‘two objects are similar if, (1) they

are referenced by similar objects and (2) they reference similar objects’. Even P-Rank

does not consider paths of unequal length. The natural extension of including paths

that have unequal lengths in SimRank was pursued by SimRank∗ (5) and E-Rank (6).

E-Rank derives its formulation by considering two independent random surfers travers-

ing paths to common node with any path lengths. SimRank∗ brings in the notion of

unequal lengths by modifying the mathematical expression of SimRank appropriately.

SimRank∗ also gives an approximate closed form expression to calculate similarity un-

like SimRank. Other closed form expressions for SimRank algorithm have been given

in (19; 20; 21).

All the above metrics are proposed on networks with a single type of edge. How-

ever, in reality, there can be multiple types of nodes and those nodes can be connected

via multiple relations, for example, papers, authors, conferences, journals, web down-

loads can form the heterogeneous node set for citation network. SimFusion(22) attempts

to make use of such heterogeneous data by defining a Unified Relationship Matrix to

represent such heterogeneous data objects, and their interrelationships and measure

similarity between two nodes. Thus, this method can be considered as extension of

SimRank to multi-layer graphs.

There are attempts to connect centrality and similarity measures, for example,

CentSim(23). In CentSim, two nodes with similar centrality vectors are defined to be

similar. Centrality vector of a node includes various centrality measures like degree and

PageRank as its components. Similarity between two centrality vectors is quantized
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by using a Jaccard coefficient like formulation. A serious drawback arises from the

above definition of CentSim as follows: even though two nodes have lower centrality

measures, CentSim gives a high similarity score as their centrality values are nearby.

This need not be true. Another interesting way of calculating similarities has been put

forward in (24), where similarity is calculated from the perspectives of both query node

and the candidate nodes. Here, query node is the node of interest for which we want to

calculate similarity with respect to every node in the candidate list.

Another work that attempts connect centrality and similarity is PageSim(25),

derived in the context of web page network. The central idea was that the centrali-

ties(feature vectors) of pages were propagated through the hyper-links and similarity

between two pages was defined by a Jaccard coefficient like correlation among their

feature vectors that are obtained after the end of propagation phenomenon. However,

PageSim fails to provide intuition behind the formulation. PageSim also carries the

drawback of CentSim, assigning high similarity for nodes with low propagation scores.

This essentially arises from defining similarity using Jaccard coefficient based formu-

lation. We overcome the high time complexities of similarity algorithm, drawbacks of

PageSim, Limited Information problem, Zero Similarity problem through GSim.

Given the rise in size and scale of networks, a scalable model that efficiently

quantifies similarity between nodes is required. We aim to devise a similarity relation

with a strong theoretical backing and an efficient algorithm. We derive our inspiration

for the similarity relation from transportation networks and this measure can be easily

extended to other types of networks. We propose a random walk based quantization of

similarity, similar to the ones proposed in PageRank(26) and SimRank.
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CHAPTER 3

GSim

3.1 Preliminaries

Consider a transportation network as a directed graph G1(V,E), where V denotes

the set of stops present in the network and E represents the set of edges based on a

predefined relationship. Let the total number of stops in the network be n. Let i and j

be two places (stops) of interest in the network. A directed edge starts from i and ends

at j, if there exists a direct mode of transportation from i to j without any intermediary

stops.

Let A1 denote the adjacency matrix of the network generated by the above rela-

tion rule with [A1]ij being 1 if an edge is directed from place i to place j. Let W1 denote

the row normalized adjacency matrix. Let O(i) denote the set of out-link neighbors

of node i, i.e., the set of immediate neighboring places of node i in the transportation

network and let |O(i)| denote its cardinality.

3.2 Motivation

Katz similarity (27) defines similarity measure between two nodes i and j by

counting all paths between the nodes and damping them exponentially to favor short

paths. This can be modeled as a random walk from i with an aim to reach j. For every

path of length l traversed by a random surfer to reach j, a reward proportional to an

exponential raised to l is given to similarity measure. However, in a probabilistic sce-

nario, Katz similarity doesn’t consider the number of times the event of a random surfer

starting from i and reaching j via a path of length l occurs, and how many times the

random surfer starts from i. Latter event can be related to the probability that a random

surfer is present in state(node) i at a given time, πi.

SimRank, however, approaches the problem of defining similarity in a different

way. SimRank considers two independent random surfers starting their journey from i



and j one at each, and their meeting distance (as defined in (1)) is rewarded every time

they meet at another node k with an amount proportional to an exponential raised to

the length of traversal by both surfers. It can be observed that SimRank also doesn’t

account for recurrence of the entire process of rewarding the similarity measure as is

the case with (6). We aim to bridge this gap of reasoning.

We use the insights from a transportation network perspective to define similarity

based on reachability. We say that two places (nodes) i and j are similar if the two places

are reachable from every other place in the network. In order to quantize this similar-

ity rule, we consider an inverse random walk paradigm where an independent random

surfer starts from a spectator node k. Steady state distribution for the random surfer is

computed for every node. This distribution value at node i denotes the probability of the

random surfer ending at node i in steady state. We quantize similarity between nodes

i and j with respect to spectator node k as the product of distribution values of random

surfer at nodes i and j. Thus, if one of the two distribution values is low, overall product

will be lower, overcoming the problem of PageSim. However, in this probabilistic sce-

nario, one needs to consider the frequency of the random surfer starting from node k.

We assume that the more central a node is, the more frequent the random surfer starts

at the node. So, we use the centrality value of a node i as its πi. To compute the total

similarity value of nodes i and j, we consider all the possible spectator nodes k in the

network and sum over these nodes.

This inverse random walk paradigm leads to a compact matrix expression to

compute similarity between any two pair of nodes. As there are many efficient matrix

manipulation algorithms, overall time taken by the algorithm to compute all possible

pair-wise similarities is drastically reduced.

3.3 Formulation

We aim to calculate similarity score between nodes i and j. We are primarily inter-

ested in calculating steady state probability distribution of a random surfer starting from

node k in the network to nodes i and j.

We initially model a random surfer starting from a place k with an aim of reaching

i. When the random surfer starts from k, the surfer chooses one of the out-going links

6



of k with a probability 1/|O(k)| and continues the surfing in a similar way as depicted

in figure 3.1. Let x denote a possible path from place k to place i and let l(x) denote its

length (total number of edges in the path x). Expected value of distance, d(k, i) between

k and i can be formulated as:

d(k, i) =
∑

x: k→i

P (x).l(x) (3.1)

where P(x) denotes the probability that the surfer undertakes path x. P(x) is given by:

P (x) =
∏

a∈Vx

1

|O(a)|
(3.2)

where Vx denotes the set of papers present in the path x including k and excluding the

end node i. It is assumed here that the surfer walk resembles a Markov process. This

means that the surfer has no memory of the path traversed before.

k

...
...

...
...

...

i j

· · ·

· · · · · · · · ·

· · · · · · · · · · · ·

Figure 3.1: Description of a random walk

To circumvent the ‘infinite expected distance problem’ as discussed in (1), we define

expected f -distance between k and i as follows:

d′(k, i) =
∑

x: k→i

P (x).αl(x) (3.3)
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We consider exponential function for the same reasons discussed in (1). α, a decay

parameter is defined in the range of [0,1). It can be observed that the set of paths

{x : k → i} have one-to-one correspondence with {x′ : O(k) → i} and l(x) =

l(x′) + 1. Hence P (x) can be expressed in a recursive form in terms of P (x′) as:

P (x) =
1

|O(k)|

∑

x′: O(k)→i

P (x′) (3.4)

As a result, the following transformation for the distance metric can be worked out:

d′(k, i) =
∑

x: k→i

P (x).αl(x)

=
1

|O(k)|

|O(k)|
∑

y=1

∑

x′: Oy(k)→i

P (x′).αl(x′)+1

=
α

|O(k)|

|O(k)|
∑

y=1

∑

x′: Oy(k)→i

P (x′).αl(x′)

=
α

|O(k)|

|O(k)|
∑

y=1

d(Oy(x
′), i) (3.5)

A recursive matrix expression for equation (3.5) is as follows:

D = α.W⊤
1 .D + (1− α)In (3.6)

where [D]ab = d(a,b) and In is an n×n identity matrix. As we intend to calculate expo-

nential raised to the length of path, the process can be viewed as propagation of influ-

ence of each node through the network. Thus D is initialized to In and the propagation

from each node can be calculated iteratively using the above expression. To ensure that

the score propagated over each iteration from a node is maximum, we add (1 − α)In.

A closed form expression can be obtained as well. By definition, each element in W1

is less than 1. So, each element in αW is less than 1. Hence, (In − αW1) is known to

be invertible (28). Closed form expression of D is similar to the PageRank form and is

given by:

D = [In − αW1]
−1 (3.7)

Without loss of generality, we remove all the multiplied constants. We define the

similarity metric between places i and j given that a surfer starts from place k, sk(i, j),

8



as the product of probabilities of the random surfer ending up at places i and j under the

random walk with restart paradigm, i.e.,

sk(i, j) = d′(k, i).d′(k, j)

=
[

(In − αW1)
−1
]

ki

[

(In − αW1)
−1
]

kj

=
[

(In − αW⊤
1 )

−1
]

ik

[

(In − αW1)
−1
]

kj
(3.8)

In a probabilistic scenario, for every occurrence of the following event, ‘existence of

two paths, one from k to i and the other from k to j, given the surfer is at state(paper)

k’ we have awarded a score proportional to the product of distance metrics of both

paths, to the similarity measure and found the expected amount of the award over all the

possible nodes k. We, however, didn’t consider the occurrence of the surfer starting at

node k in the first place. We propose that the occurrence of above event is proportional

to place k’s centrality in the network. Suppose we know the centrality scores of the

papers before hand, for example PageRank. Let ca be the centrality score of place

a ∈ V . We define a matrix C1 such that [C1]aa = ca and off-diagonal elements to be

zeros.

Hence GSim score between papers i and j, s(i,j) is defined as:

s(i, j) =
∑

∀k

ck.sk(i, j)

=
∑

∀k

{

[

(In − αW⊤
1 )

−1
]

ik

[

C1

]

kk

[

(In − αW1)
−1
]

kj

}

=
[

(In − αW⊤
1 )

−1.C1.(In − αW1)
−1
]

ij
(3.9)

We define similarity score matrix, S1, as follows:

S1 =
[

(In − αW⊤
1 )

−1.C1.(In − αW1)
−1
]

(3.10)

where [S1]ij = s(i, j). However, one must note the following issue with the above

formulation. In an example network shown in figure 3.2, there is no node in the net-

work, from which there exist paths to nodes 1 and 7, i.e., the above similarity measure

can’t capture similarities between recently added places onto the transportation net-

work. Thus, to capture the above scenario, we’ll have to consider destinations that we

9



can reach from nodes of interest as well, i.e., both 1 and 7 refer 2 as well as have an

extended path to 6.

1 7

2 3 4

5 6

Figure 3.2: Example network

To address this issue, we propose an extension to the above similarity measure. We

call this new measure as GSim. We consider a new network G2(V,E2) where the di-

rected edges in network G(V,E) are reversed and repeat the above mentioned procedure

of computing similarity.

We can observe that adjacency matrix of network G2, given by A2, is the transpose

of A1. We obtain the following similarity score matrix for G2:

S2 =
[

(In − αW⊤
2 )

−1.C2.(In − αW2)
−1
]

(3.11)

We define a comprehensive GSim matrix as follows:

S = λ.S1 + (1− λ)S2

= λ.
[

(In − αW⊤
1 )

−1.C1.(In − αW1)
−1
]

+ (1− λ)
[

(In − αW⊤
2 )

−1.C2.(In − αW2)
−1
]

(3.12)

where λ ∈ [0,1] adjusts the relative weight between co-citation and bibliographic cou-

pling influence on the similarity measure. Thus we provide a closed for expression for

GSim.

10



3.4 Properties of GSim

3.4.1 Symmetry

As C is a symmetric matrix by definition, it can be observed that S1 and S2 are symmet-

ric and thus making S, a symmetric matrix.

3.4.2 Limited Information problem

One of the problems with SimRank is that the similarity between nodes with no in-

coming edges is defined to be zero, i.e., for newly added nodes to the network, similarity

is given to be zero as there is limited information on these new nodes. This is called

Limited Information problem. The main motivation for P-Rank was to overcome this

problem. A similar version of formulation is also considered in GSim to come around

the limited information on the new nodes.

3.4.3 Zero Similarity problem

As SimRank considers only the paths of equal length from nodes i and j, similarity be-

tween a parent and its child node is zero. This is called Zero Similarity problem. This

problem is originally highlighted in SimRank∗ (5). However, as GSim considers the two

random walks independently, paths of different lengths are also taken into considera-

tion, hence overcoming the issue of ‘Zero Similarity’.

3.4.4 Scalability

Due to inherent parallel property of propagation of centrality of a node in the network,

GSim can be effectively scale to networks with large set of nodes by efficiently using

the memory space.

11



3.5 GSim computation algorithm

Algorithmic implementation of GSim has two steps - Propagation of centrality and cal-

culation of similarity scores. Propagation of centrality of node over the network pene-

trating the centrality of a node through its neighborhood. We implement a limit on this

penetration of neighborhood upto three hops. This penetration of influence of node i

to a target node j can take place through multiple paths present between nodes i and j.

Thus the overall influence of node i on node j is the sum of scores propagated through

multiple paths. Thus every node k has a vector of these propagation scores from every

node j. Once we have such scores, using equations 3.10 and 3.11, we calculate simi-

larity scores between every pair of nodes in the network. Another implementation of

GSim would be to directly use the readily available efficient matrix inversion packages

for equation 3.12.

Algorithm 1 Propagation algorithm for a node v

1: procedure SPREADPROCC(G, set1, hopNum, parentSet)

2: while len(set1) > 0 do

3: tempNode = set1.pop()

4: if hopNum ≤ Thresh then

5: set2 = G.neighbors(tempNode)

6: parentSet(set2) = tempNode

7: φ(tempNode)+ = αhopNum/degree(parentSet(tempNode))
8: φ = spreadProcc(G, set2, hopNum+1, parentSet)

9: else

10: break

11: return φ

12:

13: global Thresh = 3 ⊲ Threshold for hops in neighborhood

14: procedure PROPAGATION(G, v)

15: hopNum = 1

16: for each w in V do

17: φ(w) = 0 ⊲ Propagation value of node v

18: parentSet(w) = v

19: set1 = neighbors(v)

20: φ = spreadProcc(G, set1, hopNum, parentSet)

The above algorithm 1 lays out the sequence for propagation of node v. parentSet is

a dictionary with all the nodes as keys and their set of parent nodes is set as the value.

We set the threshold over the number of hops to be considered for propagation to be

three and initialize the node v’s spread component in the spread vector of each node

to be zero. The graph G, one-hop neighbors of source node v, present hop number

12



and the parentSet corresponding to set1 are given as inputs to function spreadProcc.

spreadProcc is a recursive function which imitates Breadth First Search algorithm in

its propagation traversal. Propagation value of every node in the neighborhood of node

v is updated in spreadProcc function. This is recursed over every one-hop neighbor

of node v. The number of recursion steps is limited to three. After all the recursions,

spreadProcc function returns the three-hop propagation of node v’s influence.

3.6 Time and space complexity analysis

Let k be the maximum degree of a node in the network. The propagation step is sim-

ilar to the propagation stage in PageSim. As we cap the number of recursions in the

propagation stage of the algorithm to be 3 (in general, say, r), the expected size of the

propagation vector at each node would be O(kr). Thus we can establish that the time

complexity for performing propagation step for a node is O(kr). Once we have the

GSim propagation scores and the centrality values of all the nodes, all we need to do is

a simple multiplication (equation 3.11). In this multiplication stage, we know that we

need not multiply an entire row of the first matrix with an entire column of the second

matrix, as we know that only O(kr) values are non-zero. Thus, time complexity for this

stage is O(k2r). For computing GSim similarity values for all the n2 node-pairs, time

complexity would be O(n2kr).

As we have discussed, space required to store propagation values of a node is

O(kr). Thus, overall space complexity of GSim is O(nkr).

13



CHAPTER 4

Experimental results

In this section, we perform two experiments on GSim to understand its performance

in comparison with SimRank and PageSim. We use optimized version of SimRank by

employing several pruning techniques. As it is heavily time consuming to compute

SimRank metric for every node pair on a network with more than 10000 nodes, we use

synthetic datasets for the following experiments. Methods of network construction used

for the two experiments are discussed in the respective subsections.

4.1 Time analysis

In this experiment, we measure the time performance of the three algorithms. We con-

struct a simple direct Growing Network (GN) graph with number of nodes ranging from

100 to 2000. We use performance counter clock to measure time complexity of each

metric. From Figure 4.1, we can observe that GSim performs very well compared to

both SimRank and PageSim in terms of time taken to compute similarity measure for

all possible node-pairs. The main reason for the better performance of GSim is it’s sim-

pler matrix formulation. As we have several high performing functions that can handle

matrices, the overall time taken to compute similarity measures is lower. However, one

needs to observe that as the number of nodes increases to the order of millions, the time

measure shoots up drastically for all the algorithms.

We now consider a different graph generator model, namely, G(n,p) model. Here, ev-

ery possible edge in an n-node network occurs with a probability of p. In this network,

we study the affect of p on the time taken to compute all possible node-pair similarity

measures, for all the three measures. Figure 4.2 shows the affect of increasing the prob-

ability value, p, on the time taken by all the three algorithms for a 200-node network.

For every value of p, time complexity is averaged over 20 instances of graphs gener-

ated. It can be observed that the change in density of the network has a huge impact

on the computational time complexity of SimRank compared to PageSim and not much



Figure 4.1: Time performance of GSim, SimRank and PageSim

visible affect on computation of GSim. One needs to note that the number of nodes in

the network considered for this experiment is pretty small.

4.2 Cluster analysis

In order to establish that GSim actually traces the ground truth of similarity between

the nodes, the following experiment is conducted. We consider the ground truth of

similarity to be the belongingness of node pair to a single community. We generate

a synthetic stochastic block model with 1000 nodes and 5 clusters. We assume to

have the prior knowledge of the cluster to which each node belongs. Probability of

occurrence of an edge is given by a stochastic matrix [P]5×5, i.e., the probability of

occurrence of an edge between node i belonging to cluster a and a node j belonging to

community b is given by [P]ab. For this experiment, we assume that [P]aa = ρ, ∀a and

[P]ab = (1− ρ)/4, ∀b 6= a.

Given the stochastic block model, we calculate similarities between all possible
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Figure 4.2: Time performance of GSim, SimRank and PageSim as the probability of

edge occurrence increases

node-pairs for every measure. Now, we separate the node-pairs whose similarity value

lies within the top k% of all values, for different values of k, as shown on the horizontal

axis of Figure 4.3. Among these top k% similar node pairs, we count those node pairs

(i, j), whose entities i and j belong to same cluster, as shown on the vertical axis of

Figure 4.3. This counting is performed for various values of ρ. Each item in legend,

for example, ’S0.4’ in the Figure 4.3, corresponds to fraction of node-pairs with top

k% SimRank similarity values that belong to same cluster, with parameter ρ = 0.4.

Similarly, ’P’ corresponds to PageSim and ’G’ corresponds to GSim.

Two important observations can be noted from Figure 4.3. The first one is, as

we expand the top similar node-pair net by increasing the value of k, one would assume

that the similarity measure will output also those node-pairs which do not belong to

same community. This can be seen in the performance of GSim and SimRank with an

interesting exception by SimRank. For high values of ρ, SimRank is able to trace the true

community structure of the network exceptionally well. However, for lower values of ρ,

expected trend can be observed. GSim follows the expected trend throughout the range

of ρ. It is important to note that the edges in real world networks have significant inter-
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community links, i.e., possess low ρ values. So, we conclude that GSim will be able

to follow the ground truth on par with established measures with an added advantage

of low time complexity. PageSim does not seem to reflect the ground truth similarity

measures very well. Particularly, the top 0.02% similar node-pairs seem to belong to

different clusters.

From these three experiments, we have established that GSim has a considerable

advantage over SimRank and PageSim in terms of time taken to compute all possible

node-pair similarity measures. Also, in small networks, the increase in density of the

network seems to be significantly impacting the time complexity of SimRank and not

PageSim and GSim. Finally, we conclude that GSim and SimRank are able to better

trace the ground truth similarity values as compared to PageSim. And, in a range of ρ,

SimRank traces ground truth extremely well.

Figure 4.3: Cluster performance of top k% similar node-pairs as given by GSim, Sim-

Rank and PageSim
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CHAPTER 5

GSim for multilayer networks

Increasingly, researchers are extending the theories and concepts for a single layer net-

works to multilayer networks. The motivation for this extension is predominantly that

the real world networks can be better represented by multilayer networks. For exam-

ple, consider transportation network of Manhattan, New York City. There are several

modes of transportation, subway, public bus and cycle, available for a person to travel

from place A to place B. Each mode of transport has its own network of pickup and

drop points. Thus, transport network of Manhattan can be better represented by a com-

bination of all these networks. Hence there is a need to extend all the theories that were

proposed on single layer networks, to multilayer networks.

We try to extend GSim to multilayer networks for calculating similarity between

any two nodes across the layers. We can club all the layers into a single network and

compute similarities between nodes. However, we need to understand what this quantity

reflects. We know that GSim(i, j) gives the similarity between nodes i and j if both of

them belong to same layer. We need to understand what does GSim(i, j) mean if node

i belongs to one layer and node j belongs to a different layer. In order to study this,

let us define a new inter layer average similarity measure between two layers a and b,

avgInterLayerSim(a, b) as the average of GSim similarity of evry possible node pair (i,

j) such that node i belongs to layer a and node j belongs to layer b.

Consider a two scenarios of a 2-layer network with four nodes each with the edge

structure as shown in Figure 5.1. Case (i) has same networks in both the layers, whereas,

case (ii) has two complementary networks. The dashed lines, inter-layer edges, indicate

the correspondence of nodes, i.e., node 1 and node 5 belong to same entity, but operate

in two layers. The solid lines are the intra layer edges. When we consider the network

as whole, the edge set includes both inter and intra layer edges. Now, consider the

two layer network as a single network with 8 nodes and 8 edges. If we try to extend

the random-walk based similarity measure GSim to the case (i), the similarity between
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Figure 5.1: Two scenarios of multilayer networks

nodes 2 and 7 will be given as ‘0’. This is because, there is no other node in the

entire network from which the random walker can traverse to both node 2 and node

7. However, in case (ii), a random walker starting from node 1 can reach both node

2 (path : 1→2) and node 7 (path : 1→5→8→4→3→7). Thus the GSim similarity

between nodes 2 and 7 in case (ii) is non zero. With this insight, we can establish that

avgInterLayerSim(a, b), as defined above, is higher in case (ii) compared to case (i).

By definition, GSim uses the reachability of two nodes from every other node

in the network as the relation to define similarity between two the two nodes. In the

above multilayer construct, nodes 2 and 7 are reachable only if the structures of the

network present in two layers are complementary to each other, thus improving the

navigability of a random walker from one layer to other. This shows that GSim measures

navigability between two layers. The phenomenon of navigability is very important in

transportation networks and there are some past works which study navigability (29; 30;

31). A practical use case for this extension of GSim is, while designing a transportation

network, the designer would want to design an under ground subway network in such

a way that it augments the over ground bus network rather than end up as a redundant

mode of transportation.
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CHAPTER 6

Conclusion and future work

In this work, we provide a new random walk based similarity measure, GSim, between

two nodes of a network. We study it’s important properties and formulation. In many

past works, similarity between two node i, j is defined from the perspective of them,

for example, comparing the local structures around nodes i and j. We propose the

similarity of two nodes i and j from the perspective of every other node in the network,

i.e., two nodes are said to be similar if they are both reachable from another node k

in the network. We observe that this inversion of defining similarity relation leads to

a simple matrix formulation. We study the relative performance of GSim with other

established similarity measures in terms of time and mimicking ground truth. We also

provide motivation and use cases for extension of GSim to multilayer networks.

In this work, we have only considered small networks to study the performance

of GSim. Hence, studying the relative performance of GSim on larger and a diverse set

of networks would be an interesting future line of work. Another line would to study the

impact of centrality measures that are used in the formulation of GSim. Study of GSim

on large multilayer networks of different kind would be another line of future work.
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