
Tracking Biomedical Equipment in

Virtual Reality

A Project report

Submitted by

Ayyalasomayajula Varun Kumar

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

May 2017

2 | P a g e

THESIS CERTIFICATE

This is to certify that the thesis titled Tracking Biomedical Equipment

in Virtual Reality, submitted by A.Varun Kumar, to the Indian

Institute of Technology, Madras, for the award of the degree of

Bachelor of Technology, is a bona fide record of the research work

done by him under our supervision. The contents of this thesis, in full

or in parts, have not been submitted to any other Institute or

University for the award of any degree or diploma.

Prof. Dr.M Manivannan

Project Guide

Professor Dept. of Applied Mechanics

IIT-Madras, 600036

Place: Chennai

Date:

Prof. Dr.Kaushik Mitra

Project Co-guide

Asst. Professor Dept. of Electrical Engineering

IIT-Madras,600036

Place: Chennai

Date:

3 | P a g e

ACKNOWLEDGEMENTS

I would like to thank my project guide, Dr. M Manivannan, for all

his supervision and help during the project work. I would also

like to thank Dr. Kaushik Mitra for being the co-guide of our

project. I would also like to extend my sincere thanks to the

people at Haptics Lab – Joseph Isaac, Ravalli Gourishetty,

Chandrasekkhar Burlee and Prabhu Vasulingam for helping me

out at different stages of my project work. Lastly, I thank my

friend and batch mate Ashfakh Rithu, for being my project

partner and a good friend.

4 | P a g e

 CONTENTS

1. Abstract... 5

2. Introduction... 6

 2.1 Motivation..6

 2.2 Problem Statement...6

3. Initial Work..7

 3.1 PNP algorithm for Pose estimation...11

4. Monocular Pose Estimator..14

 4.1 System Requirements..14

 4.1.1 Hardware...14

 4.2 Algorithm..15

 4.2.1 Overview..15

 4.2.2 LED Detection..16

 4.2.3 Correspondence Search...18

 4.2.4 Prediction..19

 4.2.5 Pose Optimization...20

5. Evaluation..21

6. Conclusion..22

 6.1. Limitations...22

 6.2. Future Work...22

7. References..23

5 | P a g e

1 ABSTRACT

 The project is aimed at using the RIFT technology of tracking a head

mounted display to track other objects in Virtual reality. We use infrared LEDs

as markers on target object for an accurate and robust pose estimation

system. They are mounted on a target object and are observed by a camera

that is equipped with an infrared-pass filter. The correspondences between

LEDs and image detections are first determined using a combinatorial

approach and then tracked using a constant-velocity model. The pose of the

target object is estimated with a Perspective-3-Point algorithm and optimized

by minimizing the re-projection error. Since the system works in the infrared

spectrum, it is robust to cluttered environments and illumination changes.

6 | P a g e

2 INTRODUCTION

2.1 MOTIVATION

 The Motivation behind this project was to create a proper tracking

system for the biomedical equipment as a part of ACLS project in the Haptics

lab. We were part of the project which made a 3-DOF tracking system using

stereo cameras. But the system was not robust and accurate. So we decided to

come up with a robust system based on the tracking technology using Infra

Red LEDs as they are easier to detect and provide more accurate tracking.

2.2 PROBLEM STATEMENT

 To make an object tracking system with sub-millimetre accuracy so as

to track biomedical equipments as objects. Since sub-millimetre accuracy is

required we have chosen to use IR LEDs and track the object as this method is

being used by many state of the art tracking technologies

2.3 SCOPE OF THE PROJECT

 The tracking system we developed is of sub-millimetre precision. It can

be used in many on going and future projects at Haptics Lab. This thesis also

includes the detailed procedure of working of Oculus Rift DK2, so it will be

useful in any future projects which include hacking of Oculus Rift DK2.

7 | P a g e

3 INITIAL WORK

 Our Initial work was based on Oculus Rift technology. The Head

Mounted Display (HMD) of the Oculus is tracked using IR LEDs and an Inertial

Measurement Unit(IMU). Reverse engineering of Oculus Rift was done to find

out how the HMD was tracked. There are 41 IR LEDs and an IMU mounted into

the Oculus HMD at predefined positions.

 The Synchronised camera communicates via I2C Serial communication. So

by giving a specific set of commands to the camera, information about the

position of HMD can be extracted. The camera used in Oculus Rift DK2 is

Aptina MT9V034, and the commands can be found in the datasheet.

 The LEDs on the HMD are controlled by the camera. The camera is the

master device and HMD, the slave device. There is a HID feature report (0x0C)

that turns on the LEDs. It has a built-in timeout of 10 seconds, meaning the

8 | P a g e

report must be reset at regular intervals by the driver software or the LEDs

turn off again. After sending this feature report, the LEDs will turn on for 10

seconds, and they will show up in the tracking camera image very brightly and

flicker at particular blinking frequencies. The Blinking pattern of LEDs can be

controlled and this pattern also gives each LED a 10-bit identity.

 Figure 2: LED tracking and identification algorithm with frame-drop correction. Still frame from

“Identifying LEDs Based on Blinking Patterns.”

 Here is the full list of 10-bit IDs, ordered by 3D marker position index in

report 0x0f, from 0 to 39 (see Figure 3 for a picture of the corresponding

marker positions in 3D space):

 2, 513, 385, 898, 320, 835, 195, 291, 800, 675,

 97, 610, 482, 993, 144, 592, 648, 170, 27, 792,

 410, 345, 730, 56, 827, 697, 378, 251, 1016, 196,

 165, 21, 534, 407, 916, 853, 727, 308, 182, 119

9 | P a g e

 The numbers might look random, but there’s a reason why they’re spread

out over the entire [0, 1024) interval. If we know that the only 10-bit IDs that

we expect to find in a video stream are the 40 listed above, we can use the

redundancy of assigning 10 bits to encode 40 values to automatically correct

the kinds of bit errors. This is based on Information theory concept called

Hamming distance. The Hamming distance between two 10-bit binary numbers

is the number of bits one has to flip to turn the first number into the second. If

the numbers are identical, their Hamming distance is 0; if they differ in a single

bit, their distance is 1, if they are bit-wise negations of each other, their

Hamming distance is 10. There’s a related concept called minimal Hamming

distance, which is the minimum of Hamming distances between all pairs of

elements of a list. In the case of our 40 elements, their minimal Hamming

distance happens to be 3. It means the minimum number of bit flips it takes to

turn one valid ID into another valid ID is 3. So if we assume that bit errors are

rare enough that it’s improbable that more than one occurs in any sequence of

ten video frames (and that seems to be the case), then we can not only detect,

but correct those errors on-the-fly.

 We compare any extracted number to the list of 40, and find the list

entry that has the smallest Hamming distance. If that distance is 0 or 1, we

know that the number we extracted should be set to the list entry we found. If

there happen to be 2 or more bit errors in a sequence of 10 frames, we’re out

of luck, but in practice, it seems to be working.

10 | P a g e

Figure 3: Oculus Rift DK2’s 3D LED positions, labeled by marker index in the sequence of 0x0f HID

feature reports.

 And instead of setting the LED blob ID to the correct 10-bit number we just

set it to the index of the associated 3D marker (see Figure 4) That way we can

feed it directly into the pose estimation algorithm.

11 | P a g e

Figure 4: LED blobs extracted from the video stream, labelled with the indices of their associated 3D

marker positions. Compare to Figure 3.

3.1. PNP ALGORITHM FOR POSE ESTIMATION

 3D pose estimation, or the problem of reconstructing the 3D position

and orientation of a known object relative to a single 2D camera, also known

as the Perspective-n-Point problem, is a well-researched topic in computer

vision. In the case of the Oculus Rift DK2, it is the foundation of positional head

tracking. An inertial measurement unit (IMU) by itself cannot track an object’s

absolute position over time, because positional drift builds up rapidly and

cannot be controlled without an external 3D reference frame. 3D pose

estimation via an external camera provides exactly such a reference frame.

 3D pose estimation is a multi-dimensional non-linear optimization

problem. Given a known model, i.e., a collection of 3D points such as the DK2’s

tracking LEDs, a camera with known intrinsic parameters, and a set of 2D

12 | P a g e

points in the camera’s image, such as the set of extracted LED blobs, one can

try to reconstruct the unknown position (tx, ty, tz) and orientation (yaw, pitch,

roll) of the model with respect to the camera (in reality, one would never use

yaw, pitch, and roll angles to do this, but that’s a technical detail). In theory,

the approach is simple. Given a candidate set of unknown parameters (tx, ty,

tz, yaw, pitch, roll), one takes the set of 3D model points, transforms them by

the rigid body transformation defined by the six parameters, projects them

into image space using the camera’s intrinsic parameters, and then calculates

the sum of their squared distances from the true observed image points (this is

called re-projection error). This process defines an error function F(tx, ty, tz,

yaw, pitch, roll), and the problem is reduced to finding the set of parameters

that globally minimizes the value of the error function.

 Still frame from pose estimation video, showing a 3D model of the DK2’s headset (the purple

wireframe) projected onto a raw 2D video frame from the tracking camera based on reconstructed

position and orientation.

13 | P a g e

 Given a predicted image point, which one of the observed image points

should it be compared to? Without knowing anything else, one would have to

test all possible associations of observed and predicted image points, and pick

the association which yields the smallest error after optimization.

 Unfortunately, there are a lot of possible associations; in general, if there

are N predicted image points and M<=N observed image points, then there are

N!/(N-M)! possible associations. To pick an example, for N=40 (number of

LEDs on DK2) and M=20, there are 335,367,096,786,357,081,410,764,800,000

potential associations to test, and that’s a large number even for a computer.

There are many heuristic and/or iterative methods to establish associations

automatically, but they tend to be rather slow and fragile. The best approach,

is to somehow make it possible to identify a-priori which observed image point

belongs to which 3D model point, and the DK2’s flashing 10-bit patterns do

exactly that.

The lack of a proper Linux SDK made our work very difficult. Even though we

were able to dump the estimated pose of the oculus into the terminal, we

were unable to expand it so that this can be implemented with another object.

More over the synchronized camera had a couple bugs which made it very

difficult to use it with normal camera packages and calibration procedures. The

hardware used by Oculus was difficult to replicate on a mall biomedical object

for it to be tracked. So we decided to come up with another tracking system

which mimicked the Rift tracking system and was considerably less complex.

14 | P a g e

4 MONOCULAR POSE ESTIMATOR

4.1 SYSTEM REQUIREMENTS

4.1.1 HARDWARE

 Our system consists of infrared LEDs at known positions on the target

object and an external camera with an infrared pass filter. With at least four

LEDs on the target object and the corresponding detections in the camera

image, we can compute the 6-DOF pose of the target object with respect to

the camera. To increase robustness, the system can also handle more than

four LEDs on the target object. The placement of the LEDs on the target object

is arbitrary, but must be non-symmetric. In addition, the LEDs should not lie in

a plane to reduce ambiguities of the pose estimation. To increase precision,

they should span a large volume. Robustness can be increased if the LEDs are

visible from as many view points as possible.

 As mentioned above, our system requires prior knowledge of the LED

configuration, i.e. the positions of the LEDs in the reference frame of the target

object. Since infrared LEDs are detectable by a motion capture system, we can

use it to determine the positions of the LEDs with sub-millimetre accuracy.

We can track the target object in the motion capture system and read out the

positions of the single LEDs, which can be transformed into the target-object

coordinate frame. Furthermore, we need to know the intrinsic camera

parameters, which we obtain using the camera calibration tools of ROS.

 The entire system is implemented in ROS. ROS is a flexible framework

for writing robot software. It consists of a collection of tools, libraries and

conventions that are very commonly used among developers.

15 | P a g e

 Figure: Experimental Setup

4.2 ALGORITHM

4.2.1 OVERVIEW

 The flowchart of our algorithm is presented in Fig. 3. The current camera

image, the LED configuration, and previously estimated poses serve as inputs

to our algorithm. In a first step, we detect the LEDs in the image. Then, we

determine the correspondences using prediction or, if that fails, using

combinatorial brute-force approach. Finally, the pose is optimized such that

the re-projection error of all detected LEDs is minimized. This optimization also

16 | P a g e

returns the covariance of the pose estimate, which is crucial information in

further processing.

 LED configuration

Image LED detection Correspondence Pose optimization Pose with

 Search covariance

 Last poses Prediction

4.2.2 LED DETECTION

 Since we are using infrared LEDs whose wavelength matches the

infrared-pass filter in the camera, they appear very bright in the image

compared to their environment. Thus, a thresholding function is sufficient to

detect the LEDs,

 I(u, v), if I(u, v) > threshold,

 I’ (u, v) = 0, otherwise.

 This threshold parameter depends on the shutter speed of the camera

settings. However, we found that a large range of parameters works well (80–

180). We then apply Gaussian smoothing and group neighbouring pixels to

blobs. To estimate the centre of these blobs with sub-pixel accuracy, we weigh

the pixels with their intensity. The centre is then calculated using first image

moments that are defined as

17 | P a g e

The weighted centre, i.e. the (distorted) LED detection in the image, is then

 û = M₁₀/M₀₀,

 v^ = M₀₁/M₀₀

 In all calculations to come, we assume the standard pinhole camera

model. Thus, we have to correct the detections for radial and tangential

distortion. We do this using the OpenCV library.

18 | P a g e

4.2.3 CORRESPONDENCE SEARCH

 The different LEDs detected in the image is not identified with their

corresponding positions in the marker file, so we need to run a

correspondence search in order to identify which LED is which one. Since

we’ve 4 LEDs as markers and only 3 LEDs are required for P3P pose estimation,

we can find four possible combinations of any three LEDs and every

permutation of LEDs in the marker holder. Now we use the fourth LED in each

case and compute its pose estimated by the position matrix and re-project it

into the input image_raw. If the closest neighbour of the re-projected LED is

less than a given threshold value, then that particular pose is used. We used

the re-projection threshold to be around 4 pixels. A histogram of each and

every possible combination and corresponding re-projected value is stored,

and then it is used to find the one which is closest to the original image. If

is the number of detections, is the number of possible configurations, then,

the number of total possible pose estimations are

This grows very quickly for increase in and . Since we use only 4 LEDs, this

shouldn’t be a problem. But in the case of Oculus rift, which uses nearly 41

LEDs, it is very difficult to determine the correct pose using an exhaustive pose

estimation search.

 For 4 LEDs, a total of 384 pose estimation candidates are present. The

search through this is done pretty quickly so as to obtain the correct

19 | P a g e

corresponding LED-Marker candidates. Once they are determined, they are

kept tracked using a constant velocity tracker, so that the brute force search is

not necessary all the time.

4.3.4 PREDICTION

 Since the brute-force matching in the previous section can become

computationally expensive, we predict the next pose using the current and the

previous pose estimates. A constant-velocity model is used for prediction. The

pose P is parameterized by twist coordinates ξ. We predict the next pose

linearly

 +1 = + ∆T*(− ,

 0, if = 1,

 ∆T = (−)/(−) if ≥ 2

where is the time at step k and the number of previously estimated poses.

Using the predicted pose, we project the LEDs into the camera image. We then

match each prediction with its closest detection, if they are closer than a

threshold. This condition prevents false correspondences, e.g. if an LED is not

detected. We typically use 5 pixels for that threshold. We then check if the

predicted correspondences are correct. To do so, we compute the four pose

candidates with the P3P algorithm for every combination of three

correspondences. We then compute the projection of the remaining LEDs and

20 | P a g e

check if at least 75 % of them are below the re-projection threshold. If this is

true for one of the four pose candidates of more than 70 % of the

combinations of correspondences, we consider them as correct. In case we

could not find the correct correspondences, we reinitialize the tracking using

the brute force method.

4.3.5 POSE OPTIMIZATION

To estimate the target-object pose, , we use all correspondences in C and

iteratively refine the re-projection error starting with a solution from the P3P

algorithm as an initial estimate, that is

Where π : × SE(3) → projects an LED into the camera image. For the

optimization, we parameterize the pose using the exponential map and apply a

Gauss-Newton minimization scheme. The covariance of the final pose

estimate, is a by-product of the Gauss-Newton scheme, since it requires the

computation of the Jacobian matrix, J which can be computed in closed form.

The covariance of the pose, , is then obtained by

 = (

where is the covariance of the LED detections, which we

conservatively set to = · 1

21 | P a g e

5 EVALUATION

The Evaluation scheme was to find out the accuracy and precision of the

tracking system subject to various variable changes. Also different parameters

given as input and their corresponding values were also found out for optimum

results in a trial and error basis. The optimal values for different parameters

are given below and may subject to change based on External conditions

(Illumination changes, cluttered environments etc.)

 Threshold parameter needs to be within the range of 80-180

 Gaussian sigma used in smoothing needs to be at or below 1.7. We

wanted the range within which it will not false-detect LEDs where they

are not present.

 Minimum blob area was found to have an upper limit of 37 (on a scale to

0-100)

 Maximum blob area was found to have a lower limit of 53 (on a scale of

0-1000)

 Max width height distortion was found to have a lower limit of .48 (on

scale of 0-1.0)

PERFORMANCE TEST

The time taken for one pose estimation is around 20ms i.e. 50Hz. The

initial estimation of pose takes around 1 second and then it does it at

50Hz using constant velocity model.

22 | P a g e

6 CONCLUSION

 We present a robust, accurate tracking system for Biomedical

Equipment in VR. Since it is implemented in ROS, it can be easily integrated

with other projects. The system can also be implemented across a network so

that the pose data can be read and manipulated by a different system

furthering the integration into Virtual reality. The Algorithm is fast and reliable

and is very easy to implement. There is a need for a lot of general purpose

libraries and repositories for virtual reality development.

6.1. LIMITATION

 The detection also depends on size of object. Larger the object more the

number of IR LEDs required which increase the time to estimate the pose

drastically. So keeping the number of IR LEDs used less is a real challenge while

using this system.

6.2. FUTURE WORK

 Future work is to implement segmentation to track multiple objects at the

same time. A solution based on blinking frequency (implemented by Oculus) is

proposed and we hope to further the research into the same.

 The implementation will also require us to integrate our tracking

system with the ACLS project that is happening at the Haptics lab. We hope to

implement this system to some of the generally used Biomedical equipment

and test their performances.

23 | P a g e

7 REFERENCES

[1] Matthias Faessler, Elias Mueggler, Karl Schwabe and Davide Scaramuzza

“Monocular Pose estimation System”

[2] A. Breitenmoser, L. Kneip, and R. Siegwart, “A Monocular Visionbased

System for 6D Relative Robot Localization”

[3] L. Kneip, D. Scaramuzza, and R. Siegwart, “A Novel Parametrization of the

Perspective-Three-Point Problem for a Direct Compuation of Absolute Camera

Position and Orientation”

[4] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography,”

[5] T. Pintaric and H. Kaufmann, “A Rigid-Body Target Design Methodology for

Optical Pose-Tracking Systems,”

[6] R. Szeliski, “Computer Vision: Algorithms and Applications”

