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1 ABSTRACT 

              The project is aimed at using the RIFT technology of tracking a head 

mounted display to track other objects in Virtual reality. We use infrared LEDs 

as markers on target object for an accurate and robust pose estimation 

system. They are mounted on a target object and are observed by a camera 

that is equipped with an infrared-pass filter. The correspondences between 

LEDs and image detections are first determined using a combinatorial 

approach and then tracked using a constant-velocity model. The pose of the 

target object is estimated with a Perspective-3-Point algorithm and optimized 

by minimizing the re-projection error. Since the system works in the infrared 

spectrum, it is robust to cluttered environments and illumination changes. 
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2 INTRODUCTION 

2.1 MOTIVATION 

                The Motivation behind this project was to create a proper tracking 

system for the biomedical equipment as a part of ACLS project in the Haptics 

lab. We were part of the project which made a 3-DOF tracking system using 

stereo cameras. But the system was not robust and accurate. So we decided to 

come up with a robust system based on the tracking technology using Infra 

Red LEDs as they are easier to detect and provide more accurate tracking. 

2.2 PROBLEM STATEMENT 

                To make an object tracking system with sub-millimetre accuracy so as 

to track biomedical equipments as objects. Since sub-millimetre accuracy is 

required we have chosen to use IR LEDs and track the object as this method is 

being used by many state of the art tracking technologies 

2.3 SCOPE OF THE PROJECT 

          The tracking system we developed is of sub-millimetre precision. It can 

be used in many on going and future projects at Haptics Lab. This thesis also 

includes the detailed procedure of working of Oculus Rift DK2, so it will be 

useful in any future projects which include hacking of Oculus Rift DK2. 
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3 INITIAL WORK 

            Our Initial work was based on Oculus Rift technology. The Head 

Mounted Display (HMD) of the Oculus is tracked using IR LEDs and an Inertial 

Measurement Unit(IMU). Reverse engineering of Oculus Rift was done to find 

out how the HMD was tracked.  There are 41 IR LEDs and an IMU mounted into 

the Oculus HMD at predefined positions. 

 

                 

        The Synchronised camera communicates via I2C Serial communication. So 

by giving a specific set of commands to the camera, information about the 

position of HMD can be extracted. The camera used in Oculus Rift DK2 is 

Aptina MT9V034, and the commands can be found in the datasheet.  

         The LEDs on the HMD are controlled by the camera. The camera is the 

master device and HMD, the slave device. There is a HID feature report (0x0C) 

that turns on the LEDs. It has a built-in timeout of 10 seconds, meaning the  
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report must be reset at regular intervals by the driver software or the LEDs 

turn off again. After sending this feature report, the LEDs will turn on for 10 

seconds, and they will show up in the tracking camera image very brightly and 

flicker at particular blinking frequencies. The Blinking pattern of LEDs can be 

controlled and this pattern also gives each LED a 10-bit identity.  

    Figure 2: LED tracking and identification algorithm with frame-drop correction. Still frame from 

“Identifying LEDs Based on Blinking Patterns.” 

 

           Here is the full list of 10-bit IDs, ordered by 3D marker position index in 

report 0x0f, from 0 to 39 (see Figure 3 for a picture of the corresponding 

marker positions in 3D space):       

   2,  513,  385,  898,  320,  835,  195,  291,  800,  675, 

  97,  610,  482,  993,  144,  592,  648,  170,   27,  792, 

  410,  345,  730,   56,  827,  697,  378,  251, 1016,  196, 

   165,   21,  534,  407,  916,  853,  727,  308,  182,  119 
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         The numbers might look random, but there’s a reason why they’re spread 

out over the entire [0, 1024) interval. If we know that the only 10-bit IDs that 

we expect to find in a video stream are the 40 listed above, we can use the 

redundancy of assigning 10 bits to encode 40 values to automatically correct 

the kinds of bit errors. This is based on Information theory concept called 

Hamming distance. The Hamming distance between two 10-bit binary numbers 

is the number of bits one has to flip to turn the first number into the second. If 

the numbers are identical, their Hamming distance is 0; if they differ in a single 

bit, their distance is 1, if they are bit-wise negations of each other, their 

Hamming distance is 10. There’s a related concept called minimal Hamming 

distance, which is the minimum of Hamming distances between all pairs of 

elements of a list. In the case of our 40 elements, their minimal Hamming 

distance happens to be 3. It means the minimum number of bit flips it takes to 

turn one valid ID into another valid ID is 3. So if we assume that bit errors are 

rare enough that it’s improbable that more than one occurs in any sequence of 

ten video frames (and that seems to be the case), then we can  not only detect, 

but correct those errors on-the-fly.  

          We compare any extracted number to the list of 40, and find the list 

entry that has the smallest Hamming distance. If that distance is 0 or 1, we 

know that the number we extracted should be set to the list entry we found. If 

there happen to be 2 or more bit errors in a sequence of 10 frames, we’re out 

of luck, but in practice, it seems to be working. 
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Figure 3: Oculus Rift DK2’s 3D LED positions, labeled by marker index in the sequence of 0x0f HID 

feature reports. 

      And  instead of setting the LED blob ID to the correct 10-bit number we just 

set it to the index of the associated 3D marker (see Figure 4) That way we can 

feed it directly into the pose estimation algorithm. 
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Figure 4: LED blobs extracted from the video stream, labelled with the indices of their associated 3D 

marker positions. Compare to Figure 3. 

3.1. PNP ALGORITHM FOR POSE ESTIMATION 

             3D pose estimation, or the problem of reconstructing the 3D position 

and orientation of a known object relative to a single 2D camera, also known 

as the Perspective-n-Point problem, is a well-researched topic in computer 

vision. In the case of the Oculus Rift DK2, it is the foundation of positional head 

tracking. An inertial measurement unit (IMU) by itself cannot track an object’s 

absolute position over time, because positional drift builds up rapidly and 

cannot be controlled without an external 3D reference frame. 3D pose 

estimation via an external camera provides exactly such a reference frame. 

             3D pose estimation is a multi-dimensional non-linear optimization 

problem. Given a known model, i.e., a collection of 3D points such as the DK2’s 

tracking LEDs, a camera with known intrinsic parameters, and a set of 2D  
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points in the camera’s image, such as the set of extracted LED blobs, one can 

try to reconstruct the unknown position (tx, ty, tz) and orientation (yaw, pitch, 

roll) of the model with respect to the camera (in reality, one would never use 

yaw, pitch, and roll angles to do this, but that’s a technical detail). In theory, 

the approach is simple. Given a candidate set of unknown parameters (tx, ty, 

tz, yaw, pitch, roll), one takes the set of 3D model points, transforms them by 

the rigid body transformation defined by the six parameters, projects them 

into image space using the camera’s intrinsic parameters, and then calculates 

the sum of their squared distances from the true observed image points (this is 

called re-projection error). This process defines an error function F(tx, ty, tz, 

yaw, pitch, roll), and the problem is reduced to finding the set of parameters 

that globally minimizes the value of the error function. 

      Still frame from pose estimation video, showing a 3D model of the DK2’s headset (the purple 

wireframe) projected onto a raw 2D video frame from the tracking camera based on reconstructed 

position and orientation. 
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             Given a predicted image point, which one of the observed image points 

should it be compared to? Without knowing anything else, one would have to 

test all possible associations of observed and predicted image points, and pick 

the association which yields the smallest error after optimization.           

          Unfortunately, there are a lot of possible associations; in general, if there 

are N predicted image points and M<=N observed image points, then there are 

N!/(N-M)!  possible associations. To pick an example, for N=40 (number of 

LEDs on DK2) and M=20, there are 335,367,096,786,357,081,410,764,800,000 

potential associations to test, and that’s a large number even for a computer. 

There are many heuristic and/or iterative methods to establish associations 

automatically, but they tend to be rather slow and fragile. The best approach, 

is to somehow make it possible to identify a-priori which observed image point 

belongs to which 3D model point, and the DK2’s flashing 10-bit patterns do 

exactly that. 

The lack of a proper Linux SDK made our work very difficult. Even though we 

were able to dump the estimated pose of the oculus into the terminal, we 

were unable to expand it so that this can be implemented with another object. 

More over the synchronized camera had a couple bugs which made it very 

difficult to use it with normal camera packages and calibration procedures. The 

hardware used by Oculus was difficult to replicate on a mall biomedical object 

for it to be tracked. So we decided to come up with another tracking system 

which mimicked the Rift tracking system and was considerably less complex. 
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4 MONOCULAR POSE ESTIMATOR 

4.1 SYSTEM REQUIREMENTS 

4.1.1 HARDWARE 

           Our system consists of infrared LEDs at known positions on the target 

object and an external camera with an infrared pass filter. With at least four 

LEDs on the target object and the corresponding detections in the camera 

image, we can compute the 6-DOF pose of the target object with respect to 

the camera. To increase robustness, the system can also handle more than 

four LEDs on the target object. The placement of the LEDs on the target object 

is arbitrary, but must be non-symmetric. In addition, the LEDs should not lie in 

a plane to reduce ambiguities of the pose estimation. To increase precision, 

they should span a large volume. Robustness can be increased if the LEDs are 

visible from as many view points as possible. 

              As mentioned above, our system requires prior knowledge of the LED 

configuration, i.e. the positions of the LEDs in the reference frame of the target 

object. Since infrared LEDs are detectable by a motion capture system, we can 

use it to determine the positions of the LEDs with sub-millimetre accuracy.   

We can track the target object in the motion capture system and read out the 

positions of the single LEDs, which can be transformed into the target-object 

coordinate frame. Furthermore, we need to know the intrinsic camera 

parameters, which we obtain using the camera calibration tools of ROS. 

                The entire system is implemented in ROS. ROS is a flexible framework 

for writing robot software. It consists of a collection of tools, libraries and 

conventions that are very commonly used among developers. 

 



15 | P a g e  
 

 

 

 

                                                Figure: Experimental Setup 

 

4.2  ALGORITHM 

4.2.1 OVERVIEW 

         The flowchart of our algorithm is presented in Fig. 3. The current camera 

image, the LED configuration, and previously estimated poses serve as inputs 

to our algorithm. In a first step, we detect the LEDs in the image. Then, we 

determine the correspondences using prediction or, if that fails, using 

combinatorial brute-force approach. Finally, the pose is optimized such that 

the re-projection error of all detected LEDs is minimized. This optimization also  
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returns the covariance of the pose estimate, which is crucial information in 

further processing. 

                                                    LED configuration 

 

Image           LED detection          Correspondence               Pose optimization    Pose with  

                                                             Search                                                     covariance 

                        Last poses                   Prediction 

4.2.2    LED DETECTION 

                Since we are using infrared LEDs whose wavelength matches the 

infrared-pass filter in the camera, they appear very bright in the image 

compared to their environment. Thus, a thresholding function is sufficient to 

detect the LEDs, 

                                        I(u, v),        if I(u, v) > threshold, 

     I’ (u, v)          =               0,            otherwise. 

 

     This threshold parameter depends on the shutter speed of the camera 

settings. However, we found that a large range of parameters works well (80–

180). We then apply Gaussian smoothing and group neighbouring pixels to 

blobs. To estimate the centre of these blobs with sub-pixel accuracy, we weigh 

the pixels with their intensity. The centre is then calculated using first image 

moments that are defined as 
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The weighted centre, i.e. the (distorted) LED detection in the image, is then 

                                                      û = M₁₀/M₀₀,  

                                                      v^ = M₀₁/M₀₀  

              In all calculations to come, we assume the standard pinhole camera 

model. Thus, we have to correct the detections for radial and tangential 

distortion. We do this using the OpenCV library. 
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4.2.3      CORRESPONDENCE SEARCH 

          The different LEDs detected in the image is not identified with their 

corresponding positions in the marker file, so we need to run a 

correspondence search in order to identify which LED is which one. Since 

we’ve 4 LEDs as markers and only 3 LEDs are required for P3P pose estimation, 

we can find four possible combinations of any three LEDs and every 

permutation of LEDs in the marker holder. Now we use the fourth LED in each 

case and compute its pose estimated by the position matrix and re-project it 

into the input image_raw. If the closest neighbour of the re-projected LED is 

less than a given threshold value, then that particular pose is used. We used 

the re-projection threshold to be around 4 pixels. A histogram of each and 

every possible combination and corresponding re-projected value is stored, 

and then it is used to find the one which is closest to the original image. If     

is the number of detections,    is the number of possible configurations, then, 

the number of total possible pose estimations are 

      
  

 
  

   

       
 

 

This grows very quickly for increase in    and   . Since we use only 4 LEDs, this 

shouldn’t be a problem. But in the case of Oculus rift, which uses nearly 41 

LEDs, it is very difficult to determine the correct pose using an exhaustive pose 

estimation search. 

          For 4 LEDs, a total of 384 pose estimation candidates are present. The 

search through this is done pretty quickly so as to obtain the correct  
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corresponding LED-Marker candidates. Once they are determined, they are 

kept tracked using a constant velocity tracker, so that the brute force search is 

not necessary all the time. 

4.3.4 PREDICTION 

               Since the brute-force matching in the previous section can become 

computationally expensive, we predict the next pose using the current and the 

previous pose estimates. A constant-velocity model is used for prediction. The 

pose P is parameterized by twist coordinates ξ. We predict the next pose 

linearly 

                                                     +1 =   + ∆T*(   −        ,  

                   

                                             0,                                       if   = 1,  

                            ∆T  =       (    −   )/(   −     )    if   ≥ 2 

 

where   is the time at step k and   the number of previously estimated poses. 

Using the predicted pose, we project the LEDs into the camera image. We then 

match each prediction with its closest detection, if they are closer than a 

threshold. This condition prevents false correspondences, e.g. if an LED is not 

detected. We typically use 5 pixels for that threshold. We then check if the 

predicted correspondences are correct. To do so, we compute the four pose 

candidates with the P3P algorithm for every combination of three 

correspondences. We then compute the projection of the remaining LEDs and  
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check if at least 75 % of them are below the re-projection threshold. If this is 

true for one of the four pose candidates of more than 70 % of the 

combinations of correspondences, we consider them as correct. In case we 

could not find the correct correspondences, we reinitialize the tracking using 

the brute force method. 

4.3.5    POSE  OPTIMIZATION 

To estimate the target-object pose,   , we use all correspondences in C and 

iteratively refine the re-projection error starting with a solution from the P3P 

algorithm as an initial estimate, that is  

                                                   
 

        
 

 

Where  π :    × SE(3) →    projects an LED into the camera image. For the 

optimization, we parameterize the pose using the exponential map and apply a 

Gauss-Newton minimization scheme. The covariance of the final pose 

estimate, is a by-product of the Gauss-Newton scheme, since it requires the 

computation of the Jacobian matrix, J which can be computed in closed form. 

The covariance of the pose,   , is then obtained by  

                                                           = (    
         

where           is the covariance of the LED detections, which we 

conservatively set to    =      · 1        
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5 EVALUATION 

The Evaluation scheme was to find out the accuracy and precision of the 

tracking system subject to various variable changes. Also different parameters 

given as input and their corresponding values were also found out for optimum 

results in a trial and error basis. The optimal values for different parameters 

are given below and may subject to change based on External conditions 

(Illumination changes, cluttered environments etc.) 

 Threshold parameter needs to be within the range of 80-180  

 Gaussian sigma used in smoothing needs to be at or below 1.7. We 

wanted the range within which it will not false-detect LEDs where they 

are not present. 

 Minimum blob area was found to have an upper limit of 37 (on a scale to 

0-100) 

 Maximum blob area was found to have a lower limit of 53 (on a scale of 

0-1000) 

 Max width height distortion was found to have a lower limit of .48 (on 

scale of 0-1.0) 

PERFORMANCE TEST 

The time taken for one pose estimation is around 20ms i.e. 50Hz. The 

initial estimation of pose takes around 1 second and then it does it at 

50Hz using constant velocity model. 
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6 CONCLUSION 

                We present a robust, accurate tracking system for Biomedical 

Equipment in VR. Since it is implemented in ROS, it can be easily integrated 

with other projects. The system can also be implemented across a network so 

that the pose data can be read and manipulated by a different system 

furthering the integration into Virtual reality. The Algorithm is fast and reliable 

and is very easy to implement. There is a need for a lot of general purpose 

libraries and repositories for virtual reality development.  

6.1. LIMITATION                

           The detection also depends on size of object. Larger the object more the 

number of IR LEDs required which increase the time to estimate the pose 

drastically. So keeping the number of IR LEDs used less is a real challenge while 

using this system. 

 

6.2. FUTURE WORK 

 Future work is to implement segmentation to track multiple objects at the 

same time. A solution based on blinking frequency (implemented by Oculus) is 

proposed and we hope to further the research into the same.  

                The implementation will also require us to integrate our tracking 

system with the ACLS project that is happening at the Haptics lab. We hope to 

implement this system to some of the generally used Biomedical equipment 

and test their performances. 
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