
Influence of CAD Routing Algorithms on
Cryptographic Side Channel Attacks

A THESIS

Submitted by

B AKHIL SAI,EE13B006

For the award of the degree

BACHELORS IN ELECTRICAL ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

INDIAN INSTITUTE OF TECHNOLOGYMADRAS



MAY 2017

THESIS CERTIFICATE

This is to certify that the thesis titled Influence of CAD Routing Algorithms on Cryptographic Side
Channel Attacks, submitted by B Akhil Sai,EE13B006, to the Indian Institute of Technology Madras,
Chennai for the award of the degree of Bachelor of Technology in Electrical Engineering, is a bonafide
record of the research work done by him under our supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any degree or diploma.

Prof. 1
Chester Rebeiro
Assistant Professor
Dept. of Management Studies Place: Chennai
IIT-Madras, 600 036

Date: 8thMay 2017



Acknowledgments

I would like to thank my professor, Dr. Chester Rebeiro for giving me the opportunity to work on this
project. These results would not have been possible without his guidance. I would also like to thank
Ramanjaneya Reddy for his support and guidance throughout this period.



Abstract

Cryptography is the science of secrecy. Many great theoretical computer scientists worked for years to
design ciphers that are theoretically secure. But, the implementations of cryptosystems are generally done
by not so competent engineers, which may sometimes leave serious security loopholes. Exploitation of
such security loopholes from the implementations of Cryptosystems are known as Side Channel Attacks. A
Side-Channel Attack is any attack based on information gained from the physical implementation of a
cryptosystem, rather than brute force or theoretical weaknesses in the algorithms. Unless the
implementations are secure, the entire cryptosystem cannot be called secure.

Engineers design implementations of cryptosystems under various constraints like Performance, Execution
Time, Size of the Circuit etc. The abstract of this project is to check whether any of these constraints play a
role in determining the feasibility of a Side Channel Attack. Out of the huge class of SCAs, this project will
deal with attacks based on the analysis of the Power Consumption of the circuit that executes a
cryptosystem. The cryptosystem here is the famous 128-bit Advanced Encryption Standard, being
implemented on an FPGA board. The template attack framework is used to attack the cipher. The
constraints are Area Minimization and Speed Maximization. The implementations’ routing is done in such
a way that the constraints are obeyed. As both these constraints cannot go hand in hand with each other,
“Under which constraint is it easier to attack the cipher?” is the question this thesis tries to answer. Also,
there are many successful DPA attacks on the AES implemented on an FPGA but there are no reported
instances of a successful template attack on the same. This project also discusses the feasibility of a
template attack on the AES.
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Introduction

As specified above, exploiting security loopholes in the implementations of the cryptosystems is what is
known as a Side Channel Attack. Power Analysis is one such sub-class of the Side Channel Attacks, where
the power consumption of the device that is running the cryptosystem is measured and analyzed.

A Business Case

Cryptographic smart cards such as debit cards, credit cards etc. contain chips which have secret keys
embedded in them. Whenever this card is swiped, the circuit on the chip is powered and the algorithm is
executed. The power consumption of this execution can be measured and analyzed to find some
information about the secret key embedded inside the chip.

Various card makers want to provide various services to their customers. Some of these companies want
the swiping system to be extremely fast whereas some of them want the cards to be as small as possible.
Each requirement has it’s own set of CAD routing algorithms and constraints. If doing any of this makes
the card easier to attack, then it is a serious issue the companies have to keep in mind.

Additionally, why AES 128-bit on an FPGA board has been chosen to attack is because the smart cards are
made up of FPGA circuits. The 128-bit AES is a global standard encryption set by the NIST in 2001.

Apart from smart cards, many other security systems use FPGAs to build circuits and encrypt data. Hence,
this forms a valid business case to tackle.

The Template Attack

As the name suggests, the template attack exploits the fact that power consumption depends on the data
that is being processed. An attacker who has a sample device(s) running the cryptosystem measures power
consumed for various sets of data. He then estimates the data dependency on these power traces and
forms templates based on this dependency of power consumed. The attacker then stores these templates.
If he gets access to a device whose secret key is not known, he will measure the power consumed by this
device and match it with all the templates he stored back then. The best matched template gives the
attacker a hint about what values were processed in the unknown device. This attack has 2 phases:

 Template Building Phase: The cipher has to be perfectly studied to know which part of it makes
the most significant contribution to the power consumption. Interesting points in a power trace are
those points that contain the most information about the characterized instruction. A strategy has to



be found to find such interesting points. As we go further, we see how difficult this task in case of an
FPGA.

 Template Matching Phase: The power trace for the unknown device has to be measured and a
suitable template matching algorithm has to be used to match this trace with the templates. Suitable
noise estimation algorithms should also be used to eliminate any sort of physical or algorithmic
noise. Different kinds of algorithms are used in this project to obtain the best possible result. Many
challenges arise in this phase also, which are listed down below.

Analysis of Power Traces

The AES 128-bit encryption algorithm runs on a Xilinx Kintex 7 FPGA chip. It is a repetitive algorithm
which runs for 10 rounds. The power trace comprises of 11 individual peaks, each representing the power
trace of a single round. One round of the AES takes one clock cycle to run. The 11th additional round
appears because of an incomplete execution of a round. As can be seen from the figure below, the 1st
round, which is different from the other 10 rounds, is the odd one out, making it the incomplete round.

A Typical AES Power Trace

The AES block cipher, like every other block ciphers, has a substitution layer, a permutation layer and key
addition. Apart from this, the key generation is also done using the same substitution layer used in AES
core.



The 128-bit input is divided into 16 8-bit blocks, each of which is fed into an 8-bit SBox. In one round, 16
such SBoxes are executed. Along with this, the key generation algorithm also executes 4 such SBoxes,
taking the overall count to 20.

The output from the substitution layer is forwarded to the Shift Rows layer, which permutes the 128-bit
string according to some formation.

This string is then sent to the MixColumns layer, which further permutes the ciphertext. This step is
executed only upto round 9.

The Flowchart, credits: www.researchgate.net The Key Schedule, credits: https://en.wikipedia.org

There also exists a Key Generation algorithm, which runs in parallel with the AES core, to generate the
key for the next round. So, each cycle of power trace seen above is the combination of both the AES
core’s power consumption and Key Generation algorithm’s power consumption. The Key Generation
algorithm also processes 4 8-bit SBoxes, contributing a lot to the power consumption.

http://www.researchgate.net
https://en.wikipedia.org/wiki/Rijndael_key_schedule


Power Trace without Mix Columns

Power Trace just with Key Generation, without AES core



Power Trace without Shift Rows and Mix Columns

Power Trace without SBoxes

Looking at each layer in detail, we get to know that the SBox layer is highly operation intensive, and
consumes a lot of power.



As seen above, the SBox layer consumes the highest amount of power. The SBox is the part of the
cipher which has to be attacked. The SBox is implemented using Galois field operations, which are very
operation intensive.

What to Attack?

The standard models of a template attack involve the Hamming Weight Model and the Hamming
Distance Model. The Hamming Weight model works out nicely for the program running in a
microcontroller hardware, and the Hamming Distance model works out for a DPA kind of an attack.
Below are the various ways of forming templates :

 Hamming Weight Model - Hamming Weight of Input of SBox - Let’s call it method 1- 9
possible template values

 Hamming Weight Model - Hamming Weight of Output of SBox - Let’s call it method 2 - 9
possible template values

 Hamming Distance Model- Hamming Weight of the difference between Input and Output of
the SBox - Method 3 - 7 possible template values

 Intermediate Value 1- Method 4 - Multiplication of the number of 1’s in one intermediate value
with the number of 1’s in another intermediate value at the same level. 16 possible template
values.

The intermediate values above, have been selected on the basis of Fan-out values and the number of
gates the wire is being sent as an input. The more the Fan-out value of a particular wire, the more power
it takes to switch the value of the wire.

So, based on the above variables, template formation takes place.

The Attack

Template Formation

The template attack has a standard framework. Each power trace is assumed to be a multi-variate
Gaussian distribution. Hence, for building templates, the traces that correspond to the same pair are
grouped together by estimating their mean and co-variance vectors. As the device which is being attacked
is an FPGA, the entire power trace in itself can be considered important. The Maximum Likelihood
estimation algorithm is generally used for attacking unknown data sets. But, as the noise level is so high in
case of an FPGA, the number of traces to be taken are also high. When the number of traces to be
operated on becomes very large, the ML-estimation algorithm becomes computationally in-feasible.



A simplified ML-estimation algorithm is the Least-Square algorithm or the LSQ algorithm. This
algorithm doesn’t take the Co-Variance matrix into account. The LSQ algorithm takes the difference
between the template and the trace, squares the difference and adds it to the total. The lesser this value,
the more the traces are close to each other.

ln p(t;m) = -1/2*(ln(2.π)N + (t-m)’.(t-m))

Only the mean templates are formed by just taking the average overall traces of a particular template.

Challenges

Templates are formed by grouping traces which have the same template value together. This grouping
can be done by just adding the traces directly. However, this causes multiple problems:

 The SBox is a complicated set of machinery. The values on the basis of which templates are to be
formed are very difficult to analyze. To give you an idea about what happens inside of an SBox, the
SBox contains close to 500 logic gates and a 100 intermediary values or wires. Apart from this, the
main disadvantage doesn’t stem from the complication of the SBox. It stems from the limitation of
the hardware available:

 In case of a microcontroller, the execution of a program happens via something known as
sequential instruction execution. The power consumed by the chip can be separated
instruction by instruction. See the figure below for a better understanding: It is called the
time wise separation of instruction wise power consumption. If instruction wise power
can be separated, attacking the cipher is a much much easier task. But sadly, this is not
what happens in case of an FPGA.

*The power trace is not taken from the microcontroller, is put there just for representation



 In the case of an FPGA, the power consumption does not follow the same pattern. The
power trace outputted is a function of all the instructions executed. The time separation
as shown above is not possible, which makes the attack very difficult.

*The power trace is not for these particular instructions, it is just put there for representation.

 So, to get an estimate about close to 500 gates and 100 intermediate wires is not an easy
task.

 The major challenge is to figure out which part of the SBox consumes the highest amount
of power. Even if this is figured out, attacking the cipher on the basis of power traces is
very difficult.

 The traces may not align with each other. As the traces are oscillating sinusoid kind of waves, such
displaced trace addition can cause a serious disturbance to the shape of the trace.

Misaligned traces` Resultant trace out of shape



 Noise addition and elimination - Traces which have low noise levels should be used for template
formation, as high noise levels mask out the valuable information present in the trace.

A Noisy Trace- the distortion of peaks

 An extension of the challenge above, if too many noisy traces are added, instead of improving the
template, will worsen it. Hence, different trace groupings have to be done, to get the best template
out of them.

Algorithms used and improvements made

Nothing much can be done regarding the 1st problem and work has to be done keeping those constraints
in view.

To tackle the 2nd problem, a move and check filter has been implemented. This filter moves the trace on
top of the template and checks where it overlaps perfectly, and adds it. To check where the “to be added
trace” overlaps perfectly with the template, a co-variance based approach has been used. The
displacement at which the co-variance is maximum is chosen, the trace is displaced by that amount and
is added to the template.

To tackle the 3rd problem, for every data set, 100 power traces are taken and averaged. It may not
eliminate the noise, but will at least assure the same level of average noise for all data sets. As can be
seen in the above pictures, the amplitude of the power trace can go down to values as low as 0.4mV.
Even a small disturbance in the connecting cable can create a noise that can completely override the
signal.

As for the 4th problem, another approach can also be used to improve the SNR. Amplitude of each wave
can be measured and only those waves whose amplitude is low can be chosen to form templates. As the
noise level influences the amplitude, the lower the amplitude, the lower the noise. This has not been
implemented because of lack of time, but is a very crucial idea which can improve the results drastically.

Template Matching



As described above, the template matching can be done using the ML-Estimation algorithm or the LSQ
algorithm. But, results can be improved further by using additional matching techniques. Some of
them are listed below:

 The ML-estimation algorithm is computationally in-feasible because inverting a 100x100 matrix
whose determinant is very low can take a lot of time. The advantage gained out of this is also very
low.

 The LSQ algorithm , as described above, takes the “to be attacked” power trace, takes a point to
point difference with the template, squares the difference at every point and adds them to a total.
The lower the total is, the better the trace matches the template. The lowest of all such totals is the
best template match.

 The Co-Variance method, where the template matching is done by calculating the Co-Variance of
the template and the trace. The higher the Co-Variance, the better the match.

 Euclidean Distance method, where the template matching is done by calculating the Euclidean
distance between the template and the trace. The lower the distance, the better the match.

In all the above template matching methods, the 2nd challenge written down in the above section arises.
The “to be attacked” power trace may not be aligned properly with the templates. Hence, the same move
and check filter has been implemented for all the above 4 methods to get the best possible result.

The best result was obtained when the Euclidean distance method was used. Method wise results are
presented below:

Results

The experiment was run for 2 routing algorithms- Area optimized simulation and Speed maximized
simulation. In the case of Area optimization, saving the space is the key, irrespective the length of the wires.
Hence, the wires curl round and round, trying to optimize the area used. Whereas in case of speed
optimization, the wires should be kept as short as possible so as to ensure that there are no propagation
delays. These are 2 completely different circuits and scenarios that are being attacked.

This section demonstrates the results obtained for both the above routing algorithms, for 3 different data
sets each, and for all the 3 template matching algorithms.

A sample of 500 traces is being attacked, with templates formed out of 30000 traces. The following is a
metric of the success of the attack:

 10 points - If the match obtained out of the attack correctly matches the actual value

 5 points - If the match obtained out of the attack misses the actual value by +- 1



 0 points - If the match obtained out of the attack is random and doesn’t come anywhere near the
actual value

Area Optimized Case:

Test Case 1:

TM Algorithm Method 1 Method 2 Method 3 Method 4

LSQ 10
pts

5
pts

0
pts

total

19 41 440 395

10
pts

5
pts

0
pts

total

49 121 330 1095

10
pts

5
pts

0
pts

total

110 167 223 1935

10
pts

5
pts

0
pts

total

20 30 450 350

Co-Variance 10
pts

5
pts

0
pts

total

51 105 344 1035

10
pts

5
pts

0
pts

total

85 155 260 1625

10
pts

5
pts

0
pts

total

92 169 239 1935

10
pts

5
pts

0
pts

total

86 78 336 1250

Euclidean Distance 10
pts

5
pts

0
pts

total

19 40 441 390

10
pts

5
pts

0
pts

total

20 54 426 470

10
pts

5
pts

0
pts

total

118 193 189 2145

10
pts

5
pts

0
pts

total

20 30 450 350

In the case of the 1st data set, the best possible result is in the case of Hamming Distance Model and
Euclidean Distance algorithm, with a total score of 2145. However, the results are much more
impressive in case of Method 4 with Co-Variance algorithm where the total score is only 1250. The
reason being the number of prospective values in case of Hamming Distance method is only 7
(1,2,3,4,5,6,7). Whereas in case of Method 4, the number of possible values are 16, thereby making the
results more interesting.

Test Case 2:

TM Algorithm Method 1 Method 2 Method 3 Method 4

LSQ 10
pts

5
pts

0
pts

total

53 123 324 1145

10
pts

5
pts

0
pts

total

80 150 270 1550

10
pts

5
pts

0
pts

total

86 162 252 1670

10
pts

5
pts

0
pts

total

80 42 378 610

Co-Variance 10
pts

5
pts

0
pts

total

25 76 399 630

10
pts

5
pts

0
pts

total

74 129 297 1385

10
pts

5
pts

0
pts

total

80 168 252 1640

10
pts

5
pts

0
pts

total

37 39 424 565

Euclidean Distance 10
pts

5
pts

0
pts

total

59 122 319 1200

10
pts

5
pts

0
pts

total

69 141 290 1395

10
pts

5
pts

0
pts

total

33 101 366 835

10
pts

5
pts

0
pts

total

60 88 352 1040

The highest score in this case is again from the Hamming Distance model, when LSQ algorithm was
used. The highest score is 1670.



Test Case 3:

TM Algorithm Method 1 Method 2 Method 3 Method 4

LSQ 10
pts

5
pts

0
pts

total

55 112 333 1110

10
pts

5
pts

0
pts

total

74 156 270 1520

10
pts

5
pts

0
pts

total

94 173 233 1805

10
pts

5
pts

0
pts

total

57 28 415 710

Co-Variance 10
pts

5
pts

0
pts

total

35 79 386 745

10
pts

5
pts

0
pts

total

71 129 300 1355

10
pts

5
pts

0
pts

total

82 150 268 1570

10
pts

5
pts

0
pts

total

19 48 433 470

Euclidean Distance 10
pts

5
pts

0
pts

total

8 53 439 345

10
pts

5
pts

0
pts

total

16 29 455 225

10
pts

5
pts

0
pts

total

64 141 205 1345

10
pts

5
pts

0
pts

total

27 73 400 635

The highest score in this test case also, comes out of the Hamming Distance Model, when the LSQ
algorithm was used. The highest score in this case is 1805.

Coming to the Speed-Maximization part,

Test Case 1:

TM Algorithm Method 1 Method 2 Method 3 Method 4

LSQ 10
pts

5
pts

0
pts

total

111 162 227 1920

10
pts

5
pts

0
pts

total

87 143 270 1585

10
pts

5
pts

0
pts

total

102 164 234 1840

10
pts

5
pts

0
pts

total

69 59 372 985

Co-Variance 10
pts

5
pts

0
pts

total

51 87 362 945

10
pts

5
pts

0
pts

total

70 151 269 1455

10
pts

5
pts

0
pts

total

113 145 252 1855

10
pts

5
pts

0
pts

total

58 75 367 955

Euclidean Distance 10
pts

5
pts

0
pts

total

122 168 210 2060

10
pts

5
pts

0
pts

total

24 48 428 480

10
pts

5
pts

0
pts

total

52 94 354 990

10
pts

5
pts

0
pts

total

45 45 410 675

The maximum score in this case 1920, which is obtained when Method 1 is used and the LSQ template
matching algorithm is used.

Test Case 2:

TM Algorithm Method 1 Method 2 Method 3 Method 4

LSQ 10
pts

5
pts

0
pts

total 10
pts

5
pts

0
pts

total 10
pts

5
pts

0
pts

total 10
pts

5
pts

0
pts

total



86 144 270 1580 66 158 266 1450 112 167 221 1955 72 65 363 1045

Co-Variance 10
pts

5
pts

0
pts

total

58 108 324 1120

10
pts

5
pts

0
pts

total

75 162 263 1560

10
pts

5
pts

0
pts

total

83 180 237 1730

10
pts

5
pts

0
pts

total

61 65 364 935

Euclidean Distance 10
pts

5
pts

0
pts

total

104 177 219 1925

10
pts

5
pts

0
pts

total

82 173 245 1685

10
pts

5
pts

0
pts

total

44 90 366 890

10
pts

5
pts

0
pts

total

61 53 386 875

The highest score in this case is 1955, which is obtained as a result of the Hamming Distance Model and
the TM algorithm being the LSQ algorithm. The ED algorithm used under Hamming Weight 1 Model is
also not far behind, with 1925 score.

Test Case 3:

TM Algorithm Method 1 Method 2 Method 3 Method 4

LSQ 10
pts

5
pts

0
pts

total

85 143 272 1565

10
pts

5
pts

0
pts

total

87 129 284 1515

10
pts

5
pts

0
pts

total

100 154 246 1770

10
pts

5
pts

0
pts

total

74 60 366 1040

Co-Variance 10
pts

5
pts

0
pts

total

53 117 330 1115

10
pts

5
pts

0
pts

total

74 137 289 1425

10
pts

5
pts

0
pts

total

115 171 214 2005

10
pts

5
pts

0
pts

total

45 65 390 775

Euclidean Distance 10
pts

5
pts

0
pts

total

119 180 201 2090

10
pts

5
pts

0
pts

total

29 56 415 570

10
pts

5
pts

0
pts

total

44 90 366 890

10
pts

5
pts

0
pts

total

59 74 367 960

The highest score in this case is 2090, which is obtained as a result of the Hamming Weight Model and
the TM algorithm being the Euclidean Distance algorithm.

Interpretation of the results

In case of the Area Optimized case, the best results for all the 3 test cases came from the Hamming
Distance Model. The template matching algorithms defer between LSQ and Euclidean Distance, but the
results are more or less the same. The score was exceptionally high in the 1st test case but was relatively
lower in the 2nd and 3rd test cases. The power trace has much lesser amplitude compared to the speed
maximized case’s power trace, which makes it more difficult to launch a side-channel attack.

In case of the Speed Maximized case, the best results for two of the test cases came from the Hamming
Weight 1 model and the Hamming Distance model giving the best result for one of the test case. Even
in this test case, the scores generated by HW1 and HD models differed only by 50 points. The



Hamming Weight 1 model can thereby be assumed to give out the best results for the Speed Maximized
case.

One difference that can be observed is the average best score in case of speed maximization is much
higher than in the Area Optimized case. Another important observation is the difference in the models
which give out the best scores. In the Area Optimized case, the Hamming Distance gave the best score
whereas in the Speed Maximized case, the Hamming Weight model is the best suited. This tells us a lot
about the influence of routing algorithms on side-channel attacks.

In the Area optimization case, minimization of the area occupied by the circuit has to be minimized.
Hence, the wires are curled around to save space. In the speed maximization case, the wires are kept as
short as possible so as to prevent any propagation delays. In the 1st case, as the wires are long, it takes a
lot of power to change the values in the wires. The more the length of the wires, the more they
resist change. This is exactly what the Hamming Distance model captures. This is one possible
explanation for the above peculiar behavior. These results give rise to future prospective work that can
be done in this field.

Prospective Work

The above results give rise to prospective work which can be done in this field. Some of these future
roadmaps are listed below:

 Improving the attack : As described above, the SBox is a complicated piece of machinery which
has hundreds of gates and wires in it’s circuit. The wires which connect many gates and which
diverge to many different gates are the ones which can be attacked easily. Especially in the case
where Area is optimized, this can improve the attack substantially. An in-depth analysis into the
RTL schematic of the SBox implementation will help identify such important wires and gates which
contribute significantly to the power consumption.

 Launching a full scale template attack: From the available results, how to launch a template
attack on the AES block cipher? A Chosen Plaintext Attack can be launched, where 8 bits of the
plaintext are kept fixed and the other 120 bits are chosen at random. If a sufficient number of traces
are averaged, then the data in the resultant trace will be independent of these 120 bits and will take
an average value. Apart from the 120 bits data, the 128 bit key generation related data is also
included in the power trace. Each power trace is a combination of 20 SBoxes and we need to
extract data about 1 SBox. Generally, an unknown 128-bit key is attacked.

Power = 20 SBoxes

= 16 AES Core SBoxes + 4 Key Generation SBoxes

= 1 CPA SBox + 15 Random SBoxes + 4 Key Gen SBoxes



Averaging many traces of data will average out the 15 Random SBoxes, but the Key Generation
SBoxes are a problem. So, to get an estimate of the power consumed by the 4 Key Gen SBoxes, the
average of 16 SBoxes has to be subtracted from the total Power.

4 Key Gen SBoxes Power = Total Power - 16 Random SBoxes average

1 CPA SBox Power = Total Power - 15 Random SBoxes - 4 Key Gen SBoxes

This SBox can be attacked after all this is done.But, the success of this attack is extremely doubtful as
the amplitude of the signal of a single SBox is so small that it may be masked or overridden by noise,
be it algorithmic or physical. The number of traces that need to be processed may also be as high as
100000, making the attack extremely hard.

 Checking the influence of such routing algorithms for other side channel attacks like the
DPA : As seen above, a full scale template attack can be extremely difficult and impractical to
launch. But efficient techniques like the Differential Plaintext Attack can be used to check the
influence of routing algorithms on the feasibility of such an attack. The DPA also works on the
Hamming Distance model, which turned out to be the most efficient mode of attack in the Area
Optimized case. Also, what was attacked here was just a single SBox. In case of the full AES, the
influence of the routing algorithm is much stronger, as there is so much to optimize(20 such
SBoxes).For example, take the Area Optimization case. The wires curl around more and more as the
circuit is much more complicated and space saving becomes the key. The DPA is also much simpler
to launch compared to a template attack.



Bibliography

 Relevant material taken from the book “Power Analysis Attacks - Revealing the Secrets of Smart Cards”
by Stefan Mangard, Elisabeth Oswald and Thomas Popp.
http://www.springer.com/in/book/9780387308579

 All the power trace measurements were done using Teledyne Lecroy oscilloscope.

 All the figures apart from the power traces were generated using MATLAB 2016a, IITM license. All the
simulations and the results were all obtained using MATLAB 2016a, IITM License.

http://www.springer.com/in/book/9780387308579

