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ABSTRACT

KEYWORDS: Convolutional Sparse Coding; Light Field; ADMM

Light field imaging is extensively used in many areas giving state of the art results.

Most existing approaches either multiplex a low-resolution light field into 2D sensor

image or require multiple photographs to be taken for acquiring a high resolution image.

A few approaches also include traditional Sparse Coding to model the light field. A

slight variation of Sparse Coding which uses convolutions to model the image is called

Convolutional Sparse Coding (CSC). In this project, we extend the idea of CSC to light

fields. The filters/kernels learned are used to reconstruct the light field views and view

interpolation.
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CHAPTER 1

INTRODUCTION

Conventional cameras don’t capture most of the information about light distribution en-

tering the camera, it only captures the spatial variation of the scene. But, Light Field

Imaging captures both angular and spatial information. Higher Dimensionality feature

of light field is extensively used in many areas now-a-days, giving state-of-art results.

Light field Imaging offers post capture refocus of the scene, perspective shifts, recov-

ering depth information. there are many existing approaches to learn and reconstruct

light fields using Sparse Coding.

Sparse Coding Algorithm is a representation learning method which aims at find-

ing sparse representation of input data in form of linear combination of basis elements.

Over-complete dictionaries (K > n) allow multiple representations of the signal im-

proving the sparsity.Using an over-complete dictionary, D ∈ Rn×K , a signal y ∈ Rn

can be represented by sparse linear combination of these atoms,The representation of

y may either be exact y = Dx or approximate y ≈ Dx satisfying the ‖y −Dx‖p ≤ ε

and sparsity constraints.The sparse vector x contains the representation coefficients of

the signal, the sparsity of the signal x depends on the number of non zero coefficients

in vector x, less the number of non-zero components more the sparsity.

Figure 1.1: Sparse coding using Dictionary; Source:home.iitk.ac.in

However, the traditional sparse coding technique has a fundamental drawback it

assumes the input signals y ∈ Rn are independent of one another.In general, natural im-



ages have repetitive features, this leads to many basis elements.This drawback is solved

by convolutional sparse coding using convolution operation to model shift invariance

property of the images. CSC takes input vectors unlike traditional sparse coding which

learns inputs as patches, thus CSC is better than sparse coding in handling inputs dur-

ing training and reconstruction.The optimization problem is considerably difficult when

compared Sparse dictionary learning, since the signal in Dictionary learning was linear

combination of dictionary atoms but CSC is the convolution of kernels with sparse code,

where code update is higher dimensional that sparse vector of Dictionary learning and

computationally expensive. Here in CSC the size of sparse code and input signal are

same, but in dictionary learning the size of sparse vector can be different from that of

input signal which leads to more sparse solution.

Figure 1.2: Describing Convolution between kernels and sparse code resulting mod-
elling the input signal in CSC, x is the input signal, dk,zk are the kth kernel
and sparse code.
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CHAPTER 2

Back Ground

2.1 LightField

Light field views are array of images can be captured using a simple camera positioned

in different consecutive view points. The position of each pixel in light can be described

by plenoptic function (u, v, x, y). The angular and spatial dimensions of light field are

(u, v), (x, y) repectively. Figure 2.1 is an example of lightfield

Figure 2.1: Light Field array of views depicting angular and spatial dimensions

2.2 Convolutional Sparse Coding

Convolutional sparse coding models local interactions of the signal using convolution

operator on sparse vector. It is spatially invariant which is most relaxing feature of

traditional sparse coding techniques. The kernels are constant which models the edges



in the signal and relevant image features. The sparse code is decided by the weightage

of particular kernel in the input signal. Finally input signal is modelled by the sum of

the convolution of kernels with the corresponding sparse codes. The sparse constraint

is also added to objective function, to minimize sparsity of the code. Objective function

of convolutional sparse coding can be modelled as equation 2.1

argmin
d,z

∥∥∥∥∥x−
K∑
k=1

dk ∗ zk

∥∥∥∥∥
2

2

+ β
K∑
k=1

‖zk‖1 (2.1)

subject to ‖dk‖22 ≤ 1 ∀k ∈ {1, 2...K}

Equation 2.1 : x is the signal, dk is the kth kernel and zk is the kth sparse code, ∗ is

the convolution operator, K total number of kernels, β is the sparsity constant

Convolution in frequency domain is multiplication in time domain, therefore the

objective function can also be written as equation 2.2

argmin
d,z

∥∥∥∥∥x̂−
K∑
k=1

d̂k � ẑk

∥∥∥∥∥
2

2

+ β
K∑
k=1

‖zk‖1 (2.2)

Equation 2.2 : expresses the computationally expensive convolution operations

as more efficient multiplications in the Fourier domain. Here,̂denotes the frequency

representation the component-wise product in frequency domain.
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CHAPTER 3

Extension to light field

3.1 Objective function

The objective function for whole light field is taken as the sum of individual objective

functions. Due to the following assumptions.

• In this case the kernels are 4D, the fourth dimension is number of views of light
field, this add more complexity to optimization.

• Sparse code corresponding to each is taken constant across all the views, assum-
ing that there will only be a small perspective shift in views, otherwise the whole
image of each views is constant

• The small change in the views is learned by the kernels corresponding to the
views

argmin
dv ,z

V∑
v=1

∥∥∥∥∥xv −
K∑
k=1

dvk ∗ zk

∥∥∥∥∥
2

2

+ β
K∑
k=1

‖zk‖1 (3.1)

subject to ‖dvk‖
2
2 ≤ 1

• V is the total number of light fields, dvk is the kernel corresponding to kth kernel
of vth view of light field

3.2 Training

Training on light field is done iterative manner following the kernel update for each

view and sparse code update, till no more improvement in both types updates



3.2.1 Kernel update for each view

• The Kernel update for each view is independent of others, only dependant on the
corresponding view and sparse code which is constant across all the views.

• The proximal function of kernel and view are calculated using kernels of respec-
tive view and sparse code in each iteration

1

2

(
‖Zdv − xiv1‖

2
2

)
+
ρ

2
‖d− xi2‖1 (3.2)

• xi1 and xi2 are quadratic and Projection proximal funtions from Flexi Heide et
al, Z is the stacking of zk along columns Z = F2([z

T
1 , ...z

T
k ]), d

v is the stacked
matrix of kernels corresponding to each view v. ρ is a constant to regulate the
sparsity of the code.

zopt =
(
Z†jZj + 2I

)−1 (
Z†j × xi1 + xi2

)
• Each block Zj is the sparse code corresponding to the jth kernel, since Z is

the toeplitz matrix explaining the convolution as element-wise multiplication of
stacked matrices since each block is a diagonal matrix.

• The inverse can be computed efficiently from Woodbury formula.

zopt =

((
1

2

)
I − 1

2
Z†j

(
2I + ZjZ

†
j

)−1
Zj

)(
Z†j × xi1 + xi2

)
(3.3)

• zopt is given equation 3.3, where † is the conjugate transpose operator.

3.2.2 Code update

• Sparse code is different from that of single image code because here we take
constant code across all the views.

1

2

V∑
v=1

(
‖Dvz − xiv1‖

2
2

)
+
ρ

2
‖z − xi2‖1 (3.4)

• where Dv =
[
Dk

1 . . . Dv
k

]
is the concatenation of Toeplitz matrices each one

representing a convolution with respective filter dvk(
D†jDj + 2I

)−1 (
D†j × xi1 + xi2

)
• xi1 and xi2 are the Quadratic and shrinkage proximal operators from Flexi Heide

et al

dopt =

((
1

2

)
I − 1

2
D†j

(
2I +DjD

†
j

)−1
Dj

)(
D†j × xi1 + xi2

)
(3.5)

• where Dj = F2

[
d1j . . . dVj

]
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Figure 3.1: Kernel corresponding to one view of the light field

Figure 3.2: Plot covergence during training, x− axis: Number of iterations, y − axis:
Objective function value
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CHAPTER 4

Results

4.1 Denoising

Figure 4.1
Denoising Light Field views

Noisy image PSNR: 23.9915 dB
Denoised Image PSNR: 28.8708 dB

4.2 View interpolation

Missing views are reconstructed from the input views, such as four corner views of the

light field. The input views should have required information on perspective shift of

edges.



4.2.1 Four corner views

Figure 4.2: input views [(1,1),(1,5),(5,1),(5,5)

Figure 4.3
Output views from four view-interpolation

PSNR(output views): 20.7160 dB
PSNR(input views): 25.80 dB

4.2.2 Two Corner views [(1, 1), (5, 5)]
The two corner views (1,25) are given as input views, The reconstruction is kind of
overfitting to the input views, hence the interpolated views are lesser quality than the
former case (four corner views).

Figure 4.4: Input views [(1, 1), (5, 5)]
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Figure 4.5
Output views from two-view interpolation

PSNR(output views): 20.00 dB
PSNR(input views): 22.46dB
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CHAPTER 5

Conclusion

Convolutional Sparse coding is a powerful tool in learning image features, in this project

it is used to learn Light field views.The implementation is an extension of Fast and Flex-

ible Convolutional Sparse Coding Paper. The kernels learned were used to reconstruct

views from noisy lightfield and View Interpolation. The results in de-noising are not as

good as other approaches, but it can be improved by learning better Filter kernels. It

can also be extended to reconstruction from Coded Image from Compressive light field

paper.
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