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ABSTRACT

Modern photography is a marvel, capturing moments for posterity, and entire scenes

in the form of matrices. With the advent of light weight cameras, camera shake is a

problem which plagues most photographic endeavours. In addition to this, capturing of

rapidly moving objects is a challenge. Advent of sensors which work at higher frame

rates and shutters which open and close in fractions of milliseconds has helped solve

these problems, however, in cases where there is not enough light, these approaches are

rendered infeasible. Post processing is a cheap and rather effective alternative. Many

techniques exist to tackle motion blur. A large fraction of these however consider only

translational motion, which is space invariant. Another class of techniques exist which

handle space variant blur. In this work, an attempt to handle the problem of motion

blur across various domains is made. Motion blur in samples of video which can be

used to perform gait based personal identification is one such problem which was ex-

plored. Estimating the length and direction of the blur kernel by established methods

was dealt with, and a deep learning approach to solve the same problem was also taken

up. The work then attempted to perform activity recognition, and deblurring of objects

exhibiting articulated motion. Finally, HDR image deblurring with simultaneous super

resolution was taken up and a fully functioning algorithm was developed and tested.
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CHAPTER 1

INTRODUCTION

What is motion blur? Motion blur is the apparent streaking of rapidly moving objects

in a still image or a sequence of images such as a movie or animation. It results when

the image being recorded changes during the recording of a single exposure, either due

to rapid movement or long exposure. Unlike defocus blur, whose effects are limited

to a single PSF whose scale varies with depth, motion blur can present itself in a large

number of ways. The number of PSF’s which can result from a camera movement are

boundless. Deblurring is therefore, an inherently ill posed problem. Natural image

statistics help establish priors which allow for better solutions, but these do not always

result in better output. With the advent of deep learning, many new techniques have

come to the fore. The problem of deblurring, despite of these new techniques, is still

open to better solutions. This work, analyses possible solutions to a small subset of the

problems, and works on addressing pertinent issues.

1.1 Contributions

Of the work in this thesis, my contributions include the following: A full and thor-

ough literature survey for gait based personal identification. This was followed by an

exploration of the effect of motion blur in the gait identification pipeline. Artificial

intelligence was also explored, with a thorough reading of deep learning, and the per-

tinenet techniques involved. MatConvNet, a package for implementing deep networks

was learnt and used. A deep neural network was fully trained and implemented to iden-

tify the length and direction of motion blur from the alpha matte of a moving object.

Once this was done, a framework for activity recognition was conceived, including a

new feature vector, which involves a direction binned histogram. Benchmarking activ-

ities for a siamese neural network were carried out on 3 datasets, while ensuring uni-

form PSNR calculation, and measures to ensure thorough, competent benchmarking.

Further, an algorithm was developed and fully implemented to carry out simultaneous

super resolution and motion deblurring for images in the irradiance domain.



CHAPTER 2

MOTION BLUR

2.1 An Investigation of Gait Based Human Identifica-

tion

Figure 2.1: Gait sequence in which the rightmost image is the GEI

A large part of initial efforts were devoted to understanding approaches to gait

recognition. Man and Bhanu (2006) was a seminal work on the topic, and most works

such as Lam et al. (2011), Zhang et al. (2010), Chen et al. (2009), Liu and Zheng (2007)

and Wang et al. (2012) are more or less modifications of this approach. To succinctly

state the general method involved, we can say that the person in question is extracted

from the background, either by means of a binary silhouette or an alpha matte as a first

step. To augment data for learning, certain operations were carried out on the databasr

of silhouettes, such as skewing and translations. The second step involves using these

silhouettes to generate a single gait feature, which represents the gait cycle of that in-

dividual. These features are subsequently used for classification using a combination

of PCA, LDA and SVM’s, or other probabilistic classifiers. A deep learning approach

has not yet been identified, to the best of my knowledge. In Man and Bhanu (2006),

the approach used is a simple averaging of frames. The GEI is hence given by Equation

2.1.

G(x, y) =
1

N

N∑
t=1

Bt(x, y) (2.1)



where Bt is the binary silhouette. The justification for use of this representation is

that the effect of noisy silhouettes is reduced. Once this has been done, a combination

of PCA and MDA is applied. A novel approach used for classification here is the

generation of a synthetic gait sequence. This is done by deleting the lowest portion of

the GEI and resizing the resulting image, to provide robustness. Classification is done as

follows: Given a probe sequence P , real gait templates Rj, j = 1, ..., nR and synthetic

gait templates Sj, j = 1, ....., nS are generated. The transformation matrix obtained by

the PCA, MDA combination is denoted by T̂r and T̂S for the real and synthetic images

respectively. Hence, the feature vectors formed from the probe sequence are given by

R̂p : r̂j = TrRj, j = 1, ....., nR and Ŝp : ŝj = TrSj, j = 1, ....., nS . The classification is

done using a modified nearest neighbour approach. The distance measure is defined in

Equation 2.2.

(a) Single blurred frame

(b) Three blurred frames

(c) Five blurred frames

Figure 2.2: Extracted matte from blurred frames
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D(R̂P , Ri) =
1

nR

nR∑
j=1

‖ r̂j −mri ‖, i = 1, ...., c (2.2)

where mri is the mean of real feature vectors in class i.

(a) Single frame averaged

(b) Three frames averaged

(c) Five frames averaged

(d) Ten frames averaged

Figure 2.3: Matte from blurred frames
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A similar measure is defined for the synthetic images. A combination of these two

distances is used as a distance metric when using nearest neighbour classification. As

the motion information is represented primarily at edges and boundaries, it is logical

to check whether all necessary gait information is embedded in the alpha matte of the

person. We also wanted to go ahead and see if this problem can be expanded in scope,

by using blurred input frames to extract the matte. To generate these blurred frames,

temporal averaging was carried out. If Fi(x, y) denotes each frame of the gait cycle, the

blurred frames Bj(x, y) were calculated as follows: Bj(x, y) =
∑p

i=1 Fi(x, y) where

p is the number of frames to be averaged. We found that a reliable matte can only

be extracted with 20 − 30% of the gait cycle being averaged, on standard databases

such as the USF gait database. Matting was carried out using Levin et al. (2008).

Further averaging led to a poor quality alpha matte, and hardly any discernible blur.

These results are shown in Figures 2.4 and 2.3. To further this approach of using blurry

frames for gait identification, it seemed pertinent to find the length and direction of

motion blur at each contour point of the alpha matte. When focus is restricted to small

patches within an image, motion can be approximated to be linear. Hence, in these

patches, finding the length and direction of motion is enough to fully evaluate the blur

kernel. For this approach, and all subsequent approaches, we only worked with images

of sufficiently high resolution. To carry out this kernel estimation, initially, two blind

deconvolution techniques were used.Xu and Jia (2010) and Pan et al. (2014) were the

two approaches which were used.

In Xu and Jia (2010), the energy minimisation carried out is given in Equation 2.3.

E(k) =‖ ∇Is ⊗ k −∇B ‖2 +γ ‖ k ‖2 (2.3)

This enforces the L2 norm on the kernel. Once this edge map of the latent image is

obtained (via k), the edge map is used as a spatial prior to estimate the latent image.

Another optimisation is carried out with Equation 2.4.

E(I) =‖ I ⊗ k −B ‖2 +λ ‖ ∇I −∇Is ‖2 (2.4)

The kernel obtained is then refined. Pan et al. (2014) was applied wherein the prior is

slightly modified to be suited for text applications. The energy fuction to be minimised

in this case was E =‖ x⊗ k − y ‖22 +γ ‖ k ‖22 +λP (x) where P (x) is a regularisation

5



Figure 2.4: Synthetically blurred input with associated ground truth kernel

Figure 2.5: Resulting kernel using approach in Xu and Jia (2010)

term. This optimisation was solved using an alternating approach, first optimising with

x constant, and then with k constant. These techniques were applied to the alpha matte

as well as the foreground itself. Also, a combination of the alpha matte and the fore-

ground was presented to both algorithms. They were tested at different resolutions and

for different ground truth kernels. In addition to providing the entire foreground, indi-

Figure 2.6: Technique from Pan et al. (2014) and associated kernels; Kernels for points
from left to right (top 3 for higher leg, bottom 3 for lower leg) for a natural
image

vidual body parts were also provided. They yielded unsastisfactory results, as shown in

Figures 2.5 and 2.6. The estimated latent image presented artifacts, and the estimated

kernel was not close to the original. This approach was therefore abandoned, and in-
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(a) Input (b) Estimated latent image

(c) Estimated kernel from Xu and Jia (2010)

Figure 2.7: Failure of blind deblurring methods to estimate kernel

stead a gradient based method was then adopted, wherein the blur was estimated by

checking the spread of the alpha matte. Gradients were found using Sobel operator,

shown below.

Gx =


−1 0 +1

−2 0 +2

−1 0 +1

 , Gy =


−1 −2 −1

0 0 0

+1 +2 +1

 (2.5)

The amount of blur was estimated to be the distance in pixels to the first zero-value

along the gradient. The method was later adapted to include a feature vector at every

point, consisting of the distance of the first zero value along the gradient as well as

directions inclined away from the gradient. Let l be the line starting at a point p (with

co-ordinates (x, y)), with direction cosines c1 and c2. Then the magnitude of blur at the

point p, is given by B (Equation 2.6).

B = {min(t) | I(x+ t ∗ c1, y + t ∗ c2) = 0} (2.6)

A line search was performed along these directions to estimate the blur. This is shown

in Figure 2.8. Instead of this approach, a deep learning architecture was adapted from

Sun et al. (2015).
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Figure 2.8: Blur estimate using gradients

2.2 Forays into Motion Analysis

Deep learning started out as an extension to artificial neural networks. These neural

networks were developed to mimic human neurons. The earliest models of neurons

include the perceptron which was developed in the 1950’s by Frank Rosenblatt. Today,

this has evolved into a different sort of basic unit, called a sigmoid neuron. The way the

sigmoid neuron works is as follows. The inputs here are xi, i ranging from 1 to N . The

output then is f(b +
∑

iwixi) where the weights wi are ’learnt’ as a result of training.

Here, f is known as the activation function. In sigmoid neurons, this function is the

sigmoidal function (2.7).

f(x) =
1

1 + e−x
(2.7)

When a network of these neurons is created, it results in an Artificial Neural Network

(ANN). A rough schematic of the same is shown in Figure 2.9. When this framework is

extended across more layers, training becomes more difficult, due to a problem known

as the vanishing/exploding gradient problem. Hence, architectures with multiple layers

are difficult to train, and this led to the establishment of deep learning as a field. One

such deep network is shown in Figure 2.10. This network was adapted to our need

and hence modified appropriately. The number of output classes was changed to 289.

The network was trained using the ground truth silhouettes of the database in Shi et al.

(2014), blurred with appropriate kernels. Training was carried out using mini-batch

8



Figure 2.9: Generalised schematic of a single hidden layer neural network

stochastic gradient descent based on back propogation. The kernels used varied from

length of 5 to 15 in increments of 1 pixel and from 0◦ to 170◦ with increments of

10◦ degrees. Training error saturated with a top 5 classification error of 5% after 143

epochs. Convolutional neural networks are different from regular networks because

Figure 2.10: Deep learning architecture adapted from Sun et al. (2015)

their weights are tied. They are set up as in Figure 2.11. Only parts of the input image

are connected to each hidden neuron, as opposed to all of them (as in fully connected

layers). This region which is connected to a hidden neuron is called its local receptive

field. For every layer, the weights connecting a hidden neuron and its local receptive

field are the same. Therefore, the second layer is the result of a convolution between the

input and the weights. There are sometimes multiple sets of weights per layer, leading

to multiple ’feature maps’ in every subsequent layer. To reduce the size of each layer,

pooling is done, wherein the elements of a layer are pooled together to result in a form

of subsampling operation. Pooling can be done in many ways including, but not limited

to, mean pooling, median pooling and max pooling. Max pooling is the most common

type. Another layer which is quite common in networks is the ReLU, or the Rectified

9



Linear Unit. It is of the form given in Equation 2.8.

f(x) =

x x >= 0

0 x < 0

(2.8)

Figure 2.11: Structure of two layers in a typical CNN

Figure 2.12: Pooling shown with a 2× 2 receptive field

Training for this network was done using mini-batch Stochastic Gradient Descent

based on back propagation. Once the motion blur is estimated at every point on the

contour, kernel evolution with time opens up distinct possibilities. When the estimated

motion kernels are analysed on a part by part basis (hand,leg etc.), it is shown that

the temporal evolution of these kernels corresponds to the actual movement in space

10



of these body parts. A histogram of these body parts, therefore, could be used as a

feature to detect the activity in a video. Results of this approach are shown in Figure

2.13. In this figure, the alpha matte of a moving person is shown. Along the contour of

the alpha matte, the direction of motion blur has been plotted, with the direction being

shown by the arrow and the length indicating the degree of blurring. The histogram

which is plotted indicates the number of points within the red bounding box which

have a particular direction. This is done via voting, wherein each point where blur has

been estimated gets a vote weighted by the length of blur. The 360◦ histogram therefore

shows the major direction of movement of a body part. Videos have also been generated

showing the correspondence between movement and the histogram obtained.

Figure 2.13: Results of binning of motion blur directions for a given body part

Another possible avenue to be explored was body part segmentation. Different body

parts can be construed to have similar motion. Segmentation can therefore be done us-

ing the length and direction of estimated motion kernels as features. In our preliminary

approach, 4 features were used. Each point along the contour had a feature vector Fi

given by Fi = [αf1, βf2, x, y] where f1 and f2 are the motion length and direction re-

spectively. The weighting factors α and β are used to weight the features during the

actual clustering. x and y are the spatial coordinates of the point to allow for some

spatial coherence. A hierarchical framework was adopted to cluster the points. The

number of clusters was decided based on the histogram. A histogram was constructed

of the motion directions. The bin size employed was 10◦. It was found that the number

of clusters is equal to the number of peaks in this histogram; i.e. if N denotes the num-

ber of clusters to be found, then N = | {x|H(x) > H(x− 1)&H(x) > H(x+ 1)} |

11



where H(x) denotes the bin value of the xth bin. This peak finding is carried out in a

circular manner, which means that the last bin and the first bin are assumed to be adja-

cent. Once N is determined, a hierarchical clustering technique is used. The technique

employs the inner squared distance metric (minimum variance algorithm) to perform

clustering. Results are shown in Figure 2.15b.

(a) Original blurred image

(b) Deblurred image with a patch size of 30× 30

(c) Deblurred image with a patch size of 100× 100

Figure 2.14: Deblurring for articulated motion

The clustering is jagged and uneven. This is mainly due to the irregular direction

estimates and outliers. This can be corrected probably by applying a smoothing oper-

12



ation such as Markov Random Fields or averaging, either before the clustering step or

after.

(a) Estimated directions (b) Clustering result using α = 5 and β =
10, cluster centroids indicated using red
dots

Figure 2.15: Body part segmentation using direction of motion blur

(a) Input 1 (b) Input 2 (c) Input 3

Figure 2.16: Images from the database provided by Köhler et al. (2012)

Another possibility is that of deblurring the foreground. Applications can be found

in sports photography, or any other form of photography where a high shutter speed

is not an option. The deblurring approach used is patch-wise, and uses the non-blind

deconvolution proposed in Krishnan and Fergus (2009). In addition, a modified Bartlett-

Hanning window (Ha and Pearce (1989)) was applied to each patch, in an effort to

remove edge artifacts. The results still present some sort of artifacts in the background,

however, significant deblurring is present as shown in Figure 2.14. Two patch sizes

were used, 30 × 30 and 100 × 100. Further work on deblurring followed. A Siamese

network was developed, to deblur a given input image. The input to the network was

a pair of images, obtained from the algorithm in Krishnan and Fergus (2009). Each of

these was obtained by using a different λ parameter, which controls the weight of the

prior applied in the optimisation. These two inputs to the network resulted in an output

which did not have the ringing associated with a very low value of λ nor the blurred

13



(a) Baboon (b) Pepper (c) Zebra

Figure 2.17: Input images used for benchmarking

Image Lucy-
Richardson

Krishnan
and Fergus

3x3 FoE Pairwise
MRF

Shrinkage
Fields

Baboon 20.226 20.1275 33.89714 32.5493 27.4127
Barbara 22.4984 22.9738 39.8221 38.2195 31.2494
Bridge 21.2189 21.3735 34.2744 33.1093 30.1206

Coastguard 22.1157 22.0846 35.9256 35.6890 30.8608
Comic 18.4805 18.8303 28.1743 28.0109 28.3819
Face 25.3689 25.7022 36.4110 35.1509 34.4171

Flowers 22.1441 22.9614 32.8632 32.6740 32.1274
Foreman 22.3996 21.8723 37.6857 36.7987 34.5081

Lenna 25.6344 25.7400 43.0887 40.6222 35.2952
Man 22.4041 22.9790 37.5988 36.7332 31.4494

Monarch 22.8429 24.0706 39.5834 37.8078 35.8327
Pepper 25.3659 25.5632 38.1657 37.5007 35.4544
ppt3 18.3782 20.1307 52.3618 48.5715 29.3832

Zebra 20.0872 20.8863 34.0405 32.3988 32.3755

Table 2.1: Benchmarking results for various blind deblurring algorithms

edges associated with a very high value. The structure of the network used is shown in

Figure 2.18.

Figure 2.18: Siamese network used for blind deblurring

14



Benchmarking was then carried out, wherein this algorithm was compared to the per-

formance of standard deblurring algorithms on various datasets.

(a) Output corresponding to first input and estimated blur kernel

(b) Output corresponding to second input and estimated blur kernel

(c) Output corresponding to third input and estimated blur kernel

The deblurring algorithms used were the Lucy-Richardson algorithm, Krishnan and

15



Fergus’ Hyper Laplacian Priors, 3 × 3 FoE (Regression Tree Fields), Pariwise MRF

based deblurring, and a method using shrinkage fields. The result of one such bench-

marking activity is shown in Table 2.1, along with some of the images the algorithms

were used on. The outputs from one of the deblurring algorithms (Xu et. al) is shown

in Figure 2.19c.
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CHAPTER 3

HDR based Simultaneous Motion Deblurring and Super

Resolution

(a) Input image (b) PSF’s at corresponding locations of the
input image

Figure 3.1: An example of the blurred images which serves as inputs

3.1 Introduction

Handheld photography is a burgeoning practice, with the proliferation of light-weight,

high quality imaging devices. Images from these sources are especially prone to camera

shake. Traditional methods for super-resolution (SR) and high dynamic range (HDR)

imaging are designed to work well when the input images are free of blur. However, in

many real applications, blur in input images is a common occurrence, leading to fail-

ure of these methods. In this paper, a unified approach to perform SR and HDR from

multiple non-uniformly motion blurred input images is proposed. Unlike existing ap-

proaches, our approach attempts to harness the complementarity present in terms of the

sensor exposure and blur to yield a high quality image which has both higher spatial

resolution as well as dynamic range. Our method minimizes a regularized energy func-

tion defined in terms of the desired image, input images and the blur introduced by the

camera shake, where we use regularization on the image and camera motion to ensure

the convergence of the algorithm. Experiments have been carried out on several real

and synthetically generated images to validate the efficacy of our framework.Capturing



Figure 3.2: A High Dynamic Range Image

high quality images is one of the, if not the most important goals of modern photog-

raphy. However, there exist multiple hurdles to achieving this goal. Natural scenes

typically have irradiances spanning multiple orders of magnitude. This far exceeds the

range of the commonly used camera sensors and often leads to pictures containing over-

exposed/under-exposed regions. Although HDR cameras are commercially available

they are very expensive. High dynamic range (HDR) imaging is concerned with extrac-

tion of latent scene irradiance. HDR imaging techniques attempts to algorithmically

fuse the information contained in multiple low dynamic range (LDR) images captured

at different exposure settings. The idea behind HDR imaging is the fact that, if we can

capture LDR images such that all the scene points are well exposed in atleast one image,

one can try to solve for a single image which is devoid of over-exposed/under-exposed

regions. Based on this idea, several algorithmic approaches for scene irradiance estima-

tion Mitsunaga and Nayar (1999); Ward (2003); Debevec and Malik (2008); Sen et al.

(2012) have been proposed, all, however, assuming availability of blur-free input im-

ages. Increasing spatial resolution of images is a well known classical problem. While

a direct way to achieve this is to increase the number of sensor elements per unit area,

the cost of producing such sensor arrays may not be commensurate with the gains. Pixel

size reduction also results in the increased effect of shot noise in the captured images.

An alternative approach that is commonly used is the use of signal processing tech-

niques to improve spatial resolution. Multi-image based super-resolution techniques
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try to exploit the extra information present in different LR images to improve the spa-

tial resolution Park et al. (2003). Such a scheme attempts to model the imaging process

between an unknown high-resolution image and multiple low-resolution observations

and try to solve the inverse problem. However, most existing methods are designed to

work well for the limited scenario where all the captured images will be blur free.

The fact that both SR and HDR imaging (hereafter referred to as HDR-SR) re-

quire multiple input images opens up the possibility to employ them for simultaneous

SR-HDR. Although many approaches for SR-HDR have been proposed, all of them

assume the input images being blur-free. With the introduction of light-weight, hand-

held, photographic devices, images are now increasingly susceptible to camera shake

due to unsteady hands. Unlike the most commonly used model for space-invariant blur,

camera-shake often leads to spatially varying blur in the captured images Köhler et al.

(2012). This paper aims at obtaining a single SR-HDR image free of blur from multiple

spatially varying motion blur affected input images. However, the problem in its own

form is ill-posed since we also need to estimate the camera motion which resulted in the

blur in input images. Previous studies Whyte et al. (2014); Pan et al. (2016) on motion

deblurring have shown that a careful handling of saturation regions is important for reli-

able camera motion and latent image estimation. Since we work with different exposure

input images, it is important to carefully model the image formation mechanism so that

the right information get fused at the final image while keeping our estimation process

robust enough to handle the saturation regions. We propose an alternating minimization

scheme to simultaneously solve for the the camera motion at high-resolution as well as

a blur-free SR-HDR image.

3.2 Prior Work

Many prior works exist, which are relevant to the development of the technique in this

chapter. The first domain that we must discuss is the estimation of scene irradiance.

Works such as Mann and Picard estimate the response curve through the use of multiple

points across images and curve fitting a parametric model of the CRF. Ng et al. (2007)

also assumes a parametric form for the CRF, in terms of polynomial exponents and

estimates the same by the use of geometric invariants. Many other approaches exist,
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but since this work assumes that the input is in the form of irradiance images, we will

not delve into it further. Methods exist to effectively fuse differently exposed pictures

to obtain an image without saturation and/or darkness. In general, a weighting scheme

is proposed, and the images are suitably combined to obtain the final HDR-equivalent

LDR image. For example, Mertens et al. (2009) uses a weight which takes into account

local contrast as well as well-exposedness of a pixel. Raskar et al. (2005) and Fattal

et al. (2002) both analyse the differnetly exposed images in the gradient domain. All of

these approaches to HDR imaging, however, do not explore the possibility of camera

motion.

Motion deblurring in itself is a problem which has held the attention of researchers

time and time again. Fergus et al. (2006) achieves this by using a prior which they

developed, on the image. However this only accounts for spatially invariant blurring.

Many approaches to tackle non uniform motion exist. Gupta et al. (2010) Tai et al.

(2011) and Whyte et al. (2012) all work on a TSF like approach wherein the image is

modelled as an average of images captured at various camera poses. These approaches

take a single image as input, and do not leverage multiple images in situations which

present themselves in this light. Vio et al. (2004) and Schulz (1993) both propose

methods to perform multi-image blind deconvolution. A more recent work, Zhang et al.

(2013) implements a novel Bayesian approach based prior to address the multi-image

deblurring problem.

Motion blur naturally lends itself to the super resolution problem, which has been a

central goal of many research groups over the years. The desire to ahieve, by signal pro-

cessing, an increase in the resolution of images, without an increase in cost, or a change

in hardware has led to extensive work being done in the domain. The earliest works

which combines multiple low resolution images, Elad and Feuer (1997) and Nguyen

et al. (2001), establish an observational model which involves blurring of images (often

with sub-pixel movements) and subsequent decimation. Once this model is established,

the reconstruction algorithm employed varies from work to work. Ur and Gross (1992)

uses nonuniform interpolation by using the generalised multichannel sampling theo-

rem. Frequency domain approaches have also been proposed such as in Bose et al.

(1993) and Rhee and Kang (1999). A more recent work, Li et al. (2010), uses the same

framework but imposes additional regularisation terms to better define the inherently

ill-posed problem of super resoltuion.These approaches are all fundamentally limited
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in the sense that the type of blur experienced by every image is assumed to be the same.

Approaches to simultaneously tackle both motion blur and super resolution have also

been made such as Harmeling et al. (2010), and most notably in Sroubek et al. (2007),

however this has not been adapted to an application for HDR imaging. However, none

of these approaches models the effect of a large dynamic range of the input images.

Approaches to attempt HDR and super resolution have also gained traction. In

Schubert et al. (2009), two input sequences are required, one with differently exposed

images, and one with slightly perturbed views of the scene. The optimal number of

images needed as well as the exposure times to ensure a good HDR-SR output has

been explored in Traonmilin and Aguerrebere (2014). The work in Haraldsson et al.

(2007) uses a modified image acquisition system, to obtain a multisampled image ca-

pable of giving a HDR latent image. Bayesian and Graphical model based approaches

to the problem have also been proposed, such as in Zhang and Carin (2014) and Whyte

et al. (2012). Working in a transform domain, which accounts for the appearance to

the human visual system, Bengtsson et al. (2012) works on minimising a tailored cost

function. Attempts to perform SR interpolation have also been carried out, such as in

Rad et al. (2007). A requirement for all of these methods however is that the images

must be registered and motion blur is not present, except in Zhang and Carin (2014)

wherein HDR has not been tackled.

The main contributions of this work is simultaneous super resolution, HDR imaging

and motion blur removal for the first time in literature

3.3 Formulation

To begin, we will illustrate the image formation model adopted, and arrive at the model

we have used in this chapter.

We will begin by assuming that the scene, in the irradiance domain, has been re-

ferred to as l. Let us say that this latent image is of resolution fM × fN where f is the

super resolution (down-sampling) factor. In a situation without any camera motion, the
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final image is an integrated function of the irradiance. This is shown in Equation 3.1.

E = f(

∫ t

0

ldt+ n) (3.1)

where n is additive noise, f is the CRF and the scene irradiance is assumed to be

constant within the exposure time of t. The mapping from irradiance to pixel values is

done by the CRF and varies from camera to camera. Many techniques exist to estimate

this function, such as Mann and Picard and Ng et al. (2007). This work however, uses

the approach illustrated in Debevec and Malik (2008). In the case when the camera

undergoes motion, the pose in which the camera sensor exists at every time instant

results in the latent image l being appropriately modified by means of a homography.

At every time instant, let the camera pose induce a homography on the captured image,

referred to as Γt. The final intensity image obtained is then an average of the scene, as

viewed from these various camera poses. This is shown in Equation 3.2.

E = f(

∫ t

0

Γt(l)dt+ n) (3.2)

Finally, to account for downsampling, we assum that the real world scene (of resolution

fM × fN ) is averaged and then decimated by the sensor (of resolution M × N ). Let

us call the matrix which averages this image as H and the matrix which decimates i.e.

downsamples the image as M . The final matrix which accomplishes both these tasks is

referred to as D. The final image captured by the camera, henceforth referred to as B

is then obtained. This can be seen in Equation 3.3

E = f(D

∫ t

0

Γt(l)dt+ n) (3.3)

Despite the camera trajectory being continuous, for the sake of tractability, the final im-

age can be viewed as the weighted average of a few dominant camera poses, effectively

discretising the camera’s motion. The weight is determined by the fraction of exposure

time that the camera is in that pose. We can thus replace the integral in Equations 3.1

3.2 and 3.3 by a summation over these dominant poses, hence forth referred to as the

pose space. The final model, which summarises the image capture process is shown in

Equation 3.4.

E = f(D
k∑
0

hk(Γk)Γk(l) + n) (3.4)
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This section contains the theoretical backing for the proposed approach, any derivations

which might be needed, as well as the outline of the work presented. A rough schematic

is provided in Algorithm 1.

Algorithm 1 Rough outline of the algorithm implemented in our work
Require: All Input Images in Irradiance Domain by Inverse Mapping with CRF

1: while not converged do
2: Solve hi = minhi

E(hi, l̂), minimising for TSF
3: l̂ = minl̂E(hi, l̂), minimising for latent image
4: Pose perturbation
5: end while
6: Perform Final Optimisation for Colour Image

return l, h′is

3.3.1 Images in the irradiance domain

The image formation model involves various sub parts. This chapter works in the irra-

diance domain, and hence an understanding of how the capture of images is modeled

is required. Let l refer to the high resolution, latent image in the irradiance domain.

Let the hypothetically captured, clean, high resolution image be E. Then, E and l are

related by the Camera Response Function (CRF) as in Equation 3.5

E = f(E × te) (3.5)

where te is the exposure time and f is the CRF. The CRF takes into account the entire

camera pipeline, and relates the final pixel values to the scene irradiance. Standard

techniques exist to estimate this CRF, which is a smooth monotonous function. We can

also model this light capture as an integration, given in Equation 3.6.

P =

∫ te

0

ldt+ n (3.6)

where P is the captured image and n is the added noise. A typical CRF is shown in

Figure 3.3. To effectively illustrate the algorithm adopted in this paper, we will assume

that the CRF has been estimated and the input images to our algorithm, referred to as

Bi’s, are low resolution, blurred images, in the irradiance domain i.e. they have been

inverse mapped using the CRF.
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Figure 3.3: A typical CRF

3.3.2 Blurring

Working in the irradiance domain, we first assume that the high resolution latent image

has been subjected to capture in the presence of camera shake. A camera has 6 degrees

of freedom, namely translation along tx, ty and tz and also rotation along the three axes

φx, phiy and phiz. We assume that the scene has minimal depth variations, and so

the camera shake can be modelled as an average of various homographies of the latent

image. With this constraint, the out of plane rotations can be modelled as translations,

and hence only 3 degrees of freedom are considered in this chapter, namely tx, t, y

and phiz. The camera pose space is then discretised appropriately. We adopt the TSF

Figure 3.4: A typical PSF obtained due to camera shake

approach, wherein the intermediate, high resolution, blurred images are referred to as

M ′
is. The relationship between these M ′

is and l is as given in Equation 3.7.

Mj =
∑
k

hj(Γk)Γk(l) (3.7)
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where each Γk is a transformation which applies a homography (weighted by a real,

non-negative number denoted by hj(Γk)) to the latent image l. Each of the j input

images is formed by a separate, possibly distinct TSF, hence the subscript. The function

hj is defined in Equation 3.8 and is referred to as the TSF. It denotes the fraction of the

exposure the time that the camera remained in the corresponding pose. Note that since

the blurring is assumed to act on the high resolution image, the final output of our

algorithm is the high resolution TSF.

h : Γ→ [0, 1] |
∑
k

h(Γk) = 1 (3.8)

3.3.3 Decimation

The blurred high resolution images are then modelled to be decimated to form blurred,

low resolution images. The decimation operation first applies a blur to the HR image,

and then selects pixels so as to form a low resolution image. For example, with a super-

resolution factor of 4, every alternate pixel is selected (per row and column). The final

decimation matrix which acts on theM ′
is is denoted byD. Hence, we arrive at Equation

3.9.

Bi = DMi (3.9)

3.3.4 Putting it all together

As illustrated so far, the complete pipeling from ground truth scene irradiance, to the

blurred, low resolution irradiance images which are input to our algorithm is sum-

marised in Equation 3.10.

Bi = D

(∑
k

hi(Γk)Γk(l)

)
(3.10)

3.3.5 Optimisation

The optimisation is carried out to estimate two unknowns, namely the high resolution

(HR) TSF’s hi corresponding to each blurred image Bi and the HR, latent irradiance

image l. To do so, an alternating optimisation approach is adopted. The first of the two
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Figure 3.5: Tukey window. In our case N is 256

steps involves the TSF estimation by assuming the latent image to be known. Additional

terms, such as the l1 norm to enforce sparsity on the TSF have also been added. The

energy term to be minimised in this first optimisation is shown in Equation 3.11.

argmin
hi

‖Bi − D

(∑
k

hi(Γk)Γk(l)

)
‖2 + ‖∇Bi − D

(∑
k

hi(Γk)Γk(∇l)

)
‖2

(3.11)

Additional terms to enforce smoothness on the latent image, such as the TV norm are

also included. An added term which has shown to give better results, involves the

gradients of the images involved. The energy function to be minimised then takes the

form of Equation 3.12 for every input image Bi

l̂ = argmin
l

∑
i

‖Bi−D

(∑
k

hi(Γk)Γk(l)

)
‖2+‖∇Bi−D

(∑
k

hi(Γk)Γk(∇l)

)
‖2

+ ‖∇l‖2 (3.12)

This optimisation is carried out using Preconditioned Conjugate Gradients. The Conju-

gate Gradient approach is based on the assumption that the contour is convex. However,

it is in general applicable to non-linear, non convex surfaces as well, when applied itera-

tively. The founding equations of the conjugate gradient method are shown in Equation
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??.

pk = rk −
∑
i<k

(
pTi Ark
pTi Api

pi

)
(3.13)

xk+1 = xk + αkpkαk =
pTk rk
pTkApk

(3.14)

The function to minimise is

f(x) =
1

2
xTAx− xT b (3.15)

and rk is the residual given by rk = b − Axk and p0 is set to be an arbitrary direction,

often the gradient. The function to be optimised is quadratic, and hence this method

is applied directly.The minimisation is carried out to obtain the latent image estimate l̂

and the process is iteratively repeated. Since our images are in converted to the irradi-

ance domain in a preprocessing step, saturation or extremely low values may result in

inaccurate values. Hence, a mask is applied to ignore those pixels which are saturated

or have a value too low. This is done in the following way: if the energy function to be

optimised is ‖Bi − l‖2, this is the same as ‖mBi −ml‖2 where m is the mask. This is

similarly extended to our objective function.

3.3.6 Pose Space Modification

As in Punnappurath et al. (2014) the pose space is modified at every iteration to limit

its size. This is done by randomly sampling in and around the most dominant poses

at every iteration, by using a gaussian distribution as the sampling distribution. Clever

choosing of this pose space often leads to good results in relatively shorter periods of

time.

3.4 Experiments and testing

Experiments were carried out mainly with synthetic images. The images used are shown

in Figure 3.6. The following methodology was used to generate the input images. The

input images were all HDR images, wherein the scene irradiance is recorded. Different
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(a) Exposure time 30ms (b) Exposure time 100ms

(c) Exposure time 1000ms (d) Exposure time 4000ms

Figure 3.6: Clean images at various exposures

exposure times were chosen and were each multiplied with the ground truth irradiance

images. These differently ’exposed’ images were then subjected to blurring by using a

TSF. The TSF’s used were different for every exposure time. Once done, these images

were then forward transformed using the CRF to give the input images. These input

images were RGB 8 bit images. Images are then blurred by way of TSF’s which have

been synthesised. Examples of these blurred input images can be seen in Figure 3.7.

One of the HDR outputs can be seen in Figure 3.8. Notice that there are no regions

(a) Exposure time: 1000s (b) Exposure time: 4000s

Figure 3.7: Synthetically generated blurred images simulating camera shake

of saturation/darkness. Also, the blur has been significantly reduced when compared

to Figure 3.7. However, there is colour saturation along the bright edges, and also a

ghosting effect, typical of HDR algorithms. Further parameter tuning must be carried
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Figure 3.8: Output of our algorithm

out under other examples. There are 3 parameters to be tuned. The expected kernel

size, the coefficient of the TV prior in the latent image estimation step, and the weight

of the l1 prior in the TSF estimation step all effect the quality of the output. Their

interdependencies are intricate and are to be further examined.

(a) One of the input images (b) Deblurred output

Figure 3.9: Example of deblurring without HDR

To demonstrate the efficacy of the deblurring our algorithm performs, a non-HDR

example is shown in Figure 3.9. It is clear that the algorithm performs significant de-
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blurring. The 7th row of text has been nearly totally deblurred, and is legible in the

output. The edges of the image however show grey lines, symptoms of the zero padding

used while computing homographies of the latent image.

3.5 Conclusion

A further extension to this work is the modelling depth variations. However, for the

case of the flat scene, we have shown the efficacy of our algorithm. Methods to speed

up the running time, as well as careful selection of the camera pose space are issues

which pose a threat to the effectiveness of the algorithm.
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