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ABSTRACT 

KEYWORDS: GMM; SGMM;  

In this thesis, an acoustic modelling technique, Subspace Gaussian Mixture Modelling, for 

Speech Recognition Introduced by Daniel Povey  has been Investigated  on Mandi databases of 

Indian languages for Tamil and Hindi . Various simulations have been performed by varying 

different parameters involved in SGMM and results have been obtained. Comparison of 

performance is done for various parameters and also with CDHMM and LDA+MLLT. The exact 

procedure to be followed and the various optimized parameters have been explained in detail. 

The significance of each parameter is also explained. Also, the results for various tied states and 

UBMs have been given in detail. 

 



v 
 

CONTENTS 
 
ACKNOWLEDGEMENTS                                                        iii 
ABSTRACT                                                                                  iv 
LIST OF TABLES                                                                      vii  
ABBREVIATIONS                                                                    viii 
 
1 

 
INTRODUCTION…………………………………… 

 
1 

 
2 

 
SPEECH RECOGNITION…………………………. 

 
3 

2.1 Introduction………………………………………….. 3 
2.2 HMM based Speech Recognition…………………… 4 
2.2.1 Linguistic units……………………………………….. 5 
2.3 HMM-GMM system…………………………………. 6 
2.4 Subspace gaussian Mixture Modelling……………..... 7 
2.4.1 Training procedure…………………………………..... 8 
 
3 

 
SUBSPACE GAUSSIAN MIXTURE MODELS….. 

 
9 

3.1 Basic model…………………………………………… 9 
3.2 Subspace mixture model with substates……………... 11 
3.3 Subspace Model Training…………………………….. 11 
3.4 UBM Initialization……………………………………. 12 
3.5 First pass of training: accumulation………………….. 12 
3.5.1 First pass of training: update…………………………. 13 
3.5.2 Weight-projection vector update……………………… 14 
3.5.3 Mean-projection matrix update……………………… 15 
3.5.4 Vector Updates………………………………………... 15 
3.6 Later iterations of training: accumulation……………. 16 
3.6.1 Discretized posteriors…………………………………. 16 
3.6.2 Statistics……………………………………………….. 17 
3.7 Later iterations of training: update…………………… 17 
3.7.1 Weight-projection vector update……………………… 18 
3.7.2 Mean-projection matrix update………………………. 18 
3.7.3 Vector Update…………………………………………. 18 
3.7.4 Variance Update………………………………………. 18 
3.7.5 Substate Weight……………………………………….. 19 
3.7.6 Mixing Up…………………………………………….. 19 
3.7.7 Updating the UBM……………………………………. 

 
20 

 
4 

 
EXPERIMENTS AND RESULTS………………….. 

 
21 

4.4.1 Experimental Setup…………………………………… 21 
4.2 Parameters……………………………………………. 22 

4.3 Experiments and Discussion…………………………. 22 



vi 
 

4.3.1 Baseline System………………………………………. 23 
4.3.2 Increasing the number of tied states…………………. 23 
4.4 Tables…………………………………………………. 23 
4.4.1 Tamil………………………………………………….. 23 
4.4.2 SGMM Results for Varying parameters in Tamil 

database………………………………………………. 
26 

4.4.3 Hindi…………………………………………………… 27 
4.5 Observations…………………………………………… 29 
5 CONCLUSIONS 30 
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
 
 

 

 

 

 

 

 

 



vii 
 

LIST OF TABLES 

 

5.1 Tamil 1hr Baseline Results………………………….. 24 

5.2 Tamil 3hr Baseline result……………………………. 24 

5.3 Tamil 5hr Baseline result……………………………. 25 

5.4 Tamil 22hr Baseline result…………………………... 25 

5.5 TAMIL 1hr, 3hr, 5hr, 22hr SGMM Results………… 26 

5.6 Hindi 1hr, 3hr, 5hr, 22hr Baseline Results………….. 27 

5.7 Hindi 1hr, 3hr, 5hr, 22hr  SGMM Results………….. 27 

5.8 TIMIT Baseline and SGMM results............................ 28 

 

 

 



viii 
 

ABBREVIATIONS 

ASR  Automatic Speech Recognition 

CAT  Cluster Adaptive Training 

CDHMM Continuous Density Hidden Markov Model 

CMVN Cepstral Mean and Variance Normalization 

EM Expectation Maximization 

GMM Gaussian Mixture Model 

HMM Hidden Markov Model 

MFCC Mel-frequency Cepstral Coefficients 

MLLR Maximum Likelihood Linear Regression 

p.d.f. Probability Density Function 

TIMIT Texas Instruments MIT 

SGMM Subspace Gaussian Mixture Model 

WER Word Error Rate 

UBM Universal Background Model 

LDA Linear Discriminant Analysis 

MLLT Maximum Likelihood Linear Transform 



1 
 

Chapter 1 

INTRODUCTION 

 

Automatic Speech Recognition (ASR) is a prominent field that aims at conversion of 

spontaneous speech into machine understandable text. It is a difficult problem because 

of the different kinds of variability in speech due to changes in speaker and 

environment. Statistical parametric models like HMM are generally used to model the 

production of speech sounds. The performance of the speech recognition systems 

entirely depends on the how good the modeling is and how well the parameters of the 

model can be estimated using the available training data. There is a lot of focus on 

using compact modeling techniques that can be easily trained with limited resources. 

This is of particular interest in the context of Indian languages, many of which have 

considerably less data resources than English and other European languages. 

In conventional CDHMM systems that are typically used in speech 

recognition applications, the p.d.f. of each HMM state is a Gaussian Mixture Model 

(GMM). A lot of parameters(means, variances and weights) are required to define 

these GMMs, thus demanding a large amount of training data. A relatively new 

acoustic modeling technique, known as SGMM, was introduced in Povey (2009), 

which takes advantage of the high correlation between the state’s distributions to 

generate the GMM parameters indirectly using only a small number of state specific 

parameters. The state GMM parameters are constrained to lie in a low dimensional 

subspace of the total parameter space. The parameters that are used to define this 

subspace are shared among all the states and thus can be estimated robustly using 
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limited amount of data and even out-of-domain data. This has been verified through 

several multilingual experiments(Burget et al. (2010), Mohan et al. (2012)). 

 
We introduce a very different UBM based approach that has fewer parameters, 

and it is shown that it can be discriminatively trained and still provide a performance 

improvement under ML training similar to our previous UBM based approach. We 

are introducing here a subspace approach, in which a vector of low dimension (e.g.50) 

controls all the mean and weight parameters of the speech-state specific mixture 

model. We also generalize to have a mixture of substates in each state, i.e. each state’s 

distribution is controlled by a number of these 50-dimensional vectors each with its 

own mixture weight. 
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Chapter 2 

SPEECH RECOGNITION  

 

2.1 Introduction 

Information in the real world is communicated in the form of signals. Most of these 

signals (like speech signals) are generated continuously in time and are analog in 

nature (can take continuous values). But in all practical applications, we can extract 

only a finite number of samples of the signal and they need to be quantized to take 

only a finite number of values. The statistics of signals such as speech vary over time 

and hence are non-stationary. But they can be assumed to be stationary over a short 

observation window (25ms) and fall into a category of pseudo-stationary signals. This 

allows us to model the signals with efficient parametric models. 
The models used to characterize signals can be broadly classified into 

deterministic and statistical models. Signals like speech can be modelled as the 

outcome of a random process and the parameters of this process can be estimated 

accurately. For temporal pattern recognition applications like speech recognition, 

stochastic models known as Hidden Markov Models (HMM) are widely used. It is 

called “hidden” because the underlying states are not observed; but only the output of 

the states is observed. The output is conventionally modelled to be generated from a 

Gaussian Mixture Model (GMM). This is referred to as the HMM-GMM system. 

Section 2.2 gives a brief introduction to the speech recognition problem and 

the HMM based speech recognition system. Section (2.3) describes the conventional 

HMM-GMM system. The subsequent section reviews more complex approaches to 

modelling and adapting the GMM-based systems. Section 2.4 describes the Subspace 

Gaussian Mixture Model (SGMM)based system 
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2.2 HMM-based Speech Recognition 

The pseudo-stationary property of speech signals allows the speech signal to be 

divided into25ms observation windows. The statistical properties of the signal can be 

assumed to be constant over this window. The data in this window is converted into 

discrete parameter vectors. This process of conversion of continuous speech signal 

into a sequence of discrete vectors is known as Feature Extraction. These vectors are 

also known as feature vectors or observation vectors. One of the most widely used 

features is the Mel Frequency Cepstral Coefficients(MFCC). The objective of the 

speech recognition system is to convert this sequence of observations into a sequence 

of symbols (or words) that can be “understood” by a machine. The observation 

sequence can be modeled as to be generated by a sequence of states as defined by a 

HMM. A typical acoustic modeling uses a 3-state left-to-right HMM topology to 

model the features generated by a single phonetic unit. A first order Hidden Markov 

process is assumed meaning that the transition into a particular state depends only on 

the previous state and that the observation depends only on the current state. The 

following characterizes the HMM: 

• N, the number of states in the model. The set of states in the model is defined 

by S ={𝑆1,𝑆2, . . , 𝑆𝑁} .The state at the observation window or frame t is 

denoted as 𝑞𝑡. For the model of a basic phonetic unit such as a phoneme, we 

typically use N = 3. 

• A, the state transition probability distribution. A = {𝑎𝑖𝑗} where  

𝑎𝑖𝑗 = 𝑃�𝑞𝑡 = 𝑆𝑗�𝑞𝑡−1 = 𝑆𝑖�1 ≤ 𝑖, 𝑗 ≤ 𝑁. 

For speech systems, we use a left-to-right topology, which implies that aij = 0 

for j < i. 
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• 𝜋, the initial state distribution. 𝜋 = {𝜋𝑖} where 

𝜋𝑖 = 𝑃[𝑞0 = 𝑆𝑖], 1 ≤ 𝑖 ≤ 𝑁. 

The model of a basic phonetic unit such as phoneme has 𝜋𝑖 = 0 for 𝑖 ≠ 1 

• The observation probability distribution in state j. In the case of a discrete 

HMM with output vectors 𝑣1,𝑣2, … , 𝑣𝑘 the probability of observing 𝑣𝑘in the 

state j is given by 

𝑏𝑗(𝑘) = 𝑃�𝑣𝑘 𝑎𝑡 𝑡�𝑞𝑡 = 𝑆𝑗�, 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀. 

The observation vector, x(t), can assume to be generated from a continuous 

distribution. The probability density function (p.d.f) can be modelled as a 

mixture of Gaussians or a GMM: 

 

𝑏𝑗(𝑥(𝑡)) = 𝑃�𝑥(𝑡)�𝑞𝑡 = 𝑆𝑗, 𝜇𝑗𝑖, Σ𝑗𝑖� = �𝑤𝑗𝑖𝑁(𝑥(𝑡); 𝜇𝑗𝑖 , Σ𝑗𝑖)
𝐼

𝑖=1

, 1 ≤ 𝑗 ≤ 𝑁. 

where I is the number of Gaussians in the GMM; 𝜇𝑗𝑖, Σ𝑗𝑖are the means and the 

covariance matrix of the Gaussian component i of state j; and 𝑤𝑗𝑖 is the 

Gaussian prior or the Gaussian weight with the constraint ∑ 𝑤𝑗𝑖𝐼
𝑖=1 = 1. 

The parameters of the HMM can be put together as a parameter set 𝜆. 

 

2.2.1 Linguistic units 

The basic linguistic unit that we model is the phoneme (also referred to as 

monophones or just phones). There are around 40 phones in English language. Using 

only these gives a very simplistic model. For large vocabulary recognition, we need to 

look at the left and the right context of the phone; i.e. we need to model the co-

articulation in vocal tract by considering the phones uttered before and after the phone 
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in consideration. Such a model is called a triphone model. There are as many as 

403triphones possible, but many of them are not used or are not observed in the 

training data. The GMMs used to model the triphones have many parameters to be 

estimated. We require a large amount of data to get a good estimate of the parameters. 

So, we “tie” similar triphones using a decision-tree based top-down clustering 

approach. The decision tree based clustering has been described in detail in Young et 

al. (1994). At the end of such a clustering process, we get a few thousand triphone 

models 

. 

2.3 HMM-GMM system 

HMM-GMM system, also known as CDHMM system, is the conventionally used 

system for speech recognition. It models each context-dependent phone (usually the 

triphone) with a generative model based on a left-to-right three state HMM topology. 

The total number of context-dependent phonetic states after tree-based clustering is of 

the order of a few thousands. Each state is denoted by the index j with , 1 ≤ 𝑗 ≤ 𝐽.. 

The observation vector is assumed to be generated within each HMM state j from a 

GMM: 

𝑃(𝑥|𝑗) = �𝑤𝑗𝑖𝑁(𝑥; 𝜇𝑗𝑖, Σ𝑗𝑖)

𝑀𝑗

𝑖=1

, 

where x is the observation vector, 𝑤𝑗𝑖,𝜇𝑗𝑖 , Σ𝑗𝑖 are the prior, mean and covariance 

matrixof the 𝑖𝑡ℎ Gaussian component and 𝑀𝑗 is the number of Gaussians in the 𝑗𝑡ℎ 

state. 
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2.4 Subspace Gaussian Mixture Model (SGMM) 

SGMM is similar to the GMM-based system, but the model parameters for each state 

are specified by a single state vector 𝑣𝑗 . Thus 𝜇𝑖lies in a state- independent subspace 

defined by the columns of 𝑀𝑖. The covariance is shared across all states, so that we 

have a state-independent Σ𝑖. The basic model can be expressed as: 

𝑃(𝑥|𝑗) = �𝑤𝑗𝑖𝑁(𝑥; 𝜇𝑗𝑖, Σ𝑗𝑖)
𝐼

𝑖=1

, 

𝑤𝑗𝑖 =
exp (𝑤𝑖

𝑇𝑣𝑗)
∑ exp (𝑤𝑖′𝑇𝑣𝑗)𝐼
𝑖′=1

 

𝜇𝑗𝑖 = 𝑀𝑖𝑣𝑗 

where 𝑣𝑗𝜖ℝ𝑠is the state projection vector, x is the feature vector, 𝑀𝑖and 𝑤𝑖define 

thesubspaces in which the means and the unnormalized log weights respectively lie 

and Σ𝑖is the shared covariance. j is the index of the context-dependent state (1 ≤ 𝑗 ≤

𝐽.) with J in the order of a few thousands. i is the Gaussian index in the GMM of I 

mixtures (usually 200 < I < 2000). 𝑣𝑗is the only state specific parameter. 𝑀𝑖,𝑤𝑖, Σ𝑖are 

“shared” parameters.The basic strategy of the SGMM is to reduce the number of state 

specific parameters andincrease the number of shared (global) parameters. The 

intuition is that the means of the tied state models span a smaller subspace of the 

entire acoustic space. This allows us to reduce the number of state specific 

parameters. Also, since the global parameters do not depend on a specific phone, there 

is a lot of data available to train the parameters. It is possible to train these parameters 

using out-of-domain data even from other languages as shown in Povey et al.(2011a). 
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2.4.1 Training procedure 

The training of the SGMM system begins with the traditional HMM-GMM system. 

First, a large GMM consisting of all the gaussians in the HMM-GMM system is built. 

This is typically in the order of tens of thousands. The gaussians are repeatedly 

merged to get a desired number of gaussians with diagonal covariances. The actual 

procedure of doing this can be found in Povey et al. (2011a). These gaussians are 

trained with around 8 iterations of EM algorithm for full covariance re-estimation. 

The resulting model is called a Universal Background Model(UBM). The UBM can 

be viewed as a compact model representing all kinds of speech from all speakers. The 

UBM need not necessarily be built from a specific HMM-GMM system; any generic 

UBM can be used. This UBM is used to initialize the SGMM model. This is done in 

such a way that the initial p.d.f. of all states is equal to the UBM. The HMM-GMM 

system provides the Viterbi alignments for the initial SGMM parameter re-estimation 

iterations. Once the SGMM parameters are estimated by EM algorithm to a sufficient 

extent, the SGMM training can be continued with self-alignment (alignments from the 

SGMM itself). 
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Chapter 3 
 

SUBSPACE GAUSSIAN MIXTURE MODELS 

 

This model is a large shared GMM whose parameters vary in a subspace of relatively 

low dimension (e.g. 50), thus each state is described by a vector of low dimension 

which controls the GMM’s means and mixture weights in a manner determined by 

globally shared parameters. In addition we generalize to having each speech state be a 

mixture of substates, each with a different vector. This technique was introduced by 

Daniel Povey (2009) in his paper “Subspace Gaussian Mixture Models for Speech 

Recognition”. 

What we are introducing here is a subspace approach, in which a vector of low 

dimension (e.g.50) controls all the mean and weight parameters of the speech-state 

specific mixture model. We also generalize to have a mixture of substates in each 

state, i.e. each state’s distribution is controlled by a number of these 50-dimensional 

vectors each with its own mixture weight. 

 

3.1 Basic model 

In this section we describe the Subspace Mixture Model. First we describe the basic 

model without substates. We use the index 1 ≤ 𝑖 ≤ 𝐼 to represent the Gaussians in the 

UBM (e.g. I = 750 Gaussians), and the index , 1 ≤ 𝑗 ≤ 𝐽to represent the clustered 

phoneticstates (e.g. J = 8000 for a typical large vocabulary system). Let the feature 

dimension be , 1 ≤ 𝑑 ≤ 𝐷, e.g. D = 40, and let the subspace dimension be , 1 ≤ 𝑠 ≤

𝑆, e.g. S = 50. The subspace dimension can take any value; it represents the number 

of different directions in which we allow the phonetic states to differ from each other. 
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For each state j, the probability model 𝑃(𝑥|𝑗)is: 

𝑃(𝑥|𝑗) = �𝑤𝑗𝑖𝑁(𝑥; 𝜇𝑗𝑖, Σ𝑗𝑖)
𝐼

𝑖=1

, 

𝑤𝑗𝑖 =
exp (𝑤𝑖

𝑇𝑣𝑗)
∑ exp (𝑤𝑖′𝑇𝑣𝑗)𝐼
𝑖′=1

 

𝜇𝑗𝑖 = 𝑀𝑖𝑣𝑗 

Thus, each state has a shared number of mixtures (e.g., I = 750).The means 

vary linearly with the state-specific vector 𝑣𝑗  (we denoteby 𝑣𝑗  the same vector, 

extended with a 1, to handle constant offsets).The log weights prior to normalization 

also vary linearly with 𝑣𝑗  .The parameters of the system are the mean-projection 

matrices𝑀𝑖the weight-projection vectors 𝑤𝑖, the variances Σ𝑖, and the statespecific 

vectors 𝑣𝑗  . To give the reader a feel for the number of parameters involved, for the 

values of I, J,D and S mentioned above the total number of parameters would be, in 

reverse order of size: mean-projections,IDS =  750 × 40 × (50 + 1)  =  1.53 ×

106;variances,12𝐼𝐷(𝐷 + 1) = 750×40×41
2

= 0.615 × 106; state-specific vectors,JD =

 0.4 × 106, weight-projections, IS = 750×(50+1) =38.25×103. Thus the total 

number of parameters is 2.58×106, andmost of the parameters are shared, not state-

specific. For reference, atypical mixture-of-Gaussians system might have 100000 

Gaussiansin total, each with a 40-dimensional mean and variance, which givesus 8 × 

106parameters total, more than twice this subspace GMM system. Note that the 

quantity of state-specific parameters in the subspace GMM system is less than one 

tenth of that in the normal GMM system. For this reason, we extend the model to 

include mixtures of substates. 
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3.2 Subspace mixture model with substates 

The subspace mixture model with substates is the same as in Equations 1 to 3 except 

each state is now like a mixture of states; each state j has substates 1 ≤ 𝑚 ≤ 𝑀𝑗with 

associated vectors 𝑣𝑗𝑚and mixture weights 𝑐𝑗𝑚with∑ 𝑐𝑗𝑚 = 1𝑀𝑗
𝑚=1  we can write out 

themodel as: 

𝑃(𝑥|𝑗) = � 𝑐𝑗𝑚

𝑀𝑗

𝑚=1

�𝑤𝑗𝑚𝑖𝑁(𝑥; 𝜇𝑗𝑚𝑖, Σ𝑖)
𝐼

𝑖=1

 

𝜇𝑗𝑚𝑖 = 𝑀𝑖𝑣𝑗𝑚 

𝑤𝑗𝑚𝑖 =
exp (𝑤𝑖

𝑇𝑣𝑗𝑚)
∑ exp (𝑤𝑖′

𝑇𝑣𝑗𝑚)𝐼
𝑖′=1

 

 

It is useful to think about the substates as corresponding to Gaussians in a mixture of 

Gaussians, and in fact as we describe later, we use a similar mixing up procedure to 

increase the number of states. This model is in effect a mixture of mixtures of 

Gaussians, with the total number of Gaussians in each state being equal to I  

𝐽𝑚. Clearly this large size could lead to efficiency problems. In fact, computing each 

mean would involve a matrix multiply taking time O(SD), and since the variances  

Σ𝑖are not diagonal the actual likelihood computation would be O( 

𝐷2). In the next section we show that despite this, likelihoods given this model can be 

computed in a time similar to a normal diagonal mixture of Gaussians. 

 

3.3 SUBSPACEMODEL TRAINING 

The subspace model training proceeds as follows. Firstly we initialize the UBM, 

which is a mixture of full-covariance Gaussians that models all speech data regardless 

of speech state or speaker. Next, we do a first pass of accumulation and update, using 
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a previous system to align speech states to frames. In this first pass of accumulation 

and update, we are essentially estimating the basic subspace mixture model without 

substates or speaker vectors. In later passes over the data, we accumulate different 

kinds of statistics and the update equations have a different form. 

 

3.4 UBM initialization 

The method we use for initialization of the UBM parameters 𝜇𝚤�  andΣ𝚤� i may not be 

optimal as we have not experimented with this. Wetake an already-trained 

conventional diagonal Gaussian system andcluster the Gaussians into I clusters (e.g. 

750). This is done byconsidering all the Gaussians as one large mixture model (using 

as weights the weights within each state, divided by the total number of states), and 

then computing the mixture of I Gaussians that maximizes the auxiliary function 

likelihood. The algorithm we use to compute this is like a form of k-means except 

with pruning to avoid excessive compute (this involves a notion of neighbouring 

clusters), starting from a random assignment to clusters. The variances are thus 

initialized to diagonal. From that point we do 3 iterations of EM over a subset (e.g. 

1/10) of the training data, updating the means and (full) variances but leaving the 

mixture weights uniform to encourage even distribution of data. 

 

3.5 First pass of training: accumulation 

The first pass of training involves getting mean statistics for each state j and UBM 

index i, and using this to initialize the parameters with a single vector per state. By 

storing statistics in a different form for the first iteration of update than for later 

iterations, we can avoid making unnecessary passes over the data. However, to store 

the mean statistics requires a lot of memory and storage: e.g. for our example system 
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using floats, it would take 4IJD =4 × 750 × 8000 × 40 bytes of memory, or 0.96 GB. 

To reduce this, we avoid storing statistics with very small counts, as we describe 

below. Our state posteriors 𝛾𝑗(𝑡) are zero-one posteriors based onViterbi alignments 

obtained using a baseline (mixture-of-Gaussians) system. On each frame we also 

compute UBM Gaussian posteriors 𝛾𝑖(𝑡) (with pruning to the top 5 as described 

above). We thencompute initial posteriors: 

𝛾𝑗𝑖(𝑡) = 𝛾𝑗(𝑡)𝛾𝑖(𝑡) 

The statistics we accumulate are count statistics (sums of the posteriors)and 

state-specific mean statistics, and also a scatter for each UBM Gaussian index which 

we will use to compute within-class covariances Σ𝑖. There is a slight complication in 

that we want to avoid accumulating mean statistics where the count is very small. 

Therefore we define the “pruned” count 𝛾𝚥𝚤�(𝑡) to be zero if the sum of𝛾𝑗𝑖(𝑡) up to the 

current point in the current parallel job is less than a threshold 𝜏 (we have used 𝜏 

values from 0.1 to 2 depending onsystem size). The statistics we accumulate are 

named 𝑚𝚥𝚤�  for thefirst order statistics and 𝑆𝚤�  for the scatter to emphasize that they are 

accumulated using the pruned counts. So we have: 

𝛾𝑗𝑖 = �𝛾𝑗𝑖(𝑡)
𝑇

𝑡=1

 

𝛾𝚥𝚤� = �𝛾𝚥𝚤�(𝑡)
𝑇

𝑡=1

 

𝑚𝚥𝚤� = �𝛾𝚥𝚤�(𝑡)𝑥(𝑡)
𝑇

𝑡=1

 

𝑆𝚤� = ��𝛾𝚥𝚤�(𝑡)𝑥(𝑡)𝑥(𝑡)𝑇
𝐽

𝑗=1

𝑇

𝑡=1
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3.5.1 First pass of training: update 

The first pass of update is an iterative one in which we first initialize the vectors to 

random values (e.g. Gaussian noise), initialize the projections to zero and the 

variances to the UBM variances, then iteratively optimize in turn each of the four 

types of parameters: the weight-projection vectors 𝑤𝑖,the mean-projection 

matrices 𝑀𝑖, the variances Σ𝑖and the state-specific vectors 𝑣𝑗  (at this point we have 

no substates). This is done for about ten iterations. 

 

3.5.2 Weight-projection vector update 

The update of the weight-projection vectors 𝑤𝑖is based on maximizingthe auxiliary 

function: 

𝑄(… ) = ��𝛾𝑗𝑖𝑙𝑜𝑔𝑤𝑗𝑖
𝑗𝑖

= �𝛾𝑗𝑖(𝑤𝑖
𝑇𝑣𝑗 − 𝑙𝑜𝑔� 𝑒𝑥𝑝𝑤𝑖′

𝑇𝑣𝑗

𝐼

𝚤′=1́

)
𝑖,𝑗

 

We can use the inequality1 − �𝑥
�̅�
� ≤ −𝑙𝑜𝑔 �𝑥

�̅�
� (which is anequality at𝑥 = �̅�), to  

maximize, where 𝑤𝚤��� is the pre-update value of  𝑤𝑖. 

To maximize the above we use a second order approximation to the 

exponential function, but then in certain cases we take a heuristic over estimate of the 

negated second gradient, for safety; this leads to the max(·) function below (without 

this heuristic we would just have its first term). The update procedure is as follows. 

First we compute all the un-normalized log weights, let us call them 𝑥𝑗𝑖=𝑤𝑖
𝑇𝑣𝑗 , and 

the normalizers 𝑥𝑗 = 𝑙𝑜𝑔∑ 𝑒𝑥𝑝𝑥𝑗𝑖𝑖  these are used tocompute the weights 𝑤𝑗𝑖 =

exp�𝑥𝑗𝑖 − 𝑥𝑗� during the computation. We also compute the total counts per state𝛾𝑗𝑖 =

∑ 𝛾𝑗𝑖𝐼
𝑖=1 . Then for each UBM Gaussian index i we compute the first order term 𝑔𝑖 

andnegated second order term Hi in a quadratic approximation to theauxiliary 
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function in𝑤𝑖 − 𝑤𝚤���, i.e. around the current point. After updating each𝑤𝑖, we update 

the affected 𝑥𝑗𝑖 and the 𝑥𝑗 beforeupdating the next i so we can continue with up to 

date values of𝑤𝑗𝑖. The value of the auxiliary function should be checked as wecannot 

prove that this procedure will converge, although we havenever observed it not 

converging. 

 

3.5.3 Mean-projection matrix update 

The update for the mean-projection matrices 𝑀𝑖 (which have sizeD × S + 1) is as 

follows. For a particular i, we first make a coordinatechange so that the variance 

Σ𝑖is unit. We use the transform = Σ𝑖−0.5 , and project to get 𝑀𝑖
′ = 𝑇𝑀𝑖  in the new 

co-ordinates. Then the computation is as follows: for each of its D rows 𝑚′𝑖𝑑 wewill 

compute a linear term 𝑔𝑖𝑑 of the auxiliary function as a functionof the change in that 

row, and a negated quadratic term 𝐻𝑖 which isshared for all d. 

𝑔𝑖𝑑 = ��𝑇𝑖𝑚𝚥𝚤� − 𝛾𝚥𝚤�𝑀′
𝑖𝑣𝑗�𝑑𝑣𝑗

𝑗

𝐻𝑖 = �𝛾𝚥𝚤�𝑣𝑗𝑇𝑣𝑗
𝑗

𝑚′𝑖𝑑 = 𝑚′𝑖𝑑 + H𝑖
−1𝑔𝑑 

 

3.5.4 Vector updates 

The update for the state-specific vectors 𝑣𝑗  involves incorporatinga quadratic auxiliary 

function for the means, and our previouslydescribed quadratic approximation to the 

auxiliary function for theweights. Again we accumulate a linear term 𝑔𝑗 and a 

negatedquadratic term 𝐻𝑗 which describe how the auxiliary function varies with a 

change in 𝑣𝑗  . In the expressions below, the top line in eachexpression refers to the 

weights and the bottom line to the means. 

We use the notation 𝑥−to mean the vector x without its last element;for 

matrices the notation 𝑀− means removing the last rowand column. 
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𝑔𝑗 = �(𝛾𝑗𝑖 − 𝛾𝑗𝑤𝑗𝑖)𝑤𝑖
−

𝐼

𝑖=1

+ �(𝑀𝑖
𝑇Σ𝑖−1

𝐼

𝑖=1

(𝑚�𝑗𝑖 − 𝛾𝚥𝚤�𝑀𝑖𝑣𝑗))−𝑣𝑗 = 𝑣𝑗 + H𝑗−1𝑔𝑗 

The matrices only dependent on i in the last equation should be precomputed. 

 

3.6  Later iterations of training: accumulation 

The method of accumulation differs in later iterations of training, versus the first 

iteration. We store statistics in a more memory efficient way, without pruning. This 

enables a more exact optimization, and also allows us to have more mixtures without 

increasing the size of the statistics too much. The size of the statistics are dominated 

by the need to store data counts for each i, j and m. For these later iterations we 

assume that we already have a “substate” model; we initialize this by having a single 

substate per state as estimated above, and using unit weight. The state posteriors are, 

as before, zero-one posteriors based on Viterbi alignment using a previous system. 

 

3.6.1 Discretized posteriors 

The within-state posteriors 𝛾𝑗𝑚𝑖(𝑡) are computed by evaluating thelikelihoods. 

However, we also randomlydiscretize the posteriors into steps of typically = 0.05 . 

This reducescompute time by getting rid of most very small posteriors, and also 

allows us to compress the posteriors in memory and on disk in a variable length 

coding scheme in which counts 𝛾𝑗𝑚𝑖 typically takeonly one byte to store. The 

discretized posteriors 𝛾𝚥𝑚𝚤� (𝑡) consist ofthe part of 𝛾𝑗𝑚𝑖(𝑡) that can be expressed in 

whole increments of 𝛿,plus with probability equal to the remaining part divided by 𝛿, 

oneextra increment of 𝛿. The random element of the discretization processis 

necessary to preserve expectations. All statistics are storedusing the discretized 

posteriors. 
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3.6.2 Statistics 

The weight statistics are straightforward: 

𝛾𝑗𝑖 = �𝛾𝚥𝚤�(𝑡)
𝑇

𝑡=1

 

 

The statistics we store in order to update the vectors 𝑣𝑗𝑚 are the firstorder term in the 

quadratic auxiliary function written in terms of the𝑣𝑗𝑚 directly (i.e. not in terms of 

offsets from the current value).Again,𝑥−  is x without its last dimension. So we have: 

𝑥𝑗𝑚 = ��𝛾𝚥𝚤�(𝑡)�𝑀𝑖
𝑇Σ𝑖−1𝑥(𝑡)�

𝐼

𝑖=1

𝑇

𝑡=1

 

 

3.7 Later iterations of training: update 

The update for later iterations of training is somewhat harder to justify than the update 

for the first iteration. The reason is that there are updates which we do at the same 

time (for the variance, the vectors and the mean projections) which cannot easily be 

proved to converge unless they are done on separate iterations. However, we are 

confident that these parameter types are sufficiently orthogonal that this is not a 

problem, and in practice we find that our approach converges. Note that when any the 

updates below refer to other types of parameters (e.g. if the update for 𝑀𝑖refers to 

𝑣𝑗𝑚), this means thepre-update versions of those parameters. This is important 

becausethe stored statistics are a function of the other parameters, and using the newly 

updated versions can lead to inconsistency. 
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3.7.1 Weight-projection vector update 

The update for the weight projection vectors is the same as that described in Section 

3.5.2, except that we have to replace any sums over j with sums over both j and m. 

We do the update for up to4 iterations given the stored statistics, or until the auxiliary 

function improvement per frame is small (e.g. less than 0.0001). 

 

3.7.2 Mean-projection matrix update 

The update for the mean-projection matrix is similar to that given in Section 3.5.3 

except we formulate the quadratic auxiliary function in terms of the transformed 

matrix row 𝑚′𝑖𝑑 rather than the offset from its current value. Again we use the data 

transform 𝑇𝑖 = Σ𝑖−0.5to make the variances unit, so 𝑀′𝑖 = 𝑇𝑖𝑀𝑖 

 

3.7.3 Vector update 

In the vector update as follows, we split the second gradient 𝐻𝑗 intotwo parts that 

relate to the weights and the means respectively, anduse the second one 𝐻𝑗 in our 

computation of the gradient to convertfrom a formulation in terms of the vector 𝑣𝑗𝑚, 

to the change inthe vector. We make use of the summed counts 

𝛾𝑗𝑚 = �𝛾𝑗𝑚𝑖

𝐼

𝑖=1

 

3.7.4 Variance update 

The variance update is trivial: 

Σ𝚤� =
𝑆𝑖

∑ 𝛾𝑗𝑚𝑖𝑗,𝑚
 

The auxiliary function improvement can be computed as described in Section 3.5.4. 
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3.7.5 Substate weight 

We now have a new parameter to estimate: the weight of substates. This is given by: 

𝑐𝑗𝑚 =
∑ 𝛾𝑗𝑚𝑖𝑖

∑ 𝛾𝑗𝑚𝑖𝑗,𝑚
 

3.7.6  Mixing up 

Here we describe how we increase the number of substates. The initial model has one 

substate per state. We have a target total number of mixtures per state, e.g. M = 

50,000 and we allocate mixture components to states based on a power rule with a 

default exponent of 0.2. Thus, if a state has total count 𝛾𝑗 ∑ 𝛾𝑗𝑚𝑖𝑚,𝑖 , thetarget number 

of mixture components 𝑇𝑗 is the closest integer to M 
𝛾𝑗0.2

∑ 𝛾𝑗0.2𝑗
. We do mixing up on a 

subset of iterations (currently{2,4,6,8,10,12}). On each iteration and for each state j, 

the number of mixture components to split shall be the difference between the target 

𝑇𝑗 and the current number of mixture components 𝑀𝑗 ; butno more than the current 𝑀𝑗 

. If it is less than that, we split thosewith the largest counts. In addition, we enforce a 

minimum count for mixtures to be split, which is 200 by default. For each substate 

vector 𝑣𝑗𝑚 that is selected to be split, we compute the negated second gradient 𝐻𝑗𝑚 as 

used in section 3.7.3, and then compute the scale S =�𝐻𝑗𝑚
𝛾𝑗𝑚

�
−0.5

, which provides a scale 

to the vector (think of S like a standard deviation). We then compute a random vector  

whose elements are drawn from zero-mean Gaussian distribution with variance 0.1, 

and our perturbed vectors shall be 𝑣𝑗𝑚± Sr. Weassign half of the old mixture weight 

to each of the two new mixture components. Mixing up is done after all other phases 

of update are complete (i.e., starting from the already updated vectors). 
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3.7.7 Updating the UBM 

The UBM parameters 𝜇𝚤�  and Σ𝚤�  which are used for pruning arealso updated in our 

training setup. This is done by accumulating zeroth, first and second order statistics 

for each i and doing the normal Gaussian update. The posteriors used are the sum over 

substate j,m of the posteriors 𝛾𝑗𝑚𝑖(𝑡). Because of the discrete nature of thepruning 

operation it is not easy to say very much theoretically abouthow these parameters 

should be trained, in fact it might seem safer to leave them fixed. Experiments have 

failed to show any difference between training and not training these parameters. 
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Chapter 4 

EXPERIMENTS AND RESULTS 

 

4.4.1 Experimental Setup 

The performance of the SGMM model is tested on Hindi and Tamil languages of 

Mandi database along with TIMIT database.  

Mandi database is used in  Automatic Speech Recognition-based application 

to help farmers stay updated with the latest commodity price .It is an interactive 

speech recognition engine that has been developed by a consortium of seven 

institutions (IIT-M, IIT-K, IIT-B, IIT-G, IIIT-Hyd, TIFR & CDAC-Kol) and is 

coordinated by IIT-Madras. 

The Hindi database consists of  1hr, 3hr, 5hr, and 22hrs of training data  along 

with 5974 utterances of test data. Similarly, TAMIL database also has 1hr, 3hr, 5hr 

and 22hrs of training data for training along with 3564 utterances for testing. TIMIT 

has a total of 3,396  utterances for training and 192 utterances for testing. 13-

dimensional MFCC were used as features for parameterizing the speech waveforms. 

The delta and acceleration of these features were augmented to get 39-dimensional 

features. Cepstral Mean and Variance Normalization (CMVN) were done to increase 

the noise-robustness of features. The Kaldi toolkit (Povey et al. (2011b)) was used for 

training and testing the acoustic models. Standard C++ programs in the Kaldi toolkit 

were used to build the baseline HMM-GMM system and also LDA+MLLT to 

initialize the SGMM acoustic models. The SGMM system is implemented using the 
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standard programs in the toolkit. Various libraries in the toolkit were used for the 

standard computations in the algorithms 

4.2 Parameters 

The LDA+MLLT system used for TIMIT task has a total of 1040 tied states and 

22047 Gaussians. The dictionary had a set of 38 phones. The silence was modelled as 

a context independent phone with a 8 state HMM, while all other phones were 

context-dependent with 3 state HMMs. This was used to initialize the SGMM model. 

Since the feature vector used was of 39 dimension, full-MLLR matrices of dimension 

39 x 40 was used for the cluster transforms. The UBM was initialized by a 

bottomupclustering approach by merging the Gaussians from the LDA+MLLT system 

till I mixtures were obtained. I was varied from in a range to obtain best result. 

The baseline LDA+MLLT  system used for Tamil and Hindi task had different 

number of  tied states and Gaussians for different hours of data which is mentioned in 

the next table. Dictionary with 39 phones was used for TAMIL and 41 phones for 

Hindi. The modeling of the phones was similar to that in TIMIT task. 

4.3 Experiments and Discussion 

Tables 5.5 and 5.7 show the results of experiments evaluating SGMM models on the, 

Tamil and Hindi tasks respectively. The details of the experiments, along with the 

motivation and the conclusions are described in the subsequent sections. 
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4.3.1 Baseline System 

At first basic CDHMM system is built and then LDA+MLLT is done on top of it 

which is used to initialize SGMM . All the other experiments are compared with this 

baseline system in terms of Word Error Rate (WER). 

4.3.2 Increasing the number of tied states 

The number of tied states is increased by choosing the tied states by going further 

down the context-dependency decision tree.  And there are serious limitations to 

increasing the number of tied states, as we may not have enough data to estimate 

some tied state parameters. There is not much improvement possible on this front, but 

optimizing the number of tied states gave a better model for initializing the system. 

4.4 Tables: 

4.4.1 TAMIL: 

Baseline system for various tied States for Tamil 

Results for tri1 (CDHMM) and tri2 (LDA+MLLT) are tabulated for varying tied 

states and Gaussians for 1hr, 3hr, 5hr and 22hr of Tamil training data. 

 1hr data 

 (# pdfs, #  
Gaussians) 

CDHMM(%WER) LDA+MLLT(%WER) 

174, 802 43.78 39.86 
174,1202 43.19 40.67 
213,1005 41.51 39.83 
213,1504 42.00 37.93 
249,1202 42.10 41.07 
249,1808 42.13 42.30 
260,1402 42.62 39.29 
260,2107 43.95 39.44 
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260,1606 41.07 38.57 
260,2405 43.26 39.17 
260,1804 43.16 39.24 
260,2710 44.25 41.34 
260,2007 42.69 38.97 
260,3010 44.64 40.03 
260,2207 42.60 39.12 
260,3312 43.53 41.54 
260,2408 42.77 41.86 
260,3612 45.04 42.77 
260,2605 43.46 41.51 
260,3915 43.83 41.21 

Table 5.1 TAMIL 1hr Baseline Results 

 3hr 

(#pdfs,  Gaussians) CDHMM(%WER) LDA+MLLT(%WER) 
179,803 33.46 30.80 
179,1207 32.31 28.65 
220,1004 32.92 28.73 
220,1502 31.17 28.78 
267,1204 32.72 28.48 
267,1803 31.61 27.34 
306,1408 32.21 28.16 
306,2107 32.31 29.47 
338,1603 32.21 27.74 
338,2409 32.58 27.89 
372,1803 32.26 27.71 
372,2705 32.11 29.47 
405,2010 31.74 29.54 
405,3011 32.72 28.48 
443,2206 32.08 28.21 
443,3311 31.71 28.36 
459,2405 32.01 29.91 
459,3610 32.75 30.40 
459,2608 32.21 29.42 
459,3911 33.07 29.89 
459,2807 32.63 29.94 
459,4215 33.19 30.50 
459,3009 32.31 30.38 
459,4512 33.49 30.85 

Table 5.2 TAMIL 3hr Baseline Results 
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5hr 

(#pdfs,  Gaussians) CDHMM(%WER) LDA+MLLT(%WER) 
410,2008 29.81 25.35 
410,3012 28.83 24.16 
442,2208 29.94 26.78 
442,3310 28.92 23.96 
475,2408 29.39 25.69 
475,3608 29.15 23.69 
515,2609 28.21 24.31 
515, 3914 28.11 23.91 
554,2808 28.92 25.30 
554,4214 27.00 24.04 
583,3012 28.60 24.83 
583,4518 27.89 23.45 
624,3210 27.84 23.52 
624,4817 27.49 24.04 
650,3408 28.11 24.58 
650,5112 27.00 23.35 
668,3612 28.01 24.19 
668,5414 25.91 23.17 
668,3813 28.26 23.49 
668,5716 27.22 23.27 
668,4010 27.42 24.16 
668,6020 27.54 24.90 

                                    Table 5.3 TAMIL 5hr Baseline Results 

 

22hr 

(#pdfs,  Gaussians) CDHMM(%WER) LDA+MLLT(%WER) 
887,16145 22.43 19.84 
887,18451 22.01 19.79 
921,16846 21.45 19.45 
921,19248 22.31 19.74 
952,17556 21.50 19.87 
952,20060 21.32 19.69 
993,18246 21.69 19.47 
993,20850 21.96 19.60 
1030,18948 22.14 20.04 
1030,21652 22.16 19.37 
1071,22458 21.92 19.45 
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1114,23262 22.11 19.37 
1139,24052 22.24 20.06 
1172,21767 22.93 19.40 
1172,24861 22.36 20.09 
1203,22465 21.89 19.45 
1203,25662 22.43 19.89 
1245,23154 22.09 20.16 
1245,26481 22.38 19.97 

Table 5.4 TAMIL 22hr Baseline Results 

4.4.2 SGMM Results for Varying parameters for Tamil database 

In order to obtain optimal results we have kept the variable –use-no-substate= false 

and –use-same-tree = false. We can observe that, by varying number of states beyond 

a range the obtained HMM states reaches peak value and performance will be 

unchanged.  

If we copy the tree or do not use varying substates the performance degrades. 

Speaker dimension is kept as 0. We can do SGMM on top of SAT also but in case of 

Indian Mandi database there is no speaker information. So we have done on top of 

tri2.The Dimension of Phone vector space is 41 and dimension of feature vectors is 

40. 

 

Hours of data 

Parameters 
%WER 

UBM # HMM states 

1hr 64 324 34.85 

3hr 128 516 26.28 

5hr 64 778 23.10 

22hr 400 1555 19.10 

Table 5.5 TAMIL 1hr, 3hr, 5hr, 22hr SGMM Results 
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4.4.3 Hindi 

Hindi Baseline Results 

The baseline system used for Initializing SGMM for Hindi database is tabulated 

below showing their %WER and the total formed tied states &gaussians. The System 

is optimized for various tied state value and Gaussians but only the best result is being 

shown in the tables. 

Hours of data # pdfs, #Gaussians CDHMM 
(%WER) 

LDA+MLLT 
(%WER) 

1hr 305,1405 16.18 14.12 
3hr 454,2206 11.59 10.77 
5hr 571,4216 9.06 8.53 
22hr 1061,10834 5.76 5.68 

Table 5.6 Hindi 1hr, 3hr, 5hr, 22hr Baseline Results 

 

Hindi SGMM results 

Here the Dimension of  phone vector space is 41, Dimension of speaker vector space 

is 0 and the feature vectors dimension is 40.To obtain Optimal solution the UBM  

mixtures and HMM states are varied over a wide range and the best results are only 

tabulated. 

 

Hours of data 

Parameters 
%WER 

UBM # HMM states 

1hr 90 338 13.25 

3hr 200 470 10.73 

5hr 256 577 7.87 

22hr 300 1090 5.09 

Table 5.7 Hindi 1hr, 3hr, 5hr, 22hr  SGMM Results 



28 
 

 

 

4.4.4 TIMIT 

Results are shown for Baseline System and SGMM 

Name of Expt UBM Mixtures Tied States 
formed 

% WER 

CDHMM - 1049 28.38 
LDA+MLLT - 1040 25.45 

SGMM 400 
 

2526 20.60 

Table 5.8 TIMIT Baseline and SGMM Results 
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Observations 

• Results have varied when there is a change in the processor (Cluster).In order 

to maintain consistency we have performed all experiments on libra IITM 

cluster. The experiments on this cluster were twice faster and gave optimal 

Results 

• Change in the number of jobs is varying the obtained results. So we 

maintained a constant number(nj) all over 

• Various experiments were performed to optimize SGMM for Hindi and Tamil 

during which it has been observed that the result is optimal if we do not copy 

the same tree as in baseline system and gave it a larger degree of freedom. We 

should even keep varying the total number of substates. So make sure the 

variable  

• Varying of tied states was done to optimize the solution during which it was 

observed that beyond a certain range of parameter variation the solution 

remained unchanged and reaching a peak HMM state value 

• For huge amount of training data more UBM Gaussians and more Tied states 

are required. 
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Chapter 5 

CONCLUSIONS 

We have Investigated a new type of statistical model, the Subspace Gaussian Mixture 

Model (SGMM) on Indian languages Hindi and Tamil of Mandi Database, and 

demonstrated that it can give substantially better results than a conventionally 

structured model, particularly without adaptation. We have shown the importance of 

various features of the model, such as modeling the weights; using full-covariance 

Gaussians; and using sub-states. 

Particularly for low resource of training data the percentage improvement for 

Hindi and Tamil was high. The total number of parameters obtained in SGMM model 

are also less compared to conventional CDHMM system. But the time taken for 

experiment is more compared to conventional methods. 

 

 

 

 

 

 

 

 

 

 

 



31 
 

Appendix A 
 

Things To Be Noted While Performing The Experiments: 

 

• All the experiments were performed under IITM Libra Cluster because change 

in processor is giving different results. 

• Experiments should be done by using 20 cores as change in splits gives 

different performance. 

• Also, all the features should be sorted out because unsorted features are giving 

different results.  

• All the scripts used should be latest standard KALDI scripts because they have 

slight modifications compared to old scripts and hence performance might be 

different. 

• Optimization should be done for both LDA+MLLT and CDHMM but not just 

alone CDHMM because the input to SGMM is LDA+MLLT in our current 

experiments. 

• The value of the TIED States formed in SGMM will be reaching a saturation 

limit at certain point beyond which they will not be any increase  in TIED 

states and performance. 

• Also, one should be careful at giving the number of TIED states to CDHMM 

and LDA+MLLT as giving too many to lesser amount of data will hinder 

performance. 

• The best result in SGMM might be obtained for any value of UBM mixtures 

and tied states which is unknown, so can be determined only by experiments. 

 



32 
 

BIBLIOGRAPHY 

 

1. Burget, L., P. Schwarz, M. Agarwal, P. Akyazi, K. Feng, A. Ghoshal, O. 

Glembek, N. Goel, M. Karafiát, D. Povey, et al., Multilingual acoustic 

modeling for speech recognition based on subspace gaussian mixture models. 

In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE 

International Conference on. IEEE, 2010. 

2. Gales, M. J. (1998). Maximum likelihood linear transformations for hmm-

based speech recognition. Computer speech and language, 12(2). 

3. Gales, M. J. (2000). Cluster adaptive training of hidden markov models. 

Speech and Audio Processing, IEEE Transactions on, 8(4), 417–428. 

4. Leggetter, C. and P. Woodland (1995). Maximum likelihood linear 

regression for speaker adaptation of continuous density hidden markov 

models. Computer speech and language, 9(2), 171. 

5. Mohan, A., S. Umesh, and R. Rose, Subspace based for indian languages. In 

Information Science, Signal Processing and their Applications (ISSPA), 2012 

11th International Conference on. IEEE, 2012. 

6. Povey, D. (2009). A tutorial-style introduction to subspace gaussian mixture 

models for speech recognition. Technical Report MSR-TR-2009-111, 

Microsoft Research. 

7. Povey, D., L. Burget, M. Agarwal, P. Akyazi, K. Feng, A. Ghoshal, O. 

Glembek, N. K. Goel, M. Karafiát, A. Rastrow, et al., Subspace gaussian 

mixture models for speech recognition. In Acoustics Speech and Signal 

Processing (ICASSP), 2010 IEEE International Conference on. IEEE, 2010. 



33 
 

8. Povey, D., L. Burget, M. Agarwal, P. Akyazi, F. Kai, A. Ghoshal, O. 

Glembek, N. Goel, M. Karafiát, A. Rastrow, R. C. Rose, P. Schwarz, and 

S. Thomas (2011a). The  subspace gaussian mixture model - a structured 

model for speech recognition. Computer Speech & Language, 25(2), 404 – 

439. ISSN 0885-2308. 

9. Povey, D., A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. 

Hannemann, P. Motlicek, Y. Qian, P. Schwarz, et al., The kaldi speech 

recognition toolkit. In IEEE 2011 Workshop on Automatic Speech 

Recognition and Understanding. 2011b. 

10. Rabiner, L. R. (1989). A tutorial on hidden markov models and selected 

applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286. 

11. Srinivas, B., N. M. Joy, R. R. Bilgi, and S. Umesh, Subspace modeling 

technique using monophones for speech recognition. In Communications 

(NCC), 2013 National Conference on. 2013.  

12. Young, S. J., J. Odell, and P. Woodland, Tree-based state tying for high 

accuracy acoustic modelling. In Proceedings of the workshop on Human 

Language Technology. Association for Computational Linguistics, 1994.  


