
i

INVESTIGATION OF SUBSPACE GAUSSIAN MIXTURE

MODEL FOR AUTOMATIC SPEECH RECOGNITION

A Project Report

submitted by

ATTA SWETHA

in partial fulfillment of the requirements
for the award of the degree of

MASTER OF TECHNOLOGY

Department of Electrical Engineering

Indian Institute of Technology Madras, India.

JUNE, 2014

ii

THESIS CERTIFICATE

This is to certify that the thesis titled “Investigation of Subspace Gaussian Mixture Modelling

for Automatic Speech Recognition”, submitted by Atta Swetha (EE12M111), to the Indian

Institute of Technology, Madras for the award of the degree Master of Technology, is a bona

fide record of the research work done by him under my supervision. The contents of the thesis, in

full or in parts, have not been submitted to any other Institute or University for the award of any

degree or diploma.

Prof. Umesh S
Research Guide
Professor
Department of Electrical Engineering Place: Chennai
IIT Madras, 600 036 Date: 13th June 2014

iii

ACKNOWLEDGEMENTS

First, I would like to thank my project adviser, Dr. Umesh S. He has continuously encouraged

to challenge myself and explore the domain to its depths and intricacies. He has provided me

with a research atmosphere that allowed me delve into pressing questions in the field. He has

been a constant source of inspiration and support for me. Thank you.

I would like to thank my lab mates Sekhar, Bhargav, Neethu, Basil, Angel and others, for

their valuable inputs to help me through with ideas. I would like to thank them for making the

entire project a wonderful learning experience. I would like to thank all my friends for their

continuous support through my four years at this institute.

I would like to thank all my professors and teachers for their continuous mentoring throughout

the course of my studies. I would like to thank the Department of Electrical Engineering for

providing me a unique learning experience that enables to compete with the best in the world. I

would like to thank IIT Madras for providing me exciting opportunities and making my whole

Postgraduate education a part of my life that is worth remembering forever.

I would like to thank my parents for their love and encouragement throughout the course

of my studies and my entire life. I have no words to express my gratitude to my parents for

making me what I am today.

iv

ABSTRACT

KEYWORDS: GMM; SGMM;

In this thesis, an acoustic modelling technique, Subspace Gaussian Mixture Modelling, for

Speech Recognition Introduced by Daniel Povey has been Investigated on Mandi databases of

Indian languages for Tamil and Hindi . Various simulations have been performed by varying

different parameters involved in SGMM and results have been obtained. Comparison of

performance is done for various parameters and also with CDHMM and LDA+MLLT. The exact

procedure to be followed and the various optimized parameters have been explained in detail.

The significance of each parameter is also explained. Also, the results for various tied states and

UBMs have been given in detail.

v

CONTENTS

ACKNOWLEDGEMENTS iii
ABSTRACT iv
LIST OF TABLES vii
ABBREVIATIONS viii

1

INTRODUCTION……………………………………

1

2

SPEECH RECOGNITION………………………….

3

2.1 Introduction………………………………………….. 3
2.2 HMM based Speech Recognition…………………… 4
2.2.1 Linguistic units……………………………………….. 5
2.3 HMM-GMM system…………………………………. 6
2.4 Subspace gaussian Mixture Modelling……………..... 7
2.4.1 Training procedure…………………………………..... 8

3

SUBSPACE GAUSSIAN MIXTURE MODELS…..

9

3.1 Basic model…………………………………………… 9
3.2 Subspace mixture model with substates……………... 11
3.3 Subspace Model Training…………………………….. 11
3.4 UBM Initialization……………………………………. 12
3.5 First pass of training: accumulation………………….. 12
3.5.1 First pass of training: update…………………………. 13
3.5.2 Weight-projection vector update……………………… 14
3.5.3 Mean-projection matrix update……………………… 15
3.5.4 Vector Updates………………………………………... 15
3.6 Later iterations of training: accumulation……………. 16
3.6.1 Discretized posteriors…………………………………. 16
3.6.2 Statistics……………………………………………….. 17
3.7 Later iterations of training: update…………………… 17
3.7.1 Weight-projection vector update……………………… 18
3.7.2 Mean-projection matrix update………………………. 18
3.7.3 Vector Update…………………………………………. 18
3.7.4 Variance Update………………………………………. 18
3.7.5 Substate Weight……………………………………….. 19
3.7.6 Mixing Up…………………………………………….. 19
3.7.7 Updating the UBM…………………………………….

20

4

EXPERIMENTS AND RESULTS…………………..

21

4.4.1 Experimental Setup…………………………………… 21
4.2 Parameters……………………………………………. 22

4.3 Experiments and Discussion…………………………. 22

vi

4.3.1 Baseline System………………………………………. 23
4.3.2 Increasing the number of tied states…………………. 23
4.4 Tables…………………………………………………. 23
4.4.1 Tamil………………………………………………….. 23
4.4.2 SGMM Results for Varying parameters in Tamil

database……………………………………………….
26

4.4.3 Hindi…………………………………………………… 27
4.5 Observations…………………………………………… 29
5 CONCLUSIONS 30

vii

LIST OF TABLES

5.1 Tamil 1hr Baseline Results………………………….. 24

5.2 Tamil 3hr Baseline result……………………………. 24

5.3 Tamil 5hr Baseline result……………………………. 25

5.4 Tamil 22hr Baseline result…………………………... 25

5.5 TAMIL 1hr, 3hr, 5hr, 22hr SGMM Results………… 26

5.6 Hindi 1hr, 3hr, 5hr, 22hr Baseline Results………….. 27

5.7 Hindi 1hr, 3hr, 5hr, 22hr SGMM Results………….. 27

5.8 TIMIT Baseline and SGMM results............................ 28

viii

ABBREVIATIONS

ASR Automatic Speech Recognition

CAT Cluster Adaptive Training

CDHMM Continuous Density Hidden Markov Model

CMVN Cepstral Mean and Variance Normalization

EM Expectation Maximization

GMM Gaussian Mixture Model

HMM Hidden Markov Model

MFCC Mel-frequency Cepstral Coefficients

MLLR Maximum Likelihood Linear Regression

p.d.f. Probability Density Function

TIMIT Texas Instruments MIT

SGMM Subspace Gaussian Mixture Model

WER Word Error Rate

UBM Universal Background Model

LDA Linear Discriminant Analysis

MLLT Maximum Likelihood Linear Transform

1

Chapter 1

INTRODUCTION

Automatic Speech Recognition (ASR) is a prominent field that aims at conversion of

spontaneous speech into machine understandable text. It is a difficult problem because

of the different kinds of variability in speech due to changes in speaker and

environment. Statistical parametric models like HMM are generally used to model the

production of speech sounds. The performance of the speech recognition systems

entirely depends on the how good the modeling is and how well the parameters of the

model can be estimated using the available training data. There is a lot of focus on

using compact modeling techniques that can be easily trained with limited resources.

This is of particular interest in the context of Indian languages, many of which have

considerably less data resources than English and other European languages.

In conventional CDHMM systems that are typically used in speech

recognition applications, the p.d.f. of each HMM state is a Gaussian Mixture Model

(GMM). A lot of parameters(means, variances and weights) are required to define

these GMMs, thus demanding a large amount of training data. A relatively new

acoustic modeling technique, known as SGMM, was introduced in Povey (2009),

which takes advantage of the high correlation between the state’s distributions to

generate the GMM parameters indirectly using only a small number of state specific

parameters. The state GMM parameters are constrained to lie in a low dimensional

subspace of the total parameter space. The parameters that are used to define this

subspace are shared among all the states and thus can be estimated robustly using

2

limited amount of data and even out-of-domain data. This has been verified through

several multilingual experiments(Burget et al. (2010), Mohan et al. (2012)).

We introduce a very different UBM based approach that has fewer parameters,

and it is shown that it can be discriminatively trained and still provide a performance

improvement under ML training similar to our previous UBM based approach. We

are introducing here a subspace approach, in which a vector of low dimension (e.g.50)

controls all the mean and weight parameters of the speech-state specific mixture

model. We also generalize to have a mixture of substates in each state, i.e. each state’s

distribution is controlled by a number of these 50-dimensional vectors each with its

own mixture weight.

3

Chapter 2

SPEECH RECOGNITION

2.1 Introduction

Information in the real world is communicated in the form of signals. Most of these

signals (like speech signals) are generated continuously in time and are analog in

nature (can take continuous values). But in all practical applications, we can extract

only a finite number of samples of the signal and they need to be quantized to take

only a finite number of values. The statistics of signals such as speech vary over time

and hence are non-stationary. But they can be assumed to be stationary over a short

observation window (25ms) and fall into a category of pseudo-stationary signals. This

allows us to model the signals with efficient parametric models.
The models used to characterize signals can be broadly classified into

deterministic and statistical models. Signals like speech can be modelled as the

outcome of a random process and the parameters of this process can be estimated

accurately. For temporal pattern recognition applications like speech recognition,

stochastic models known as Hidden Markov Models (HMM) are widely used. It is

called “hidden” because the underlying states are not observed; but only the output of

the states is observed. The output is conventionally modelled to be generated from a

Gaussian Mixture Model (GMM). This is referred to as the HMM-GMM system.

Section 2.2 gives a brief introduction to the speech recognition problem and

the HMM based speech recognition system. Section (2.3) describes the conventional

HMM-GMM system. The subsequent section reviews more complex approaches to

modelling and adapting the GMM-based systems. Section 2.4 describes the Subspace

Gaussian Mixture Model (SGMM)based system

4

2.2 HMM-based Speech Recognition

The pseudo-stationary property of speech signals allows the speech signal to be

divided into25ms observation windows. The statistical properties of the signal can be

assumed to be constant over this window. The data in this window is converted into

discrete parameter vectors. This process of conversion of continuous speech signal

into a sequence of discrete vectors is known as Feature Extraction. These vectors are

also known as feature vectors or observation vectors. One of the most widely used

features is the Mel Frequency Cepstral Coefficients(MFCC). The objective of the

speech recognition system is to convert this sequence of observations into a sequence

of symbols (or words) that can be “understood” by a machine. The observation

sequence can be modeled as to be generated by a sequence of states as defined by a

HMM. A typical acoustic modeling uses a 3-state left-to-right HMM topology to

model the features generated by a single phonetic unit. A first order Hidden Markov

process is assumed meaning that the transition into a particular state depends only on

the previous state and that the observation depends only on the current state. The

following characterizes the HMM:

• N, the number of states in the model. The set of states in the model is defined

by S ={𝑆1,𝑆2, . . , 𝑆𝑁} .The state at the observation window or frame t is

denoted as 𝑞𝑡. For the model of a basic phonetic unit such as a phoneme, we

typically use N = 3.

• A, the state transition probability distribution. A = {𝑎𝑖𝑗} where

𝑎𝑖𝑗 = 𝑃�𝑞𝑡 = 𝑆𝑗�𝑞𝑡−1 = 𝑆𝑖�1 ≤ 𝑖, 𝑗 ≤ 𝑁.

For speech systems, we use a left-to-right topology, which implies that aij = 0

for j < i.

5

• 𝜋, the initial state distribution. 𝜋 = {𝜋𝑖} where

𝜋𝑖 = 𝑃[𝑞0 = 𝑆𝑖], 1 ≤ 𝑖 ≤ 𝑁.

The model of a basic phonetic unit such as phoneme has 𝜋𝑖 = 0 for 𝑖 ≠ 1

• The observation probability distribution in state j. In the case of a discrete

HMM with output vectors 𝑣1,𝑣2, … , 𝑣𝑘 the probability of observing 𝑣𝑘in the

state j is given by

𝑏𝑗(𝑘) = 𝑃�𝑣𝑘 𝑎𝑡 𝑡�𝑞𝑡 = 𝑆𝑗�, 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀.

The observation vector, x(t), can assume to be generated from a continuous

distribution. The probability density function (p.d.f) can be modelled as a

mixture of Gaussians or a GMM:

𝑏𝑗(𝑥(𝑡)) = 𝑃�𝑥(𝑡)�𝑞𝑡 = 𝑆𝑗, 𝜇𝑗𝑖, Σ𝑗𝑖� = �𝑤𝑗𝑖𝑁(𝑥(𝑡); 𝜇𝑗𝑖 , Σ𝑗𝑖)
𝐼

𝑖=1

, 1 ≤ 𝑗 ≤ 𝑁.

where I is the number of Gaussians in the GMM; 𝜇𝑗𝑖, Σ𝑗𝑖are the means and the

covariance matrix of the Gaussian component i of state j; and 𝑤𝑗𝑖 is the

Gaussian prior or the Gaussian weight with the constraint ∑ 𝑤𝑗𝑖𝐼
𝑖=1 = 1.

The parameters of the HMM can be put together as a parameter set 𝜆.

2.2.1 Linguistic units

The basic linguistic unit that we model is the phoneme (also referred to as

monophones or just phones). There are around 40 phones in English language. Using

only these gives a very simplistic model. For large vocabulary recognition, we need to

look at the left and the right context of the phone; i.e. we need to model the co-

articulation in vocal tract by considering the phones uttered before and after the phone

6

in consideration. Such a model is called a triphone model. There are as many as

403triphones possible, but many of them are not used or are not observed in the

training data. The GMMs used to model the triphones have many parameters to be

estimated. We require a large amount of data to get a good estimate of the parameters.

So, we “tie” similar triphones using a decision-tree based top-down clustering

approach. The decision tree based clustering has been described in detail in Young et

al. (1994). At the end of such a clustering process, we get a few thousand triphone

models

.

2.3 HMM-GMM system

HMM-GMM system, also known as CDHMM system, is the conventionally used

system for speech recognition. It models each context-dependent phone (usually the

triphone) with a generative model based on a left-to-right three state HMM topology.

The total number of context-dependent phonetic states after tree-based clustering is of

the order of a few thousands. Each state is denoted by the index j with , 1 ≤ 𝑗 ≤ 𝐽..

The observation vector is assumed to be generated within each HMM state j from a

GMM:

𝑃(𝑥|𝑗) = �𝑤𝑗𝑖𝑁(𝑥; 𝜇𝑗𝑖, Σ𝑗𝑖)

𝑀𝑗

𝑖=1

,

where x is the observation vector, 𝑤𝑗𝑖,𝜇𝑗𝑖 , Σ𝑗𝑖 are the prior, mean and covariance

matrixof the 𝑖𝑡ℎ Gaussian component and 𝑀𝑗 is the number of Gaussians in the 𝑗𝑡ℎ

state.

7

2.4 Subspace Gaussian Mixture Model (SGMM)

SGMM is similar to the GMM-based system, but the model parameters for each state

are specified by a single state vector 𝑣𝑗 . Thus 𝜇𝑖lies in a state- independent subspace

defined by the columns of 𝑀𝑖. The covariance is shared across all states, so that we

have a state-independent Σ𝑖. The basic model can be expressed as:

𝑃(𝑥|𝑗) = �𝑤𝑗𝑖𝑁(𝑥; 𝜇𝑗𝑖, Σ𝑗𝑖)
𝐼

𝑖=1

,

𝑤𝑗𝑖 =
exp (𝑤𝑖

𝑇𝑣𝑗)
∑ exp (𝑤𝑖′𝑇𝑣𝑗)𝐼
𝑖′=1

𝜇𝑗𝑖 = 𝑀𝑖𝑣𝑗

where 𝑣𝑗𝜖ℝ𝑠is the state projection vector, x is the feature vector, 𝑀𝑖and 𝑤𝑖define

thesubspaces in which the means and the unnormalized log weights respectively lie

and Σ𝑖is the shared covariance. j is the index of the context-dependent state (1 ≤ 𝑗 ≤

𝐽.) with J in the order of a few thousands. i is the Gaussian index in the GMM of I

mixtures (usually 200 < I < 2000). 𝑣𝑗is the only state specific parameter. 𝑀𝑖,𝑤𝑖, Σ𝑖are

“shared” parameters.The basic strategy of the SGMM is to reduce the number of state

specific parameters andincrease the number of shared (global) parameters. The

intuition is that the means of the tied state models span a smaller subspace of the

entire acoustic space. This allows us to reduce the number of state specific

parameters. Also, since the global parameters do not depend on a specific phone, there

is a lot of data available to train the parameters. It is possible to train these parameters

using out-of-domain data even from other languages as shown in Povey et al.(2011a).

8

2.4.1 Training procedure

The training of the SGMM system begins with the traditional HMM-GMM system.

First, a large GMM consisting of all the gaussians in the HMM-GMM system is built.

This is typically in the order of tens of thousands. The gaussians are repeatedly

merged to get a desired number of gaussians with diagonal covariances. The actual

procedure of doing this can be found in Povey et al. (2011a). These gaussians are

trained with around 8 iterations of EM algorithm for full covariance re-estimation.

The resulting model is called a Universal Background Model(UBM). The UBM can

be viewed as a compact model representing all kinds of speech from all speakers. The

UBM need not necessarily be built from a specific HMM-GMM system; any generic

UBM can be used. This UBM is used to initialize the SGMM model. This is done in

such a way that the initial p.d.f. of all states is equal to the UBM. The HMM-GMM

system provides the Viterbi alignments for the initial SGMM parameter re-estimation

iterations. Once the SGMM parameters are estimated by EM algorithm to a sufficient

extent, the SGMM training can be continued with self-alignment (alignments from the

SGMM itself).

9

Chapter 3

SUBSPACE GAUSSIAN MIXTURE MODELS

This model is a large shared GMM whose parameters vary in a subspace of relatively

low dimension (e.g. 50), thus each state is described by a vector of low dimension

which controls the GMM’s means and mixture weights in a manner determined by

globally shared parameters. In addition we generalize to having each speech state be a

mixture of substates, each with a different vector. This technique was introduced by

Daniel Povey (2009) in his paper “Subspace Gaussian Mixture Models for Speech

Recognition”.

What we are introducing here is a subspace approach, in which a vector of low

dimension (e.g.50) controls all the mean and weight parameters of the speech-state

specific mixture model. We also generalize to have a mixture of substates in each

state, i.e. each state’s distribution is controlled by a number of these 50-dimensional

vectors each with its own mixture weight.

3.1 Basic model

In this section we describe the Subspace Mixture Model. First we describe the basic

model without substates. We use the index 1 ≤ 𝑖 ≤ 𝐼 to represent the Gaussians in the

UBM (e.g. I = 750 Gaussians), and the index , 1 ≤ 𝑗 ≤ 𝐽to represent the clustered

phoneticstates (e.g. J = 8000 for a typical large vocabulary system). Let the feature

dimension be , 1 ≤ 𝑑 ≤ 𝐷, e.g. D = 40, and let the subspace dimension be , 1 ≤ 𝑠 ≤

𝑆, e.g. S = 50. The subspace dimension can take any value; it represents the number

of different directions in which we allow the phonetic states to differ from each other.

10

For each state j, the probability model 𝑃(𝑥|𝑗)is:

𝑃(𝑥|𝑗) = �𝑤𝑗𝑖𝑁(𝑥; 𝜇𝑗𝑖, Σ𝑗𝑖)
𝐼

𝑖=1

,

𝑤𝑗𝑖 =
exp (𝑤𝑖

𝑇𝑣𝑗)
∑ exp (𝑤𝑖′𝑇𝑣𝑗)𝐼
𝑖′=1

𝜇𝑗𝑖 = 𝑀𝑖𝑣𝑗

Thus, each state has a shared number of mixtures (e.g., I = 750).The means

vary linearly with the state-specific vector 𝑣𝑗 (we denoteby 𝑣𝑗 the same vector,

extended with a 1, to handle constant offsets).The log weights prior to normalization

also vary linearly with 𝑣𝑗 .The parameters of the system are the mean-projection

matrices𝑀𝑖the weight-projection vectors 𝑤𝑖, the variances Σ𝑖, and the statespecific

vectors 𝑣𝑗 . To give the reader a feel for the number of parameters involved, for the

values of I, J,D and S mentioned above the total number of parameters would be, in

reverse order of size: mean-projections,IDS = 750 × 40 × (50 + 1) = 1.53 ×

106;variances,12𝐼𝐷(𝐷 + 1) = 750×40×41
2

= 0.615 × 106; state-specific vectors,JD =

 0.4 × 106, weight-projections, IS = 750×(50+1) =38.25×103. Thus the total

number of parameters is 2.58×106, andmost of the parameters are shared, not state-

specific. For reference, atypical mixture-of-Gaussians system might have 100000

Gaussiansin total, each with a 40-dimensional mean and variance, which givesus 8 ×

106parameters total, more than twice this subspace GMM system. Note that the

quantity of state-specific parameters in the subspace GMM system is less than one

tenth of that in the normal GMM system. For this reason, we extend the model to

include mixtures of substates.

11

3.2 Subspace mixture model with substates

The subspace mixture model with substates is the same as in Equations 1 to 3 except

each state is now like a mixture of states; each state j has substates 1 ≤ 𝑚 ≤ 𝑀𝑗with

associated vectors 𝑣𝑗𝑚and mixture weights 𝑐𝑗𝑚with∑ 𝑐𝑗𝑚 = 1𝑀𝑗
𝑚=1 we can write out

themodel as:

𝑃(𝑥|𝑗) = � 𝑐𝑗𝑚

𝑀𝑗

𝑚=1

�𝑤𝑗𝑚𝑖𝑁(𝑥; 𝜇𝑗𝑚𝑖, Σ𝑖)
𝐼

𝑖=1

𝜇𝑗𝑚𝑖 = 𝑀𝑖𝑣𝑗𝑚

𝑤𝑗𝑚𝑖 =
exp (𝑤𝑖

𝑇𝑣𝑗𝑚)
∑ exp (𝑤𝑖′

𝑇𝑣𝑗𝑚)𝐼
𝑖′=1

It is useful to think about the substates as corresponding to Gaussians in a mixture of

Gaussians, and in fact as we describe later, we use a similar mixing up procedure to

increase the number of states. This model is in effect a mixture of mixtures of

Gaussians, with the total number of Gaussians in each state being equal to I

𝐽𝑚. Clearly this large size could lead to efficiency problems. In fact, computing each

mean would involve a matrix multiply taking time O(SD), and since the variances

Σ𝑖are not diagonal the actual likelihood computation would be O(

𝐷2). In the next section we show that despite this, likelihoods given this model can be

computed in a time similar to a normal diagonal mixture of Gaussians.

3.3 SUBSPACEMODEL TRAINING

The subspace model training proceeds as follows. Firstly we initialize the UBM,

which is a mixture of full-covariance Gaussians that models all speech data regardless

of speech state or speaker. Next, we do a first pass of accumulation and update, using

12

a previous system to align speech states to frames. In this first pass of accumulation

and update, we are essentially estimating the basic subspace mixture model without

substates or speaker vectors. In later passes over the data, we accumulate different

kinds of statistics and the update equations have a different form.

3.4 UBM initialization

The method we use for initialization of the UBM parameters 𝜇𝚤� andΣ𝚤� i may not be

optimal as we have not experimented with this. Wetake an already-trained

conventional diagonal Gaussian system andcluster the Gaussians into I clusters (e.g.

750). This is done byconsidering all the Gaussians as one large mixture model (using

as weights the weights within each state, divided by the total number of states), and

then computing the mixture of I Gaussians that maximizes the auxiliary function

likelihood. The algorithm we use to compute this is like a form of k-means except

with pruning to avoid excessive compute (this involves a notion of neighbouring

clusters), starting from a random assignment to clusters. The variances are thus

initialized to diagonal. From that point we do 3 iterations of EM over a subset (e.g.

1/10) of the training data, updating the means and (full) variances but leaving the

mixture weights uniform to encourage even distribution of data.

3.5 First pass of training: accumulation

The first pass of training involves getting mean statistics for each state j and UBM

index i, and using this to initialize the parameters with a single vector per state. By

storing statistics in a different form for the first iteration of update than for later

iterations, we can avoid making unnecessary passes over the data. However, to store

the mean statistics requires a lot of memory and storage: e.g. for our example system

13

using floats, it would take 4IJD =4 × 750 × 8000 × 40 bytes of memory, or 0.96 GB.

To reduce this, we avoid storing statistics with very small counts, as we describe

below. Our state posteriors 𝛾𝑗(𝑡) are zero-one posteriors based onViterbi alignments

obtained using a baseline (mixture-of-Gaussians) system. On each frame we also

compute UBM Gaussian posteriors 𝛾𝑖(𝑡) (with pruning to the top 5 as described

above). We thencompute initial posteriors:

𝛾𝑗𝑖(𝑡) = 𝛾𝑗(𝑡)𝛾𝑖(𝑡)

The statistics we accumulate are count statistics (sums of the posteriors)and

state-specific mean statistics, and also a scatter for each UBM Gaussian index which

we will use to compute within-class covariances Σ𝑖. There is a slight complication in

that we want to avoid accumulating mean statistics where the count is very small.

Therefore we define the “pruned” count 𝛾𝚥𝚤�(𝑡) to be zero if the sum of𝛾𝑗𝑖(𝑡) up to the

current point in the current parallel job is less than a threshold 𝜏 (we have used 𝜏

values from 0.1 to 2 depending onsystem size). The statistics we accumulate are

named 𝑚𝚥𝚤� for thefirst order statistics and 𝑆𝚤� for the scatter to emphasize that they are

accumulated using the pruned counts. So we have:

𝛾𝑗𝑖 = �𝛾𝑗𝑖(𝑡)
𝑇

𝑡=1

𝛾𝚥𝚤� = �𝛾𝚥𝚤�(𝑡)
𝑇

𝑡=1

𝑚𝚥𝚤� = �𝛾𝚥𝚤�(𝑡)𝑥(𝑡)
𝑇

𝑡=1

𝑆𝚤� = ��𝛾𝚥𝚤�(𝑡)𝑥(𝑡)𝑥(𝑡)𝑇
𝐽

𝑗=1

𝑇

𝑡=1

14

3.5.1 First pass of training: update

The first pass of update is an iterative one in which we first initialize the vectors to

random values (e.g. Gaussian noise), initialize the projections to zero and the

variances to the UBM variances, then iteratively optimize in turn each of the four

types of parameters: the weight-projection vectors 𝑤𝑖,the mean-projection

matrices 𝑀𝑖, the variances Σ𝑖and the state-specific vectors 𝑣𝑗 (at this point we have

no substates). This is done for about ten iterations.

3.5.2 Weight-projection vector update

The update of the weight-projection vectors 𝑤𝑖is based on maximizingthe auxiliary

function:

𝑄(…) = ��𝛾𝑗𝑖𝑙𝑜𝑔𝑤𝑗𝑖
𝑗𝑖

= �𝛾𝑗𝑖(𝑤𝑖
𝑇𝑣𝑗 − 𝑙𝑜𝑔� 𝑒𝑥𝑝𝑤𝑖′

𝑇𝑣𝑗

𝐼

𝚤′=1́

)
𝑖,𝑗

We can use the inequality1 − �𝑥
�̅�
� ≤ −𝑙𝑜𝑔 �𝑥

�̅�
� (which is anequality at𝑥 = �̅�), to

maximize, where 𝑤𝚤��� is the pre-update value of 𝑤𝑖.

To maximize the above we use a second order approximation to the

exponential function, but then in certain cases we take a heuristic over estimate of the

negated second gradient, for safety; this leads to the max(·) function below (without

this heuristic we would just have its first term). The update procedure is as follows.

First we compute all the un-normalized log weights, let us call them 𝑥𝑗𝑖=𝑤𝑖
𝑇𝑣𝑗 , and

the normalizers 𝑥𝑗 = 𝑙𝑜𝑔∑ 𝑒𝑥𝑝𝑥𝑗𝑖𝑖 these are used tocompute the weights 𝑤𝑗𝑖 =

exp�𝑥𝑗𝑖 − 𝑥𝑗� during the computation. We also compute the total counts per state𝛾𝑗𝑖 =

∑ 𝛾𝑗𝑖𝐼
𝑖=1 . Then for each UBM Gaussian index i we compute the first order term 𝑔𝑖

andnegated second order term Hi in a quadratic approximation to theauxiliary

15

function in𝑤𝑖 − 𝑤𝚤���, i.e. around the current point. After updating each𝑤𝑖, we update

the affected 𝑥𝑗𝑖 and the 𝑥𝑗 beforeupdating the next i so we can continue with up to

date values of𝑤𝑗𝑖. The value of the auxiliary function should be checked as wecannot

prove that this procedure will converge, although we havenever observed it not

converging.

3.5.3 Mean-projection matrix update

The update for the mean-projection matrices 𝑀𝑖 (which have sizeD × S + 1) is as

follows. For a particular i, we first make a coordinatechange so that the variance

Σ𝑖is unit. We use the transform = Σ𝑖−0.5 , and project to get 𝑀𝑖
′ = 𝑇𝑀𝑖 in the new

co-ordinates. Then the computation is as follows: for each of its D rows 𝑚′𝑖𝑑 wewill

compute a linear term 𝑔𝑖𝑑 of the auxiliary function as a functionof the change in that

row, and a negated quadratic term 𝐻𝑖 which isshared for all d.

𝑔𝑖𝑑 = ��𝑇𝑖𝑚𝚥𝚤� − 𝛾𝚥𝚤�𝑀′
𝑖𝑣𝑗�𝑑𝑣𝑗

𝑗

𝐻𝑖 = �𝛾𝚥𝚤�𝑣𝑗𝑇𝑣𝑗
𝑗

𝑚′𝑖𝑑 = 𝑚′𝑖𝑑 + H𝑖
−1𝑔𝑑

3.5.4 Vector updates

The update for the state-specific vectors 𝑣𝑗 involves incorporatinga quadratic auxiliary

function for the means, and our previouslydescribed quadratic approximation to the

auxiliary function for theweights. Again we accumulate a linear term 𝑔𝑗 and a

negatedquadratic term 𝐻𝑗 which describe how the auxiliary function varies with a

change in 𝑣𝑗 . In the expressions below, the top line in eachexpression refers to the

weights and the bottom line to the means.

We use the notation 𝑥−to mean the vector x without its last element;for

matrices the notation 𝑀− means removing the last rowand column.

16

𝑔𝑗 = �(𝛾𝑗𝑖 − 𝛾𝑗𝑤𝑗𝑖)𝑤𝑖
−

𝐼

𝑖=1

+ �(𝑀𝑖
𝑇Σ𝑖−1

𝐼

𝑖=1

(𝑚�𝑗𝑖 − 𝛾𝚥𝚤�𝑀𝑖𝑣𝑗))−𝑣𝑗 = 𝑣𝑗 + H𝑗−1𝑔𝑗

The matrices only dependent on i in the last equation should be precomputed.

3.6 Later iterations of training: accumulation

The method of accumulation differs in later iterations of training, versus the first

iteration. We store statistics in a more memory efficient way, without pruning. This

enables a more exact optimization, and also allows us to have more mixtures without

increasing the size of the statistics too much. The size of the statistics are dominated

by the need to store data counts for each i, j and m. For these later iterations we

assume that we already have a “substate” model; we initialize this by having a single

substate per state as estimated above, and using unit weight. The state posteriors are,

as before, zero-one posteriors based on Viterbi alignment using a previous system.

3.6.1 Discretized posteriors

The within-state posteriors 𝛾𝑗𝑚𝑖(𝑡) are computed by evaluating thelikelihoods.

However, we also randomlydiscretize the posteriors into steps of typically = 0.05 .

This reducescompute time by getting rid of most very small posteriors, and also

allows us to compress the posteriors in memory and on disk in a variable length

coding scheme in which counts 𝛾𝑗𝑚𝑖 typically takeonly one byte to store. The

discretized posteriors 𝛾𝚥𝑚𝚤� (𝑡) consist ofthe part of 𝛾𝑗𝑚𝑖(𝑡) that can be expressed in

whole increments of 𝛿,plus with probability equal to the remaining part divided by 𝛿,

oneextra increment of 𝛿. The random element of the discretization processis

necessary to preserve expectations. All statistics are storedusing the discretized

posteriors.

17

3.6.2 Statistics

The weight statistics are straightforward:

𝛾𝑗𝑖 = �𝛾𝚥𝚤�(𝑡)
𝑇

𝑡=1

The statistics we store in order to update the vectors 𝑣𝑗𝑚 are the firstorder term in the

quadratic auxiliary function written in terms of the𝑣𝑗𝑚 directly (i.e. not in terms of

offsets from the current value).Again,𝑥− is x without its last dimension. So we have:

𝑥𝑗𝑚 = ��𝛾𝚥𝚤�(𝑡)�𝑀𝑖
𝑇Σ𝑖−1𝑥(𝑡)�

𝐼

𝑖=1

𝑇

𝑡=1

3.7 Later iterations of training: update

The update for later iterations of training is somewhat harder to justify than the update

for the first iteration. The reason is that there are updates which we do at the same

time (for the variance, the vectors and the mean projections) which cannot easily be

proved to converge unless they are done on separate iterations. However, we are

confident that these parameter types are sufficiently orthogonal that this is not a

problem, and in practice we find that our approach converges. Note that when any the

updates below refer to other types of parameters (e.g. if the update for 𝑀𝑖refers to

𝑣𝑗𝑚), this means thepre-update versions of those parameters. This is important

becausethe stored statistics are a function of the other parameters, and using the newly

updated versions can lead to inconsistency.

18

3.7.1 Weight-projection vector update

The update for the weight projection vectors is the same as that described in Section

3.5.2, except that we have to replace any sums over j with sums over both j and m.

We do the update for up to4 iterations given the stored statistics, or until the auxiliary

function improvement per frame is small (e.g. less than 0.0001).

3.7.2 Mean-projection matrix update

The update for the mean-projection matrix is similar to that given in Section 3.5.3

except we formulate the quadratic auxiliary function in terms of the transformed

matrix row 𝑚′𝑖𝑑 rather than the offset from its current value. Again we use the data

transform 𝑇𝑖 = Σ𝑖−0.5to make the variances unit, so 𝑀′𝑖 = 𝑇𝑖𝑀𝑖

3.7.3 Vector update

In the vector update as follows, we split the second gradient 𝐻𝑗 intotwo parts that

relate to the weights and the means respectively, anduse the second one 𝐻𝑗 in our

computation of the gradient to convertfrom a formulation in terms of the vector 𝑣𝑗𝑚,

to the change inthe vector. We make use of the summed counts

𝛾𝑗𝑚 = �𝛾𝑗𝑚𝑖

𝐼

𝑖=1

3.7.4 Variance update

The variance update is trivial:

Σ𝚤� =
𝑆𝑖

∑ 𝛾𝑗𝑚𝑖𝑗,𝑚

The auxiliary function improvement can be computed as described in Section 3.5.4.

19

3.7.5 Substate weight

We now have a new parameter to estimate: the weight of substates. This is given by:

𝑐𝑗𝑚 =
∑ 𝛾𝑗𝑚𝑖𝑖

∑ 𝛾𝑗𝑚𝑖𝑗,𝑚

3.7.6 Mixing up

Here we describe how we increase the number of substates. The initial model has one

substate per state. We have a target total number of mixtures per state, e.g. M =

50,000 and we allocate mixture components to states based on a power rule with a

default exponent of 0.2. Thus, if a state has total count 𝛾𝑗 ∑ 𝛾𝑗𝑚𝑖𝑚,𝑖 , thetarget number

of mixture components 𝑇𝑗 is the closest integer to M
𝛾𝑗0.2

∑ 𝛾𝑗0.2𝑗
. We do mixing up on a

subset of iterations (currently{2,4,6,8,10,12}). On each iteration and for each state j,

the number of mixture components to split shall be the difference between the target

𝑇𝑗 and the current number of mixture components 𝑀𝑗 ; butno more than the current 𝑀𝑗

. If it is less than that, we split thosewith the largest counts. In addition, we enforce a

minimum count for mixtures to be split, which is 200 by default. For each substate

vector 𝑣𝑗𝑚 that is selected to be split, we compute the negated second gradient 𝐻𝑗𝑚 as

used in section 3.7.3, and then compute the scale S =�𝐻𝑗𝑚
𝛾𝑗𝑚

�
−0.5

, which provides a scale

to the vector (think of S like a standard deviation). We then compute a random vector

whose elements are drawn from zero-mean Gaussian distribution with variance 0.1,

and our perturbed vectors shall be 𝑣𝑗𝑚± Sr. Weassign half of the old mixture weight

to each of the two new mixture components. Mixing up is done after all other phases

of update are complete (i.e., starting from the already updated vectors).

20

3.7.7 Updating the UBM

The UBM parameters 𝜇𝚤� and Σ𝚤� which are used for pruning arealso updated in our

training setup. This is done by accumulating zeroth, first and second order statistics

for each i and doing the normal Gaussian update. The posteriors used are the sum over

substate j,m of the posteriors 𝛾𝑗𝑚𝑖(𝑡). Because of the discrete nature of thepruning

operation it is not easy to say very much theoretically abouthow these parameters

should be trained, in fact it might seem safer to leave them fixed. Experiments have

failed to show any difference between training and not training these parameters.

21

Chapter 4

EXPERIMENTS AND RESULTS

4.4.1 Experimental Setup

The performance of the SGMM model is tested on Hindi and Tamil languages of

Mandi database along with TIMIT database.

Mandi database is used in Automatic Speech Recognition-based application

to help farmers stay updated with the latest commodity price .It is an interactive

speech recognition engine that has been developed by a consortium of seven

institutions (IIT-M, IIT-K, IIT-B, IIT-G, IIIT-Hyd, TIFR & CDAC-Kol) and is

coordinated by IIT-Madras.

The Hindi database consists of 1hr, 3hr, 5hr, and 22hrs of training data along

with 5974 utterances of test data. Similarly, TAMIL database also has 1hr, 3hr, 5hr

and 22hrs of training data for training along with 3564 utterances for testing. TIMIT

has a total of 3,396 utterances for training and 192 utterances for testing. 13-

dimensional MFCC were used as features for parameterizing the speech waveforms.

The delta and acceleration of these features were augmented to get 39-dimensional

features. Cepstral Mean and Variance Normalization (CMVN) were done to increase

the noise-robustness of features. The Kaldi toolkit (Povey et al. (2011b)) was used for

training and testing the acoustic models. Standard C++ programs in the Kaldi toolkit

were used to build the baseline HMM-GMM system and also LDA+MLLT to

initialize the SGMM acoustic models. The SGMM system is implemented using the

22

standard programs in the toolkit. Various libraries in the toolkit were used for the

standard computations in the algorithms

4.2 Parameters

The LDA+MLLT system used for TIMIT task has a total of 1040 tied states and

22047 Gaussians. The dictionary had a set of 38 phones. The silence was modelled as

a context independent phone with a 8 state HMM, while all other phones were

context-dependent with 3 state HMMs. This was used to initialize the SGMM model.

Since the feature vector used was of 39 dimension, full-MLLR matrices of dimension

39 x 40 was used for the cluster transforms. The UBM was initialized by a

bottomupclustering approach by merging the Gaussians from the LDA+MLLT system

till I mixtures were obtained. I was varied from in a range to obtain best result.

The baseline LDA+MLLT system used for Tamil and Hindi task had different

number of tied states and Gaussians for different hours of data which is mentioned in

the next table. Dictionary with 39 phones was used for TAMIL and 41 phones for

Hindi. The modeling of the phones was similar to that in TIMIT task.

4.3 Experiments and Discussion

Tables 5.5 and 5.7 show the results of experiments evaluating SGMM models on the,

Tamil and Hindi tasks respectively. The details of the experiments, along with the

motivation and the conclusions are described in the subsequent sections.

23

4.3.1 Baseline System

At first basic CDHMM system is built and then LDA+MLLT is done on top of it

which is used to initialize SGMM . All the other experiments are compared with this

baseline system in terms of Word Error Rate (WER).

4.3.2 Increasing the number of tied states

The number of tied states is increased by choosing the tied states by going further

down the context-dependency decision tree. And there are serious limitations to

increasing the number of tied states, as we may not have enough data to estimate

some tied state parameters. There is not much improvement possible on this front, but

optimizing the number of tied states gave a better model for initializing the system.

4.4 Tables:

4.4.1 TAMIL:

Baseline system for various tied States for Tamil

Results for tri1 (CDHMM) and tri2 (LDA+MLLT) are tabulated for varying tied

states and Gaussians for 1hr, 3hr, 5hr and 22hr of Tamil training data.

 1hr data

 (# pdfs, #
Gaussians)

CDHMM(%WER) LDA+MLLT(%WER)

174, 802 43.78 39.86
174,1202 43.19 40.67
213,1005 41.51 39.83
213,1504 42.00 37.93
249,1202 42.10 41.07
249,1808 42.13 42.30
260,1402 42.62 39.29
260,2107 43.95 39.44

24

260,1606 41.07 38.57
260,2405 43.26 39.17
260,1804 43.16 39.24
260,2710 44.25 41.34
260,2007 42.69 38.97
260,3010 44.64 40.03
260,2207 42.60 39.12
260,3312 43.53 41.54
260,2408 42.77 41.86
260,3612 45.04 42.77
260,2605 43.46 41.51
260,3915 43.83 41.21

Table 5.1 TAMIL 1hr Baseline Results

 3hr

(#pdfs, Gaussians) CDHMM(%WER) LDA+MLLT(%WER)
179,803 33.46 30.80
179,1207 32.31 28.65
220,1004 32.92 28.73
220,1502 31.17 28.78
267,1204 32.72 28.48
267,1803 31.61 27.34
306,1408 32.21 28.16
306,2107 32.31 29.47
338,1603 32.21 27.74
338,2409 32.58 27.89
372,1803 32.26 27.71
372,2705 32.11 29.47
405,2010 31.74 29.54
405,3011 32.72 28.48
443,2206 32.08 28.21
443,3311 31.71 28.36
459,2405 32.01 29.91
459,3610 32.75 30.40
459,2608 32.21 29.42
459,3911 33.07 29.89
459,2807 32.63 29.94
459,4215 33.19 30.50
459,3009 32.31 30.38
459,4512 33.49 30.85

Table 5.2 TAMIL 3hr Baseline Results

25

5hr

(#pdfs, Gaussians) CDHMM(%WER) LDA+MLLT(%WER)
410,2008 29.81 25.35
410,3012 28.83 24.16
442,2208 29.94 26.78
442,3310 28.92 23.96
475,2408 29.39 25.69
475,3608 29.15 23.69
515,2609 28.21 24.31
515, 3914 28.11 23.91
554,2808 28.92 25.30
554,4214 27.00 24.04
583,3012 28.60 24.83
583,4518 27.89 23.45
624,3210 27.84 23.52
624,4817 27.49 24.04
650,3408 28.11 24.58
650,5112 27.00 23.35
668,3612 28.01 24.19
668,5414 25.91 23.17
668,3813 28.26 23.49
668,5716 27.22 23.27
668,4010 27.42 24.16
668,6020 27.54 24.90

 Table 5.3 TAMIL 5hr Baseline Results

22hr

(#pdfs, Gaussians) CDHMM(%WER) LDA+MLLT(%WER)
887,16145 22.43 19.84
887,18451 22.01 19.79
921,16846 21.45 19.45
921,19248 22.31 19.74
952,17556 21.50 19.87
952,20060 21.32 19.69
993,18246 21.69 19.47
993,20850 21.96 19.60
1030,18948 22.14 20.04
1030,21652 22.16 19.37
1071,22458 21.92 19.45

26

1114,23262 22.11 19.37
1139,24052 22.24 20.06
1172,21767 22.93 19.40
1172,24861 22.36 20.09
1203,22465 21.89 19.45
1203,25662 22.43 19.89
1245,23154 22.09 20.16
1245,26481 22.38 19.97

Table 5.4 TAMIL 22hr Baseline Results

4.4.2 SGMM Results for Varying parameters for Tamil database

In order to obtain optimal results we have kept the variable –use-no-substate= false

and –use-same-tree = false. We can observe that, by varying number of states beyond

a range the obtained HMM states reaches peak value and performance will be

unchanged.

If we copy the tree or do not use varying substates the performance degrades.

Speaker dimension is kept as 0. We can do SGMM on top of SAT also but in case of

Indian Mandi database there is no speaker information. So we have done on top of

tri2.The Dimension of Phone vector space is 41 and dimension of feature vectors is

40.

Hours of data

Parameters
%WER

UBM # HMM states

1hr 64 324 34.85

3hr 128 516 26.28

5hr 64 778 23.10

22hr 400 1555 19.10

Table 5.5 TAMIL 1hr, 3hr, 5hr, 22hr SGMM Results

27

4.4.3 Hindi

Hindi Baseline Results

The baseline system used for Initializing SGMM for Hindi database is tabulated

below showing their %WER and the total formed tied states &gaussians. The System

is optimized for various tied state value and Gaussians but only the best result is being

shown in the tables.

Hours of data # pdfs, #Gaussians CDHMM
(%WER)

LDA+MLLT
(%WER)

1hr 305,1405 16.18 14.12
3hr 454,2206 11.59 10.77
5hr 571,4216 9.06 8.53
22hr 1061,10834 5.76 5.68

Table 5.6 Hindi 1hr, 3hr, 5hr, 22hr Baseline Results

Hindi SGMM results

Here the Dimension of phone vector space is 41, Dimension of speaker vector space

is 0 and the feature vectors dimension is 40.To obtain Optimal solution the UBM

mixtures and HMM states are varied over a wide range and the best results are only

tabulated.

Hours of data

Parameters
%WER

UBM # HMM states

1hr 90 338 13.25

3hr 200 470 10.73

5hr 256 577 7.87

22hr 300 1090 5.09

Table 5.7 Hindi 1hr, 3hr, 5hr, 22hr SGMM Results

28

4.4.4 TIMIT

Results are shown for Baseline System and SGMM

Name of Expt UBM Mixtures Tied States
formed

% WER

CDHMM - 1049 28.38
LDA+MLLT - 1040 25.45

SGMM 400

2526 20.60

Table 5.8 TIMIT Baseline and SGMM Results

29

Observations

• Results have varied when there is a change in the processor (Cluster).In order

to maintain consistency we have performed all experiments on libra IITM

cluster. The experiments on this cluster were twice faster and gave optimal

Results

• Change in the number of jobs is varying the obtained results. So we

maintained a constant number(nj) all over

• Various experiments were performed to optimize SGMM for Hindi and Tamil

during which it has been observed that the result is optimal if we do not copy

the same tree as in baseline system and gave it a larger degree of freedom. We

should even keep varying the total number of substates. So make sure the

variable

• Varying of tied states was done to optimize the solution during which it was

observed that beyond a certain range of parameter variation the solution

remained unchanged and reaching a peak HMM state value

• For huge amount of training data more UBM Gaussians and more Tied states

are required.

30

Chapter 5

CONCLUSIONS

We have Investigated a new type of statistical model, the Subspace Gaussian Mixture

Model (SGMM) on Indian languages Hindi and Tamil of Mandi Database, and

demonstrated that it can give substantially better results than a conventionally

structured model, particularly without adaptation. We have shown the importance of

various features of the model, such as modeling the weights; using full-covariance

Gaussians; and using sub-states.

Particularly for low resource of training data the percentage improvement for

Hindi and Tamil was high. The total number of parameters obtained in SGMM model

are also less compared to conventional CDHMM system. But the time taken for

experiment is more compared to conventional methods.

31

Appendix A

Things To Be Noted While Performing The Experiments:

• All the experiments were performed under IITM Libra Cluster because change

in processor is giving different results.

• Experiments should be done by using 20 cores as change in splits gives

different performance.

• Also, all the features should be sorted out because unsorted features are giving

different results.

• All the scripts used should be latest standard KALDI scripts because they have

slight modifications compared to old scripts and hence performance might be

different.

• Optimization should be done for both LDA+MLLT and CDHMM but not just

alone CDHMM because the input to SGMM is LDA+MLLT in our current

experiments.

• The value of the TIED States formed in SGMM will be reaching a saturation

limit at certain point beyond which they will not be any increase in TIED

states and performance.

• Also, one should be careful at giving the number of TIED states to CDHMM

and LDA+MLLT as giving too many to lesser amount of data will hinder

performance.

• The best result in SGMM might be obtained for any value of UBM mixtures

and tied states which is unknown, so can be determined only by experiments.

32

BIBLIOGRAPHY

1. Burget, L., P. Schwarz, M. Agarwal, P. Akyazi, K. Feng, A. Ghoshal, O.

Glembek, N. Goel, M. Karafiát, D. Povey, et al., Multilingual acoustic

modeling for speech recognition based on subspace gaussian mixture models.

In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE

International Conference on. IEEE, 2010.

2. Gales, M. J. (1998). Maximum likelihood linear transformations for hmm-

based speech recognition. Computer speech and language, 12(2).

3. Gales, M. J. (2000). Cluster adaptive training of hidden markov models.

Speech and Audio Processing, IEEE Transactions on, 8(4), 417–428.

4. Leggetter, C. and P. Woodland (1995). Maximum likelihood linear

regression for speaker adaptation of continuous density hidden markov

models. Computer speech and language, 9(2), 171.

5. Mohan, A., S. Umesh, and R. Rose, Subspace based for indian languages. In

Information Science, Signal Processing and their Applications (ISSPA), 2012

11th International Conference on. IEEE, 2012.

6. Povey, D. (2009). A tutorial-style introduction to subspace gaussian mixture

models for speech recognition. Technical Report MSR-TR-2009-111,

Microsoft Research.

7. Povey, D., L. Burget, M. Agarwal, P. Akyazi, K. Feng, A. Ghoshal, O.

Glembek, N. K. Goel, M. Karafiát, A. Rastrow, et al., Subspace gaussian

mixture models for speech recognition. In Acoustics Speech and Signal

Processing (ICASSP), 2010 IEEE International Conference on. IEEE, 2010.

33

8. Povey, D., L. Burget, M. Agarwal, P. Akyazi, F. Kai, A. Ghoshal, O.

Glembek, N. Goel, M. Karafiát, A. Rastrow, R. C. Rose, P. Schwarz, and

S. Thomas (2011a). The subspace gaussian mixture model - a structured

model for speech recognition. Computer Speech & Language, 25(2), 404 –

439. ISSN 0885-2308.

9. Povey, D., A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M.

Hannemann, P. Motlicek, Y. Qian, P. Schwarz, et al., The kaldi speech

recognition toolkit. In IEEE 2011 Workshop on Automatic Speech

Recognition and Understanding. 2011b.

10. Rabiner, L. R. (1989). A tutorial on hidden markov models and selected

applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.

11. Srinivas, B., N. M. Joy, R. R. Bilgi, and S. Umesh, Subspace modeling

technique using monophones for speech recognition. In Communications

(NCC), 2013 National Conference on. 2013.

12. Young, S. J., J. Odell, and P. Woodland, Tree-based state tying for high

accuracy acoustic modelling. In Proceedings of the workshop on Human

Language Technology. Association for Computational Linguistics, 1994.

