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Abstract

The motivation for studying Fault Tolerant Controller design for nonlinear au-

topilot arises from greater demand for production of highly reliable modern defence

systems. Such conditions increase the possibility of system faults,which are charac-

terized by critical and un-predictable changes in system dynamics. A Fault Tolerant

Control (FTC) system is capable both of automatically compensating for faults and

of maintaining the performance of controlled system, at some acceptable level even

in the presence of faults.

According to the reliability study conducted by the US o�ce of the secretary of

Defence, about 80% of �ight incidents are due to faults a�ecting propulsion, �ight

control sensors and actuators. Classically hardware redundancy (multiple actuators

and sensors with the same function ) and simple threshold to address the faults.

Even if these techniques widespread in the defence and aerospace industry the ad-

ditional costs and weights they imply are an impediment to autonomy especially for

autonomous defence endgame.

In this project we propose a robust redesign technique which recovers the trajecto-

ries of nominal control design for 6 DOF nonlinear missile autopilot, in the presence

of nonlinear faults exist in the pitch & yaw actuator input channels. We designed a

high gain �lter and employ the fast variables arising this �lter in the feedback control

law to cancel the the e�ect of faults and uncertainties in the plant. In the presence of

a fault, the proposed controller guarantees the boundedness of all the system signals

and output tracking error converges to neighborhood of zero.

Index Terms:- Fault Tolerant Controller, Nonlinear Autopilot, Actuator Faults,

Pitch, Yaw, 6-DOF, High gain �lter and output tracking error
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Chapter1

Introduction

1.1 Motivation

The actuator mechanism which is the bridge between the controller and the com-

ponent, plays an important role in the nonlinear missile system. The actuator mech-

anism fault has much e�ect on the whole missile system performance, even will cause

the system paralysis and casualties. The actuator mechanism fault is always consid-

ered as the input type fault. So it is nessassery to design a fault tolerant controller

which compensates for the faults. The objective of the controller, should guarantees

the boundedness of all the system signals until the fault is cleared.

And classically missile autopilots are designed using linear control approaches.

Linear autopilot is designed using linearized plant model on a �xed set of operating

points. Such methods lead to design of Linear Time Invariant (LTI) controllers for the

LTI systems. Operating points are in general de�ned by the triplet ( Mach Number,

Altitude and Angle of Attack), which are considered as slowly varying parameters.

Interpolation techniques may then be used to connect local regions around these

operating points.

The basic requirement for an autopilot are as follows

1. To obtain fast response satisfying subsystem constraint because of short amount

of time involved in the endgame.

2. To obtain minimum steady state error as missile has to achive lowest possible

miss-distance.

3. Robustness of model uncertainties and decoupling between longitudinal and

lateral motion are important in order for the missile to achive its objective in the

physical environment.

The highly nonlinear nature of missile dynamics, due to the severe kinematic and
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inertial coupling of the missile airframe as well as the missile aerodynamics, has

been a challenge to the autopilot design that is required to have the satisfactory

performance for all �ight conditions in all probable engagement scenarios.

In the last decade, the design of missile autopilot has been extensively studied

using modern gain scheduling techniques and robust control. These methods are

also based on local linearization. Modern day interceptor missiles are designed with

high maneuverabilities to tackle highly agile and stealth target. High angle of at-

tack operating region becomes imminent, resulting high cross coupling of lateral and

longitudinal plane. Linear autopilot fails to address issue of cross coupling, as fun-

damental assumption of design of linear autopilot is decoupling of longitudinal and

lateral motion.

To overcome these limitations, in last decade design of �ight vehicle autopilots

has been extensively studied using modern control design paradigms such as, robust

control, feedback linearization, sliding mode control (SMC), singular perturbation

control (SPC) etc. In this thesis we used a nonlinear multivariable approach to

the design of an autopilot which includes pitch, roll and yaw coupling in design to

overcome the di�culties associated with linear design.

Nonlinear Dynamic Inversion (NDI), also called Feedback Linearization(FL), is

a control strategy that uses the model of a system to control it and through that

eliminates the need for gain scheduling and improve performance. NDI using Time

scale separation and SPC has been studied initially by Menon et al.[15] for design-

ing nonlinear controller for aircraft and FV. In their research, they separated the

whole dynamics into fast and slow dynamics according to the time response of the

dynamics with respect to the input variables.Time scale separation exists in many

aerodynamic systems and is applied to NDI �ight control. Although the whole sys-

tem is of nonminimum phase, each the fast and slow dynamics, according to the

time response w.r.t the input variables, are of minimum phase. Thus each separated

dynamics can be controlled by the FL technique. That is, the outer loop inversion
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controller uses the states of the fast dynamics such as the body rates to control those

of slow dynamics, and the inner loop inversion controller uses the �n de�ections to

control the state of the fast dynamics.

The roll autopilot design is very challenging because of roll uncertainties in roll

aerodynamic coe�cient, unmodelled dynamics, cross coupling, external disturbances,

wing/�n and thrust misalignments, low roll moment of inertia, centre of gravity(CG)

o�set and measurement inaccuracies. Nonlinear controller design using backstepping

is a viable alternative to FL technique. With backstepping, system nonlinearities do

not have to be cancelled in the control law. How to deal with nonlinearities instead

becomes a designer's choice. If a nonlinearity acts stabilizing, and thus in a sense

is useful, it may be retained in the closed loop system. This leads to robustness to

model errors and less control e�ort may be needed to control the system.

So, we are motivated to study a Two-Time scale redesign technique for robust

stabilization and performance recovery of uncertain nonlinear system under faults.

Here we proposed a new design which recovers the trajectories of a nominal control

design in the presence of input faults. We designed a high-gain �lter and employ

the fast variables arising this �lter in the feedback control law to cancel the e�ect of

uncertainties in the plant.

The following activities are carried out in this thesis

1) Under nominal controller design, Pitch & Yaw autopilots are carried out using

NDI with time scale separation technique and for Roll autopilot, nonlinear backstep-

ping technique is used.

2) A Two-Time scale redesign technique is used to design a closed loop controller

in the presence of actuator input faults.
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1.2 Literature Survey

During last decade, a signi�cant research e�ort has been contributed in the area

of nonlinear missile autopilot design. The nonlinear design approaches found during

survey are brie�y classi�ed into following methods

1. Feedback linearization based controller

2. Modern gain scheduled based controller

3. Sliding mode controller

4. Model based adaptive controller

5. Other approaches

1.2.1 Feedback linearization based controller

Feedback linearization[28] deals with techniques for transforming original system

models into equivelent models of a simpler form. The basic idea is, �rst to trans-

form a nonlinear system into a fully or partial linear system, and then use the well

known and powerful linear design techniques to complete the control design. Nonlin-

ear controllers based on Input-Output feedback linearization of the missile dynamics

have a mojor advantage to linearize and decouple MIMO nonlinear systems. This

technique can also be used as model simplifying devices for robust and adaptive con-

trollers. Background on the application of the feedback linearization technique to

missile autopilot problem can be found in the following references.

Devaud E, Siguerdidjane H et al.[23], [20], [22] and [21] presented a three-axis

STT missile autopilot design using classical time invariant control and static and

dynamic approaximate input-output linearizing feedback control.

Schumacher C and Khargonekar P.P [9] and [36] examined the closed loop stability

of a BTT, ait-to-air missile with a dynamic inversion controller using time scale

separation. A new nonlinear control method ( called �- D ) is used to design a full

envelope, hybrid BTT/STT autopilot for airbreathing ait-to-air missile in Xin Ming

and Balakrishnan's paper [14].

Application of nonlinear dynamic inversion for designing �ight control for super
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maneuvering aircraft is presented by Snell S.A., Enns D. F et al. [37]. Dynamic

inversion missile autopilot by use of backstepping is also demonstrated by Steinnicke

A. and Michalka G [48].

Menon P.K., Tahk M. and Briggs M [38] presented the linearizing transformation

technique to the autopilot design of air-to-air missile systems. The basic idea of this

paper is to transform the nonlinear time varying control problems to time invariant

problems there by simplifying the control design.

But the feedback linearization method has number of important limitations

1. It can't used for all nonlinear systems

2. The full state information is required

3. No robustness is guaranteed in the presence of parameter uncertainty or un-

modeled dynamics.

1.2.2 Gain scheduled based controller

Gain scheduling is an attempt to apply the well developed linear control method-

ology to control of nonlinear systems[39]. The idea of gain scheduling is to select a

number of operating points which cover the range of the system operation. Then at

each of these points, the designer makes a LTI approximation to the plant dynam-

ics and designs a linear controller for each linearized plant. Gain scheduling [41] is

conceptually simple and indeed practically successful in missile applications [40].

Goshal T. K., and Das G. et al. [49] and Rugh W.J. and Jackson P. B [50]

presented the three lateral loop autopilot design methodology and it's application in

missile dynamics.

The main problem with gain scheduling is that it does not have any theoritical

guarantee of stability in nonlinear operation, but uses some loose guidelines such

as the scheduling variable should change slowly and the scheduling variable should

capture the plant's nonlinearities. Another problem is the computational burden

involved in a gain scheduling design due to the necessary of computing many linear

controllers.
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1.2.3 Sliding Mode Controller

The sliding mode control (SMC) technology [43] is an intuitive and simple robust

control technique, addressing highly nonlinear systems with large modelling errors.

The application of SMC for designing missile autopilot and guidence loops may be

found in the following references.

Powly A.A. and Bhat M.S [42] presented a desrete variable structure controller

for tracking the lateral command for a dual input air-to-air missile. The e�ciency

of the proposed controller is also brought out through simulation.

1.2.4 Model based adaptive controller

Adaptive control is an appealing approach to dealing with uncertain systems or

time varying systems. Adaptive controllers, whether developed for linear systems or

for nonlinear sytems are inherently nonlinear. Systematic theories exist for the adap-

tive control of linear systems. Existing adaptive control techniques can also treat

important class of nonlinear systems with measurable states and linearly parametriz-

able dynamics.

Applications of adaptive control and neural networks in aerospace autopilot design

can be found in Rysdyk et al.[44]. This paper describes the combination of approxi-

mate feedback linearization with neural network augmentation to provide transport

aircraft with a backup �ight control system.

1.2.5 Literature related to other control approaches

Some more approaches to design the missile autopilots have been reported in [45]

another di�erent approach has been taken for autopilot design using Linear Param-

eter Varying (LPV) techniques. Here �rstly the missile dynamics has been brought

into an LPV form Via a state transformation rather than the usual coordinate trans-

forrmation.

[46] and [47] present a missile autopilot design using Extended Mean Assignment

(EMA) control technique for LTV systems.The EMA control technique is based on

a new series D-eigen value (SD eigen value ) concept in a way similar to the conven-

tional pole placement design for LTI systems.The nonlinear dynamics of the missile

is rendered into a linear one that is tractable by EMA control technique.
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1.3 Organization of the thesis

Chapter1 describes the motivation of taking up this project

Chapter2 gives a theorical background of Robust stabilization of uncertain non-

linear systems and brief history of nonlinear design techniques like Dynamic Inversion

with Time-Scale Separation and Integrator Backstepping techniques.

Chapter3 provides the basics of the Missiles such as classi�cation of Missiles,

Missile subsytems like Guidance, Navigation and Autopilot control and Dynamic

model of Missile.

Chapter4 explains the design aspects of the Fault Tolerant Controller with it's

input data requirements.

Chapter5 gives the validation of the controller under the di�erent case studies

with it's performance exbition.

Chapter6 gives the conclusion and then explains the future prospects for the

project.
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Chapter 2

Theoritical Background

2.1 Two-Time scale Redesign technique

Robust stabilization of uncertain nonlinear systems [1] has been a wide research

interest over the past decades. Control redesigns via Lyapunov stability theory and

Input-to-state stable (ISS) conditions to guarantee the stability of systems perturbed

by unkwon functions or parameters have been studied in great depth by numerous

researchers. These include the robust backstepping design, adaptive backstepping

and tuning functions, Geometric control designs and Sliding mode control.

The existing robust designs are motivated towards stabilization of the origin for

the perturbed system and not account for the transient response of the redesigned

closed loop system from the nominally controlled system. Depending on the desired

precision and safety criticality of a system, changes in the transient response can

be highly undesirable. To circumvent this problem, in this thesis we used a new

redesign, in which we �rst design a high-gain �lter and then use the fast variables

arising from this �lter in the nominal feedback control law in order to cancel the

e�ect of the uncertain fault functions in the plant, so that after a fast transient the

closed loop trajectories converge to the nominal trjectories.

We cosider the system

_x = f (x)+g (x) (u+� (x)) (2:1)

where x �Rn is the state, u �Rp is the control input and f(x); g(x) and �(x)

are su�ciently smooth functions of x. We assume that the functions f(x); g(x)

are known while �(x) is unknown nonlinear, bounded uncertain/ fault function in x.

To design a control input u which stabilizes the origion x = 0 of (2.1) despite the

presence of �(x), we make the following two assumptions.

Assumption 1: There exists a feedback control law u = �(x) such that the ori-
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gin of the nominal closed loop system _x = f(x) + g(x)�(x) (2:2) is globally

asymptotically stable, with a positive de�nite radially unbounded C2 Lyapunov func-

tion V (x) satisfying @V
@x

T
[f(x) + g(x)�(x)] � �U(x) 8x�Rn (2:3) , where U(x) is

Positive De�nite and possesses a positive de�nite Hessian @2U
@x2

at x = 0.

Assumption 2: There exists a function h(x) : Rn ! Rp such that the pxp matrix

G(x) := Lgh(x) =
@h
@x
g(x) is non singular for all x.

With this assumptions we note that the variable y = h(x) satis�es

_y = Lfh(x)+G(x)(u+�(x)) (2:4)

To estimate the unknown �(x) we design a �lter

ŷ = Lfh(x)+G(x)u� 1
�
(ŷ�y); ŷ(0) = y(0) (2:5)

where the parameter � > 0 will be selected. Then from (2.4) and (2.5),

the variable l := ŷ�y
�

(2:6)

satis�es � _l = �l �G(x)�(x); l(0) = 0: (2:7)

When � is small, l evolves in the faster time scale than x, and reaches a small

neighborhood of the manifold

l = �G(x)�(x) (2:8)

Therefore, a plausible design for u to cancel the e�ect of �(x) in (2.1) would be

u = �(x) +G�1(x) l (2:9)

It is noted that the desired control law( Eqn 2.9) is a combination of Nominal

control law and �lter dynamics. So, In order to design a Fault Tolerant Controller,

one has to design nominal controller using any suitable technique in conjuction with

high-gain �lter design.

2.2 Time Scale Separation & Back Stepping Techniques

Basic motivation of designing nonlinear autopilot for a high performance missile

is to follow reference guidance generated latex commands with desired transient re-

sponse and accuracy. Latex control is always desirable as this controls the angle

of attack and there by controls plant e�ectively in the presence of high magnitude
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and low frequency disturbance in the form of wind and gust. Most of missiles are

Skid-To-Turn (STT) type to have accurate 2-plane guidance. Unfortunately �n/tail

controlled STT missile su�ers from non-minimum phase zero apart from more cou-

pling terms compared to Bank-To-Turn (BTT) missiles.

In nonlinear framework this problem is solved using two types of approaches:

1) To control a output variable which is combination of angle of attack and latex.

This rede�ned variable does not possess nonminimum phase characterestic and can

be controlled but transient response is poor.

2) Using Dynamic Inversion with Time Scale Separation controller using time

scale separation [15] properties of missile.

Model inversion control using time-scale separation is studied using singular per-

turbation and applied by separating the whole dynamics into fast and slow dynamics,

according to the time response of the dynamics with respect to the input variables

[2]. Here the fast dynamics are assumed to go to steady state quickly, and thus the

reduced system can be obtained. Actually Time Scale Separation exists in many

aerodynamic systems and is applied to model inversion �ight control. Although

the whole system is of nonminimum phase, each fast and slow dynamics, separated

from the original dynamics according to the time response with respect to the input

variables, are of minimum phase.

Thus, each separated dynamics can be controlled by the feedback linearization

technique. That is the outer loop inversion controller uses the states of the fast

dynamics to contol those of the slow dynamics , and the inner loop inversion controller

uses the control �n de�ection to control the states of fast dynamics. The dependencies

can be symbollically represented using the following expressions:

�r ) p) � (2:10)

�p ) q ) �) az (2:11)

�y ) r ) � ) ay (2:12)

Eqn (2.10-2.12) state that the roll, pitch and yaw �n de�ections in�uence the

body rates, which in turn in�uence the roll attitude, angle of attack and angle of

side slip. The angle of attack and angle of side slip in�uence the pitch and yaw latex.
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2.2.1 Nonlinear Dynamic Inversion Controller with Time Scale Separa-
tion

The basic concept behind the Time Scale Separated NDI controller is to follow com-

manded input with desired fastness and accuracy when original plant can be thought

of as one minimum phase fast subsystem and one minimum phase slow subsystem.

This is achieved by inverting the governing equations of the individual subsystem

dynamics based on measured states and input commands.

Let the nonlinear system along any pursuer interest axes like Inertial, Local Ver-

tical, Body, Wind and Fin frames are represented by

_x = f (x) + g (x)u (2:13)

Here state variables x = [ � � � p q r]T

where � ! Roll Orientation; � ! Angle of Attack; � ! Side SlipAngle; p !
Roll Rate; q ! PitchRate; r ! Y awRate:

Using time scale separation, fast and slow state dynamics can be separated as

_xs = fs(xs) +Gs(xs)xf ys = hs(xs; xf ) (2:14)

_xf = ff (xf ) +Gf (xf )u y = hf (xf ; u)

Separating the state variable x = (xs; xf )
Tas slow and fast variables respectively

and de�ning the slow variables xs = (�; �; �)T and fast variables xf = (p; q; r)T .

� The measurements of slow variable dynamics are on-board accelerometer out-

puts i.e ys = (�; ay; az)
T . Taking the derivative of the outputs

_ys =

0
@ _�

_ay
_az

1
A =

�
@hs

@xs

�
[fs (xs) +G (xs)xf ] =

�
@hs

@xs

�
fs (xs)+

�
@hs

@xs

�
G (xs)xf = Lfsh+�xf (2:15)

from the �ctitious input _ys, extracting the control law as us = xf = ���1 [Lfsh � _ys]

which asymptotically tracks the output ys. Similarly for fast variable dynamics also.
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2.2.2 Integrator Backstepping technique

Consider the nonlinear system [2]

_x = f(x) + g(x) �; _� = u (2:16)

Assumption:- 9 a state feedback control law � = �(x) in which �(0) = 0 and a

Lyapunov function V1(x) > 0 . Then V1(x) satis�es the following inequality

_V1(x) =
�
@V1
@x

�T
_x =

�
@V1
@x

�T
[f(x)+ g(x) �] � �Va(x) (2:17)

where Va(x) > 0 (positive de�nite) and it has to be selected.

Observation:- When x = 0 �(x) = �(0) = 0: Then from Equation (2.16) _x(0) =

f(0) = 0: But when � ! 0 _x = f(x) and hence x 6= 0:

Hence let us add and subtract g(x)�(x) in Equation (2.16) to obtain

_x = [f(x) + g(x)�(x)] + g(x)[� � �(x)] (2:18)

Let z , � � �(x) which generates the following system equations

_x = [f(x)+g(x)�(x)]+g(x)z; _z = _�� _�(x) = u� _�(x); _� = u (2:19)

This change of variable is often called backstepping since it backsteps the control

��(x) through the integrator. Since f; g; �(x) are known, the derivative can be

written as

_�(x) =
�
@�

@x

�T
_x =

�
@�

@x

�T
[f(x)+ g(x) �] (2:20)

Letting v = u� _�(x) reduces our system to an equivalent system as

_x = [f(x)+g(x)�(x)]+g(x)z; _z = v (2:21)

This equation (Eqn 2.21) has the same form as the system we started (Eqn 2.16).

This modularity property of backstepping will be exploited to stabilize the overall

system.

Let us de�ne a candidate Lyapunov function using Eqn (2.17) and Eqn (2.21)

V (x; z) = V1(x) +
1
2
z2 (2:22)

Let us calculate derivative of Eqn (2.22) and by substitution of relevant terms of

Eqn (2.17) and Eqn (2.21) we get

_V (x; z) = _V1(x)+z _z =
�
@V1
@x

�T
[f(x)+g(x)�(x)+g(x) z]+z v (2:23)
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=
�
@V1
@x

�T
[f(x) + g(x)�(x)] + [

�
@V1
@x

�T
g(x) + v] z � �Va(x) + [

�
@V1
@x

�T
g(x) + v] z

Let us select = � �@V1
@x

�T
g(x)� k3z � k4z

3 (2:24)

Then from Eqn (2.23) gets reduced to (Va(x) is positive de�nite,k3 > 0,k4 > 0)

_V � �Va(x)�k3z2�k4z4 < 0 (2:25)

So the control can be de�ned as (Refer Eqn.2.19, Eqn.2.21 )

u = _�(x) + v = _�(x)� �@V1
@x

�T
g(x)� k3z � k4z

3 (k3; k4 > 0)

z = ���(x) (2:26)

_�(x) =
�
@�

@x

�T
[f(x) + g(x)�]
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Chapter 3

Missile Basics

A missile is a projectile that is, something thrown or otherwise propelled. The

earliest form of missile was probally a stone that, when thrown forcefully through the

air, would follow a balastic path. Adding gun power to a projectile, resulted in the

rocket, the �rst powered but as yet unguided missile. Rockets was �rst invented in

medieval China (Circa 1044 AD ) but its �rst practical use for serious purpose other

than entertainment took place in 1232 AD , by the Chinese against the Mongols

at the Siege of Kai-Feng-Fue. There after from 1750 AD to 1799 AD Haider Ali

and Tipu Sulatan perfected the rockets's use for military purpose very e�ectively

using it in war against British colonial armies. It was not until the early 1900s

that guided missile development was begun. In so far as the missile we know it

today is concerned, the impetus came primarily from world war-II and in particular

from German scientists. Immediately after world war there was a rapid growth in

missile defence activity throughout the world. Although this work is concerned with

a particular type of short range missile autopilot.

3.1 Missile Classi�cation

Missiles can be classi�ed mainly, according to the following design technologies,

eventhough there are other subclasses.

1) Tactical Vs Strategic�- Depends upon the type of guidence laws used.

2) Short Range, Medium Range, Long Range, IRBM and ICBM�Depends upon

the horizontal distance travelled.

3) SSM, SAM, ASM, SSM , Anti Tank and Cruise Missiles��Depends upon

type of launching environment.

4) Sub Sonic, Super Sonic and Hyper Sonic Missiles�� Depends upon the

Mach Number (M) of travelling speed.

5) Depressive Vs Lofted Trajectory Missiles��Depends upon the attained

maximum height in the atmosphere.
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3.2 Missile Subsystems

A missile consits of several subsystems to achive its goal with minimum miss dis-

tance. The most closely related subsystems are shown in the block diagram Fig

3.1 which describe the principle function of each subsystem and list the principle

elements of each.

3.2.1 Navigation

When missile is launched, it's position, attitude, speed, acceleration and rotation

are to be kwown. The navigation subsystem updates these variables during the �ight.

This is done by using the sensor data and strap down navigation algorithms. These

variables are suplied to the guidance subsystems.

3.2.2 Guidance

The guidance subsystem computes the error between the missile's actual and de-

sired courses, computes the corrections necessary to reduce or nullify the error ac-

cording to a choosen guidance law, and gives commands to the autopilot to activate

the controls to achive the corrections. These commands may be Lateral accelarations

(Latex), angural rates etc. The navigation system contains the sensors that provide

the information on the missile's actual and desired trajectories, noise �lters and a

computer in guidance system (OBC) to process the information into the commands

to the autopilot.

Fig 3.1 : Basic Subsystems of Missile
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3.2.3 Autopilot

The autopilot receives the commands from the guidance computer and process

them into commands to the controls such as de�ections or rates of de�ection of

control surfaces or jet controls through action of servomachanisms. To provide the

de�ection at a desired rate, the servomechanism motors must contend with the iner-

tia of the control device and the torque about itself. Since the autopilot will convert

guidance commands of accelaration or angular rate into control commands, it must

have a way to determine if the accelerations and angular rates provided by de�ecting

the controls are meeting the guidance commands. Thus this subsystem will have ac-

celerometers for measuring the achieved accelerations and gyroscopes for measuring

the angular positions or rates. Depending on where these measurements are placed,

the autopilot may have to provide corrections to the instrument readings to obtain

the true accelerations of the missile's center of gravity (CG) and true angular rates

about the principle axes. Classically, the missile autopilot comprises the three inde-

pendent autopilots, one for each lateral direction, namely Pitch and Yaw, and one

for Roll.

3.2.3.1 Lateral Autopilot

The missile autopilot controls the acceleration normal to the missile body. In this

case the autopilot structure is a three-loop topology using measurements from an

accelerometer located ahead of the missile's centre of gravity and from a rate gyro to

provide additional damping. Fig 3.2 shows the classical con�guaration of an autopi-

lot. The controller gains are scheduled based on Mach Number and tuned for robust

performance at an altitude of around 4000 mters (10000 ft) in general for small range

surface-to-surface STT missiles. According to the Fig 3.2 there are three feedback

loops are present.

Since control of acceleration is required, the outermost loop is closed by an ac-

celerometer and have lowest bandwidth among the threeloops. The innermost rate-

damping loop is required to damp the response of bare airframe, which has an under-
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damped resonance in the stable case. In addition the innermost rate-damping loop

has wide bandwidth for damping the poles of airframe. The last one, known as

synthetic stability loop, improves the high frequency poles of the autopilot if the

airframe is stable and enables the autopilot to tolerate some instability of the air-

frame. Furthermore the synthetic stability loop in Fig 3.2 e�ectively feeds incre-

mental pitch angle back to the �n servos, there by moving the autopilot closedloop

poles,corresponding to the bare airframe poles. Three important parameters of three-

loop autopilot i.e system damping, time constant of desired latex demand transfer

function fx
fy
and open loop crossover frequency of innermost loop need to be tightly

controlled.

Controlling system damping ensures that guidance system is not sensitive to body

rate coupling. Selecting and controlling system time constant to the speci�ed value

as per guidance loop requirement tightly, means that adequate performance in terms

of miss distance can be achieved. Finally controlling cross over frequency means

that we will have a robust design, which is not overly sensitive to un-modelled high

frequency dynamics.

Fig 3.2 : Block diagram of classical Lateral Autopilot
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3.2.3.2 Roll Autopilot

The basic function of Roll Autopilot is to make the missile roll stabilized , that is

to provide missile stabilization of roll attitude about the longitudinal axis. This is ac-

complished by sensing roll rate ,and using the �ns(or wings) de�ection by an amount

su�cient to counteract roll disturbances. Moreover, the response of the system must

be su�ciently fast to prevent the accumulation of signi�cant roll angles.

3.3 Missile Control

The choice of the control system will depend on the use of the missile, �ight path

and the height at which it will operate. There are two main control systems used

3.3.1 Aerodynamic

Aerodynamic change of �ight path is obtained by using a wing at incidence to the

direction of �ight. The wing is set at incident in one of the two ways:

� By using a rotatory wing

� By using a �xed wing, but movable control surface to set the whole missile at

incidence. The control surfaces may be at the front or rear of the missile.

3.3.2 Jet reaction forces

Change of �ight path by jet reaction forces is achieved in one of the two ways:

� By altering the direction of thrust of the propulsion unit, either by swivelling

the whole unit, or by de�ecting the gas stream by vanes or similar devices.

� By the use of separate auxiliary jet reaction units.

3.4 Missile Mathematical Model

The missile 6 DOF model will consists of 19 di�erential equations. This includes

aero data model, thrust model, jet vane model apart from dynamics of

- Missile Velocities (Fin frame)

- Missile Positions (Launcher frame)
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- Missile Body rates ( Fin frame)

- Euler Angles ( Launcher to Body frame )

- Inertial Velocities ( Launche frame)

The frames of reference and sign convention employed are described in the follow-

ing section.

Fig 3.3 : Representation of Missile axis nomenclature and sign convention

3.4.1 Frames of reference

The following frames of reference (with it's su�x in brackets) are used in the

present module.

1. Launcher Frame(i)

2. Body frame(b)

3. Stability axis frame(s)

4. Wind axis frame(w)

5. Fin axis frame(f)

The sign convention followed for the above frames are such that, forces are considered

positive if they act along the positive axis direction and moments are taken to be

positive if the rotation is anti-clockwise as seen from the tip to root of the axis.
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� Local Vertical or Launcher Frame

This is a frame on the surface of the earth, whose origin coincides with the missile's

center of gravity just before launch and axes directions are: x-axis vertically up,

y-axis towards east and z-axis in the north direction. Hence this frame of reference

is also called Launcher �xed VEN (Vertical-East-North) frame.

This frame is assumed to be inertial for the missile motion and so it is important

for the computation of guidance parameters on the basis of missile trajectory in this

frame.

� Body frame

The Body frame considered for the present module is the frame whoose origin is

located at the center of gravity and x-axis parallel to the geometric axis of symmetry

of the missile and y-axis in the starboard direction while z-direction completes the

right handed triad. The y-z axis is such that the �ns are cross to these axis directions.

This frame is quite important for de�ning the missile dynamic equations of motion

and evaluating certain important aerodynamic parameters.

� Stabily axis frame

Stabilty axis frame is obtained from body axis frame after the rotaion of x-z axis of

body frame by an angle of attack (�). This frame is generally used for analysing the

e�ect of perturbations from steady-state �ight.

� Wind axis

Wind axis frame is obtained from Stability axis frame after the rotaion of x-y axis of

Stabity frame by an angle of Side slip (�). It is worth noting that Lift, Drag and

Cross-wind are naturally de�ned with wind axes frame.

� Fin axis frame

This frame have all the characteristics common to the body frame, except that here

the y and z directions are along the missile �ns. Here this frame is achieved by a �
4

rotation of body frame along positive x-axis in right handed manner. This frame is

quite important from the point of view of de�ections given to �ns.
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3.4.2 Coordinate Transformation between di�erent frames

Because there is often a need to transform the missile velocities, accelerations or

other vector quantities from one frame to another. The transformations between

these frames are important and are used extensively in the guidance of the missile.

So the following transformation matrices have been obtained.

� Transformation matrix from Launcher frame to Body frame (Euler
Angles)

At time of launch, the missile body axis (xb; yb; zb) are oriented with respect to

launcher frame (xL; yL; zL) at Euler angles (�; �;  ) , where order of rotation is �!
 ! �. For these Euler angles the transformation matrix is given by

TLV 2B =

2
4 cos� 0 �sin�

0 1 0
sin� 0 cos�

3
5
2
4 cos sin 0
�sin cos 0

0 0 1

3
5
2
4 1 0 0

0 cos� sin�

0 �sin� cos�

3
5 (3:1)

� Transformation matrix from Body frame to Wind frame

Since wind frame is obtained by rotating body axis frame �rst by an amount of

angle-of-attack (�) about it's y-axis (Resultant known as Stability axis) and then

rotating by angle of side slip (�) about z-axis of stabillity axis.

Therefore the transformation matrix is given by

TB2W =

2
4 cos� sin� 0
�sin� cos� 0

0 0 1

3
5
2
4 cos� 0 sin�

0 1 0
�sin� 0 cos�

3
5 (3:2)

� Transformation matrix from Body frame to Fin frame

Since the �n frame is achieved by a rotation of body frame about positive x-axis by

an angle of 45oin right handed manner. Hence the transformation matrix from the

body frame to �n frame is given by

TB2FIN =

2
4 1 0 0

0 cos
�
�
4

�
sin

�
�
4

�
0 �sin ��

4

�
cos

�
�
4

�
3
5 (3:3)
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3.4.3 Aerodynamic Nomenclature

The forces acting on the missile in �ight, consists of Aerodynamic, Thrust and

Gravitational forces. These forces are can be resolved along an axis system �xed to

the missile's center of gravity (CG). The force components denoted as X,Y and Z;

Tx, Ty and Tz; and Wx,Wy and Wz are the aerodynamic, thrust and gravitational

force components along x, y and z axes respectively.

The aerodynamic forces are de�ned in terms of Dimensionless coe�cients, the

�ight Dynamic pressure (Q) and a reference area (S) as follows.

With respect to missile body axis

X = CxQS Axial force

Y = CS QS Sideforce (3:4)

Z = CN QS Normal force

With respect to the wind/velocity axis

D = CDQS Drag force

Y = CyQS Side force (3:5)

Z = CLQS Lift

In a similar manner, the moments on the missile can be divided into moments

created by the aerodynamic load distribution and the thrust force not acting through

the center of gravity(CG). The components of the aerodynamic moment are also

expressed in terms of dimensionless coe�cients, �ight dynamic pressure (q), reference

area (S) and characteristic lenght (l) as follows

L = ClQS l Rolling moment

M = CmQS l P itching moment (3:6)

N = CnQS l Y awingmoment

The aerodynamic coe�cients Cx,CS,CN ,CD,Cy,CL,Cl,Cm and Cn primarily are

functions of the Mach number (M), Reynolds number (Re), Angle-of-Attack (�) ,

Side slip angle (�) and control de�ection (�); they are the secondary functions of the

time rate of change of angle of attack and side slip, and the angular velocity of the
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missile.

The functional dependance of aerodynamic coe�cient is represented as

C� = C�(M; �; �; _�; _�; �) (3:7)

( � may represents N , S, x, y,L, D, l, m, n and � etc.)

The derivative of equation (3.7) is computed for general coe�cient case is illus-

trated below

dC� =
�
@C�
@M

�
dM +

�
@C�
@�

�
d� +

�
@C�
@�

�
d� +

�
@C�
@�

�
d� + � � � � � �H:O:T

= CM
� dM+C�

� d�+C
�
� d�+C

�
�d�+� � � � � � (3:8)

Fig 3.4: Aerodynamic force components along B-frame and W-frame

3.4.4 6 DOF State Space model in Fin frame

The nonlinear di�erential equations for the missile model written in the Fin frame

are given as [51]
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_uf = rfvf � qfwf +
1
m
[Tx �QSC0

D]� gx

_vf = pfvf � rfuf +
1
m

h
Ty +QS

n
CNB + C

�y
n �y +

d
2VT

�
�C _�

y
_� + C

rf
y rf

�oi
� gy

_wf = qfuf � pfvf +
1
m

h
Tz +QS

n
CNA � C

�p
m �p +

d
2VT

�
�C _�f

y _�f + C
qf
L qf

�oi
� gz

_pf = 1
Ixx

h
�Ixxpf +Mx � (Izz � Iyy) qf rf +QSd

�
Cl � C�r

l �r +
d

2VT
C
pf
l pf

�i
(3:9)

_qf = 1
Iyy

h
�Iyyqf +My � (Ixx � Izz) pf rf +QSd

�
CMA � C

�p
m �p

�
+QSd d

2VT

�
C
qf
m qf + C

_�f
m _�f

�i
_rf = 1

Izz

h
�Izzrf +Mz � (Iyy � Ixx) pfqf +QSd

�
CMB � C

�y
n �y

�
+QSd d

2VT

�
C
rf
n rf + C

_�f
n

_�f

�i

Where
�
gx gy gz

�T
=
�
gsin� � gp

2
cos� (sin�+ cos�) gp

2
cos� (sin�� cos�)

�T

Here the state variables (uf ; vf ; wf ) are forward velocities and (pf ; qf ; rf ) are body

rates of missile w.r.t �n frame. These state variables can be transformed into user

interested frame by it's equivalent Transformation.

CNB and CNA are resultant aero force coe�cients in vf and wf axis respectively.

The corresponding resultant moment coe�cients are CMB and CNA. The resultant

coe�cients, CNB, CNA, CMB and CMA are obtained as below from CN , CS, Cm and

Cn which are wind tunnel data reference to relative wind axis.

CNA = �CN cos�a � CS sin�a

CNB = �CN sin�a + CS cos�a

CMA = Cm cos�a + Cn sin�a

CNA = �Cm sin�a + Cn cos�a

The required state variables of interest, (�f ; �f ; �f ) are computed by following

relationship

�f = tan�1
�

tan�f
tan�f

�

�f = tan�1

�
(wf�Uzf)
(uf�Uxf)

�
(3:10)
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�f = tan�1

�
(vf�Uyf)
(uf�Uxf)

�

where Uxf ; Uyf ;Uzf are the wind velocities in X, Y, Z directions respectively with

reference to �n frame, and (�1,�2,�3 �4) are individual �n de�ections.

Now the state variables of interest are x =
�
�f ; �f ; �f ; pf ; qf ; rf

�T
. The deriva-

tive of state variables �f ,�f and �f are obtained by di�erentiating Eqn (3.10) and

substitung the Eqn (3.9).

Now, the derivative of the state variables �f ,�f and �f [8] are given below

_�f = pf � (qf sin�f + rf cos�f ) cot�R +
(aycos�f�azsin�f)

VT sin�R

_
_ f = qf � (pf cos�f + rf sin�f ) cos�f tan�f +

(azcos�f�axsin�f)cos�f
Vp

1+tan2�+tan2�

� (3:11)

__
f = �rf + (pf cos�f + qf sin�f )�cos�f tan�f +

(aycos�f�axsin�f)cos�f
Vp

1+tan2�+tan2�

Where �R = tan�1
�q

tan2�f+ tan2�f

�
and (ax; ay; az) are accelerations in x,

y and z directions respectively

3.4.5 Input to dynamical 6 DOFmodel

Launcher orientation angles:- Initial elevation (
init) and azimuth ( init) an-

gles of launch of missile are given by pre-launch computation algorithm (Ground

guidance computation ) for inclined launch. For vertical launch, these angles are

�xed, 
init = 90o and  init = 0o. With the help of these angles the orientation of the

body frame with respect to launcher frame just before the launch is obtained. Hence

the Euler angles just before the launch is obtained as below:

Inclined Launch Vertical Launch

�i = � ��
2
� 
init

�
�i = 0

�i = � init �i = 0
 i = 0  i = 0

Table-3.1: Initial Euler angles

These Euler angles are used in the calculation of Direction Cosine Matrix (DCM)

as in Equation (3.1)
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3.4.5.1 Fin de�ections

The �n de�ection corresponding to four �ns of the missile are �1;�2,�3 and �4 .

Where (�1,�3) are de�ections of Yaw plane and ( �2,�4) are de�ections of Pitch plane

with respect to �n frame as shown in Fig.3.5. Hence the e�ective Pitch, Yaw and

Roll de�ections in �n frame can be de�ned as below:

�y =
�
�1��3
2:0

�
�p =

�
�2��4
2:0

�
(3:12)

�r =
1
2
(�1 + �2 + �3 + �4)

Fig 3.5 : Fin De�ections

3.4.5.2 Time and Time update

The 6 DOF di�erential equations are solved just after the launch of the missile

and all these di�erential equations are coupled and the only independent variable is

time. Hence this system of di�erential equations must be solved together, with the

same time step at the same time. Hence two variables tM and dtM have been de�ned,
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where tM denotes missile �ight time and dtM denotes the step size.

Hence tM is inilized with zero, just before the launch. And dtM value is selected

on the basis of fastest subsystem involved in the missile or the accuracy&speed

requirements.

So tM and dtM are inilized as below:

tM = 0

dtM = 2:5 ms

3.4.5.3 Inilization of velocity and height

The initial position & velocity of the missile (Position & Velocity at tM = 0 ) are

zero. Because at the time of launch the center of mass (C M) of the missile is co-

incides with the origin of the coordinate system, so missile position is zero in all

the coordinate frames de�ned earlier, at tM = 0 and as missile is at rest, hence it's

velocity is also zero at tM = 0.

But to avoid the singularity problems in the beginning, we provide very small

values to these quantities. Hence the position, velocity & attitude rates of the missile

are inilized as below:

~V =

0
@ u

v

w

1
A =

0
@ �u

�v
�w

1
A ~r =

0
@ x

y

z

1
A =

0
@ �x

�y
�z

1
A ~! =

0
@ p

q

r

1
A =

0
@ �p

�q
�r

1
A

where �� denotes the small value.

3.4.5.4 Formulation of di�erential equation

The di�erential equation describing the motion of the missile are derived in the �n

frame. Here 15 variables of the missile are considered are state variables. Description

of all the state variables are given below.

uf : Velocity of the missile in X-direction in �n frame

vf : Velocity of the missile in Y-direction in �n frame

wf : Velocity of the missile in Z-direction in �n frame
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pf : Body rate about X-direction (Roll rate ) in �n frame

qf : Body rate about Y-direction (Pitch rate ) in �n frame

rf : Body rate about Z-direction (Yaw rate ) in �n frame

Vx : Velocity in X-direction of Launcher frame

Vy : Velocity in Y-direction of Launcher frame

Vz : Velocity in Z-direction of Launcher frame

XM : x-coordinate of missile position in Launcher frame

YM : y-coordinate of missile position in Launcher frame

ZM : z-coordinate of missile position in Launcher frame

 : Euler angle of the missile about z-axis

� : Euler angle of the missile about y-axis

� : Euler angle of the missile about x-axis

3.4.5.5 Velocity of the missile

The wind velocity ( if any) should also be included along with missile inertial ve-

locities because all the aero parameters of missile in general depends on the missile

velocity with respect to the wind.

Hene, if
�
Uxf Uyf Uzf

�T
is wind velocity in the missile body frame, then missile

relative velocity w.r.t wind ~Vrw =

0
@ Vrwx

Vrwy
Vrwz

1
A =

0
@ ub � Uxf

vb � Uyf

wb � Uzf

1
A

Where
�
ub vb wb

�T
is missile inertial velocity in body frame, and can be ob-

tained by transformation of missile velocity in �n frame as below:

ub = uf

vb =
�
vf�wfp

2

�
wb =

�
vf+wfp

2

�
Hence, the total velocity of the missile (used for aerodynamic parameter calcula-

tion ) is given by

VT =
p
V 2
rwx + V 2

rwy + V 2
rwz
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3.4.5.6 Total Angle-of-Attack

The angle of attack (�f ) and angle of side slip (�f ) in �n frame in correspondence

to the convention of � and � as explained in section 3.4.4, and are given by the

following equations

�f = tan�1

�
Vrwz�Vrwyp
2 Vrwx

�

�f = tan�1

�
Vrwz+Vrwyp
2 Vrwx

�
In the case of no wind the above expression reduces to the following equations

�f = tan�1
�
wf
uf

�
�f = tan�1

�
vf
uf

�
The resultant angle of attack, denoted by �R can be calculated as below

�R = tan�1
�q

tan2�f+ tan2�f

�

3.4.5.7 Aerodynamic Roll orientation

The roll orientation of the missile ( �a) is required for the proper resolution of aero-

dynamic forces and moments into reference frames ( Fin Frame in this case ) and

quadrant in which this roll is oriented should also be calculated as follows:

�a = tan�1
�
�f
�f

�
I Quadrant : �a = tan�1

�
�f
�f

�
II Quadrant : �a = � � tan�1

�
�f
�f

�
III Quadrant : �a = � + tan�1

�
�f
�f

�
IV Quadrant: �a = 2� � tan�1

�
�f
�f

�
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3.4.5.8 Atmospheric Module

Input:

Altitude : XM

The atmospheric model used for simulation is the Indian Standard Atmosphere,

which assumes a homogeneous ideal dia-atmospheric gas atmosphere having a certain

temperature pro�le with altitude ( obtained by experiments ).

Using this atmospheric model we compute the free stream static pressure ( Patm)

, density (�atm) and velocity of sound (Vsound) at any given altitude. Which is further

used in the calculation of dynamic pressure (Q ) and mach no ( M ) of the missile.

Dynamic Pressure, Q = 1
2
�atmV

2
T

Mach No, M = VM
Vsound

3.4.5.9 Propulsion Module

Input:

� Time

� Atmospheric Pressure

The data is provided as thrust and mass variation with respect to time. The required

thrust and mass are interpolated from this data at any given time.

Thrust:

Mangitude of instantaneous thrust ( Fp) can be calculated at any given pressure

by using the following formula [7]

Fp = FPref + (Pref � Pa)Ae; N

Where

FP : Magnitude of instantaneous thrust, N

FPref : Manitude of reference thrust as obtained by interpolation of test data, N

Pref : Reference ambient pressure, Pa

Pa: Instantaneous ambient pressure, Pa
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Ae: Nozzle exit diameter, m2

Mass:

Mass of the missile is obtained from the input data by interpolation at required

time.

3.4.5.10 Aerodynamic coe�cients calculation

The Aerodynamic coe�cients (CN ,Cm,CS,Cl,Cn) are function of Mach No (M ),

angle-of-attack (�) and Roll angle (�). This data is stored as 2-D lookup table for

di�erent roll angles ( 0, 22.5, 45.0, 90 deg ). These values are interpolated for given

mach number, angle of attack and roll angle.

The coe�cients (CN�
, XCP� ,Croll�) are calculated by interpolation of 1D look-up

table for the given mach number.

The coe�cient of drag is a function of mach number and altitude which is also

stored as 2D look-up table and interpolated for given mach number and altitude.
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Chapter 4

Controller Design

Generally missile autopilot su�ers from the problems of instability due to their

highly nonlinear and uncertain aerodynamic characterestics. At large angles of attack

or at high manuevering zones, missile �ight dynamics become highly nonlinear, due to

signi�cant amount of cross-coupling between the three motion axes. Also, almost all

missiles have signi�cant nonlinearities, associated with limitations in the movement

of aerodynamic control surfaces. The other forms of uncertainties are namely as

model variations in mass, inertia and C.G position, aerodynamic tolerances, air data

sytem tolerances, structral modes and actuator failures.

4.1 Objective

The fault tolerant controller will be designed according to the following qualitative
objectives

1) In a fault-free mode of operation, the state x(t) should track the reference vector

xd(t) as closely as possible, even in the possible presence of modelling uncertainity.

2) When a fault occurs, the controller should be able to guarantee some stability

property, such as boundedness of signals in a closedloop system.

3) The control action u(t) generated by the controller should accommodate the

fault that has occured and recover the tracking performance.

4.2 Uncertain nonlinear missile dynamical model

To illustrate the e�ectiveness of Fault Tolerant Controller (FTC), a multi-variable

nonlinear system is considered, which is a modi�ed version of the missile 6 DOF

model represented in the Eqn (3.9), as

_uf = rfvf � qfwf +
1
m
[Tx �QSC0

D]� gx

_vf = pfvf � rfuf +
1
m

h
Ty +QS

n
CNB + C

�y
n �y +

d
2VT

�
�C _�

y
_� + C

rf
y rf

�oi
� gy
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_wf = qfuf � pfvf +
1
m

h
Tz +QS

n
CNA � C

�p
m �p +

d
2VT

�
�C _�f

y _�f + C
qf
z qf

�oi
� gz

_pf = 1
Ixx

h
�Ixxpf +Mx � (Izz � Iyy) qf rf +QSd

�
Cl � C�r

l �r +
d

2VT
C
pf
l pf

�i
(4:1)

_qf =
1

Iyy

�
�Iyyqf +My � (Ixx � Izz) pf rf +QSd

�
CMA � C�p

m �p
�
+QSd

d

2VT

�
C
qf
m qf + C

_�f
m _�f

��
+fSp

_rf =
1

Izz

�
�Izzrf +Mz � (Iyy � Ixx) pfqf +QSd

�
CMB � C�y

n �y
�
+QSd

d

2VT

�
C
rf
n rf + C

_�f
n

_�f

��
+fSy

Where fSp and fSy are actuator fault functions in pitch and yaw channels re-

spectively. fS� = 0 represents the actuator fault-free case, where as 0 < fS� � 1:0

represents the loss of actuator e�ectiveness in the pitch and yaw channels.

In simulation, the actuator fauls are created as [3]

fSp =

8><
>:
0 t < 2 sec

0:5 + 0:2 Sin (4�t) 2 � t < 8 sec

0 else

(4:2)

fSy =

8><
>:
0 t < 2 sec

0:5 + 0:2 Cos (4�t) 2 � t < 8 sec

0 else

4.3 Design of FTC

We will design a Fault Tolerant Controller for the above uncertain nonlinear sytem

described by Eqn (4.1), by using a Two-Time scale Redesign technique as explained

in section 2.1

On comparison of Eqn (4.1), with uncertain general multi-variable nonlinear dy-

namic system described by

_x = f (x)+g (x) (u+� (x)) (4:3)

(This is the same system of Eqn 2.1 with each variable as de�ned there itself.)

45



f(x) =

0
BBBBBB@

f1(x)
f2(x)
f3(x)
f4(x)
f5(x)
f6(x)

1
CCCCCCA

=

0
BBBBBBBBBBB@

rfvf � qfwf +
1

m

�
Tx �QSC0

D

�
� gx

pfvf � rfuf +
1

m

h
Ty +QS

n
CNB + d

2VT

�
�C

_�
y
_� + C

rf
y rf

�oi
� gy

qfuf � pfvf +
1

m

h
Tz +QS

n
CNA + d

2VT

�
�C

_�f
y _�f + C

qf
z qf

�oi
� gz

1

Ixx

h
�Ixxpf +Mx � (Izz � Iyy) qf rf +QSd

�
Cl +

d
2VT

C
pf
l pf

�i

1

Iyy

h
�Iyyqf +My � (Ixx � Izz) pf rf +QSd CMA +QSd d

2VT

�
C
qf
m qf + C

_�f
m _�f

�i

1

Izz

h
�Izzrf +Mz � (Iyy � Ixx) pf qf +QSd CMB +QSd d

2VT

�
C
rf
n rf + C

_�f
n

_�f

�i

1
CCCCCCCCCCCA

(4:4)

,

control input u is de�ned as u =

0
@ �r

�p
�y

1
A ,

g(x) =

0
BBBBBBBBB@

0 0 0

0 0 QSC
�y
n

m

0 �QSC�p
m

m
0

�QSdC�r
l

Ixx
0 0

0 �QSdC�p
m

Iyy
0

0 0 �QSdC�y
n

Izz

1
CCCCCCCCCA
,

0
BBBBB@

0 0 0
0 0 kizDy

0 �kiyDp 0
�Dr 0 0
0 �Dp 0
0 0 �Dy

1
CCCCCA (4:5)

and g(x)�(x) ,

0
BBBBB@

4f1 (x)
4f2 (x)
4f3 (x)
4f4 (x)
4f5 (x)
4f6 (x)

1
CCCCCA+4g (x)u+

0
BBBBB@

0
0
0
0
fSp
fSy

1
CCCCCA (4:6)

with k�(x)k � �i , where �i is known value i.e �(x) is norm bounded.

where kiz =
Izz
md

, kiy =
Iyy
md

& 4fi for i = 1 to 6 are errors due to perturbation in

aero coe�cients; 4g (x) is perturbation in g (x)

Let us de�ne a variable, y as y = h(x) =

0
@ pf

qf
rf

1
A (4:7)

So, G(x) , Lgh(x) =
@h(x)
@x

g(x) =

0
BB@

@pf
@uf

@pf
@vf

@pf
@wf

1
@pf
@qf

@pf
@rf

@qf
@uf

@qf
@vf

@qf
@wf

@qf
@pf

1
@qf
@rf

@rf
@uf

@rf
@vf

@rf
@wf

@rf
@pf

@rf
@qf

1

1
CCA

0
BBBBB@

0 0 0
0 0 kixDy

0 �kiyDp 0
�Dr 0 0
0 �Dp 0
0 0 �Dy

1
CCCCCA =
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0
@ 0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

1
A
0
BBBBB@

0 0 0
0 0 kixDy

0 �kiyDp 0
�Dr 0 0
0 �Dp 0
0 0 �Dy

1
CCCCCA =

0
@ �Dr 0 0

0 �Dp 0
0 0 �Dy

1
A (4:8)

To estimate the unknown �(x) we will design the �lter, as represented by Eqn.

(2.5)

_̂y = Lfh(x) +G(x)u� 1
�
(ŷ � y) ; ŷ (0) = y (0)

)
0
@ _̂pf

_̂qf
_̂qf

1
A =

0
@ f4(x)�Dr�r

f5(x)�Dp�p
f6(x)�Dy�y

1
A- 1

�

0
@ p̂f � pf

q̂f � qf
r̂f � rf

1
A (4:9)

De�ne a variable l, as per Eqn (2.6), l ,

0
B@

p̂f�pf
�

q̂f�q
�

r̂f�rf
�

1
CA (4:10)

Therefore a desired controller, udes to cancel the e�ect of �(x) in Eqn (4.1) is

udes(x)=unom(x)+G
�1(x) l(x) (4:11)

Where unom (x) is the Nominal control law for the nominal system represened by

Eqn (3.9)

4.3.1 Design of Nominal Controller unom (x)

To design nominal controller unom (x) in Eqn (4.11), a Two-Time Scale Separation

technique is adopted for the nominal system described by Eqn (3.9). Since the slow

and fast subsystems consists of three �rst order di�erential equations each,with rela-

tive degree (1,1,1). So the resulting control law makes six degrees of freedom appear,

corresponding to the six �rst order time constant of each channel, for both the slow

and fast subsystems. Tuning these constants as a matter of fact, it can be done

through considerations similar to those employed in the classical linear autopilot

design approach [2].
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The actuator dynamics must be really faster than the fast subsystem. It turns

out that, by using small gain theorem, this condition can be expressed in terms

of frequency magnitude conditions, involving the transfer function of the neglected

higher dynamics and the transfer function of the ideal closed loop system.

The Two-Time Scale Separation design technique as explained in detail in section

2.2 of Chaper-2, is applied to the nominal system described by Eqn (3.9). In this

approach, states pf , qf and rf are identi�ed as faster dynamic responses, while �f ,

�f and �f are characterized as slow state variables. The angular rates pf , qf and

rf strongly depends upon the �n de�ection. Thus to start with fast state controller,

states pf , qf and rf are designed. Having designed a fast state controller, a separate

approaximate inversion procedure was carried out, to design the slow state controller

for �f , �f and �f . It may be noted that, such a model reduction was possible as

there was signi�cant di�erence in time scale between the fast and slow states in the

open loop dynamics of the missile.

As stated earlier, the design of this controller depends on two time scale separa-

tion. The outer loop has slow dynamics and the inner loop has faster dynamics. The

outer loop controller takes the commanded acceleration and current acceleration as

input and generates the rate command which works as a input to the inner loop.

The basic block diagram of the Time scale separated nonlinear controller is shown

in the Fig 4.1

Fig 4.1: Two-Time Scale Separation Autopilot Con�guration
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4.3.1.1 Inner-Loop Design formulation with NDI technique

The control structure of the inner loop is similar as outer loop structure. The pur-

pose of this inner-loop design is to decouple the Roll, Pitch and Yaw channels and

the equivalent transfer function between the control input vI and output yI( su�x

I stands for Inner-loop ) for states pf , qf and rf taken independently, is that of an

integrator.

Here, in our problem there are three inputs and three outpus are available.

The fast subsystem dynamics are stated as _xf = ff (x) + Gf (x)u ; with output

yf = hf (xf ; u).

Here fast states xf =
�
pf qf rf

�T
and full state vector x =

�
uf vf wf pf qf rf

�T
is

of dimension 6x1 . output vector yf =
�
pf qf rf

�T
is 3x1 vector . f(x) and h(x)

are smooth vector �elds and Gf (x) is 6x3 matrix, whoose columns are also smooth

vector �elds.

Recalling the governing equations as presented in chapter-3 (Eqn 3.9) the output

equation is

_pf = 1

Ixx

h
�Ixxpf +Mx � (Izz � Iyy) qf rf +QSd

�
Cl � C�r

l �r +
d

2VT
C
pf
l pf

�i

_qf = 1

Iyy

h
�Iyyqf +My � (Ixx � Izz) pf rf +QSd

�
CMA � C

�p
m �p

�
+QSd d

2VT

�
C
qf
m qf + C

_�f
m _�f

�i
(4:12)

_rf = 1

Izz

h
�Izzrf +Mz � (Iyy � Ixx) pfqf +QSd

�
CMB � C

�y
n �y

�
+QSd d

2VT

�
C
rf
n rf + C

_�f
n

_�f

�i

The system relative degree is r1 = 1,r2 = 1,r3 = 1. The above equation may be

written as0
B@ y

(r1)
1

y
(r2)
2

y
(r3)
3

1
CA=

0
@ Lr1

f h1 (x)
Lr2
f h2 (x)

Lr3
f h3 (x)

1
A+EI (x)

0
@ �r

�p
�y

1
A (4:13)

)
0
@ _pf

_qf
_rf

1
A =MI (x) + +EI (x)

0
@ �r

�p
�y

1
A ; Where
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MI (x) =

0
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Lf h1 (x)
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Lf h3 (x)

1
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�
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d
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C
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1
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1
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�
C
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�i

1
CCCA (4:14)

and the decoupling matrix,

EI (x) =

0
@ Lg

1
h1 (x) Lg2h1 (x) Lg

3
h1 (x)

Lg
1
h2 (x) Lg

2
h2 (x) Lg

3
h2 (x)

Lg
1
h3 (x) Lg

2
h3 (x) Lg

3
h3 (x)

1
A =

0
BB@

�QSdC�r
l

Ixx
0 0

0 �QSdC�p
m

Iyy
0

0 0 �QSdC�y
n

Izz

1
CCA =

0
@ �Dr 0 0

0 �Dp 0
0 0 �Dy

1
A (4:15)

The 3x3 matrix EI (x) is invertible over the region. Then the input transformation

u =

0
@ �r

�p
�y

1
A = E�1

I (x)

0
B@

vI1�Lr1
f
h1(x)

vI2�Lr2
f
h2(x)

vI3�Lr3
f
h3(x)

1
CA (4:16)

(or)

u =

0
@ �r

�p
�y

1
A = �E�1

I (x)MI (x)+E
�1
I (x)

0
@ vI1

vI2
vI3

1
A (4:17)

Where the vector vI =
�
vI1 vI2 vI3

�T
is the new control input obtained by

designing the linear controller so that the relationship between the plant output and

the new control input vI is linear and decoupled.

The above three equations of the simple form

0
@ _pf

_qf
_rf

1
A =

0
@ vI1

vI2
vI3

1
A. Hence the

control law decouples the longitudinal and lateral motion. Here reference inputs�
vI1 vI2 vI3

�
are calculated as follow0

@ vI1
vI2
vI3

1
A =

0
@ _pf

_qf
_rf

1
A =

0
B@

�rBS
qf ref�qf

�qf
rf ref�rf

�rf

1
CA =

0
@ �rBS

(qf ref � qf )!qf
(rf ref � rf )!rf

1
A
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To robustify the roll performance, against unwanted roll disturbances, roll autopi-

lot is carried out by integrator backstepping as we will see in forth coming sections

of this chapter. This means that, new control input vI1 is equated to roll control law

�rBS as obtained from backstepping roll autopilot design.

4.3.1.2 Outer-loop design formulation using NDI

The command to the outer loop is the demanded latex generated by the guidance

law as per missile target kinematics. The outer loop basically controls the �ight

path rate of the missile. The outer loop generates the body rate demand to the inner

loop. Therefore, the plant considered for outer loop in which, input is body rate and

output is lateral acceleration. The control structure of the outer loop is shown in the
Fig 4.2

Referring the governing equation, the output may be expressed, as represented by

Eqn (3.11)

_�f = pf � (qf sin�f + rf cos�f ) cot�R +
(aycos�f�azsin�f)

VT sin�R

_
_ = qf � (pf cos�f + rf sin�f ) cos�f tan�f +

(azcos�f�axsin�f)cos�f
Vp

1+tan2�+tan2�

�f (4:18)

__ = �rf + (pf cos�f + qf sin�f )�fcos�f tan�f +
(aycos�f�axsin�f)cos�f

Vp
1+tan2�+tan2�

The above equation may be written in companion form as0
@ _�f

_�f
_�f

1
A = fs (x)+gs (x)

0
@ pf

qf
rf

1
A (4:19)

Where, fs (x) =

0
BBBB@
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Vp
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1
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A
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Hence the Eqn (4.19) may be rewritten as0
@ _�f

_�f
_�f

1
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0
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1
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A (4:20)

Since, �f and �f are not measurable quantities, so they are derived from the

measurable quantities fz and fy (Latex demand) by using the following relation.

fz =
�V 2

T SCNA

2m

�
1� h

lc

�
(4:21)

fy =
�V 2

T SCNB

2m

�
1� h

lc

�
Where � is the air density, VT is the missile velocity, S is the reference area, m is

mass of the missile, h is the static margin and lc is the control moment arm.

Di�erentiating Eqn (4.21), we get

_fz =
@fz
@�f

_�f
(4:22)

_fy =
@fy
@�f

_�f

Where @fz
@�f

=
�V 2

T SCN�

2m

�
1� h

lc

�
and @fy

@�f
=

�V 2
T SCN�

2m

�
1� h

lc

�
from Equation 4.22, we can write _�f =

�
@fz
@�f

��1
_fz ; _�f =

�
@fy
@�z

��1
_fy

Where _fz =
(azf ref�azf)

�zf
= (azf ref � azf )!zf and _fy =

(ayf ref�ayf)
�yf

= (ayf ref � ayf )!yf

Now applying feedback linearization law for Eqn (4.20)

0
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qf
rf

1
A =

0
@ 1 g1q g1r

g2p 1 g2r
g3p g3q �1

1
A

�18<
:
0
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1
A
9=
; (4:23)

The above equation linearizes the slow dynamics. If the desired linearized com-

mand is
�
�fd �fd �fd

�T
, applying the body rate input to the Equation 4.23

transforms into the following form
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0
@ _�fd

_�fd
_�fd

1
A =

0
@ _�f

_�f
_�f

1
A =

0
@ vO1

vO2

vO3

1
A; Where su�x O stands for output.

From the above two loop designs, we can conclude that, the obtained body rates�
pf qf rf

�
from the outer loop, is given to inner loop to get the roll, pitch and

yaw �n de�ections
�
�r �p �y

�
as we can call it as nominal controller unom (x).

Hence the nominal controller can written from Equation 4.16 as shown in Eqn (4.33)

Fig 4.2 : Control structure of Nonlinear Outer loop design

4.3.1.3 Roll Autopilot Design Via Integrator Backstepping

Unlike aircraft, there is no strongly stable position in roll for crusiform, cartesian

controlled missiles, and therefore they tend to roll due to various undesirable rolling

moments such as the ones arising from airframe misalignments, asymmetrical loading

of the lift and control surfaces, �n biases, and atmospheric disturbances. In most

missiles the roll position is required to be stabilized because the unwanted rolling

motion leads several undesired e�ects.

For missiles that are stabilized in roll position, the pitch and yaw channels can

be cosidered as decoupled single-input and single-output systems, thereby greatly
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simplifying the design of the autopilots.

So, in this work we employed an integrator backstepping technique for the design

of the roll autopilot, as with this technique system nonlinearities do not have to

be canelled in control law. If a nonlinearity acts stabilizing, and thus in a sense is

useful, it may be retained in the closed loop system. This leads to robustness to

model errors and control e�ort may be needed to control the system.

Let us formulate the roll autopilot design problem [2].

We have to track a desired roll angle ��. By letting �� = 0 it degenerates to

regular problem.

Let � , �� ��; then _� = _�� _�� = p.

So the roll channel dynamics for tracking a desired roll angle may be formulated

as below

_� = p

_p = upse = fp+gp�r (upse is pseudo control) (4:24)

Now, for the above roll dynamics, we will design pseudo control law upse, by using

Integrator Backstepping control technique, as explained in section 2.2 .

For design of � (x) = � (�), let (refering Eqn.2.8)

V1(x) = V1 (�) =
1
2
�2; _V1 (�) = � _� = �p � �Va (�) (4:25)

Let

Va(�) = k1�
2+k2�

4 (k1; k2 � 0) (4:26)

Then from Eqns.(4.25-4.26)

p = � (�) = �k1� � k2�
3 (Note : when � ! 0; � (�)! 0) (4:27)

Now the modi�ed system (refer Eqn. 2.9) is

_� = p+� (�)�� (�) = � (�)+z (z , p�� (�)) (4:28)

_z = v (where v = _p� _� (�) = upse � _� (�))

Let the candidate Lyapunov function (Eqn. 2.13) be

V (�; p) = V1 (z)+
1
2
z2 (4:29)
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Then following Eqn (2.14)

_V (�; p) = _V1 (�)+z _z =
�
@V1
@�

�
_�+z v =

�
@V1
@�

�
[� (�) + z]+z v (4:30)

Let us select (refer Eqn 4.25)

v = � �@V1
@�

�
_��k3z�k4z3 = ���k3z�k4z3 (k3; k4 > 0) (4:31)

So using Eqn (4.27), Eqns (4.30-4.31)

_V (�; p) = �k1�2�k2�4�k3z2�k4z4 < 0 (k1; k2; k3; k4 > 0; 8�; p �R2) (4:32)

Control selection algorithm for roll dynamics

1. De�ne z = p+ k1� + k2�
3 (k1; k2 > 0)

2. compute v = �� � k3z � k4z
3 (k3; k4 > 0)

3. compute _�(�) = (�k1 � 3k2�
2) p

4. compute upse = _�(�) + v = (�k1 � 3k2�
2) p� (� + k3z + k4z

3)

5. compute �rBS = (upse�fp)
gp

From the above three deisigns Viz. Lateral Autopilot design using Time Scale Sepa-

ration technique and Roll Autopilot design using Integrator Backstepping technique,

we can combine the control laws and write nominal control law as,

unom (x) =

2
64

�upse+Lfh1(x)
Dr�vI2+Lfh2(x)
Dp

�vI3+Lfh3(x)
Dy

3
75 (4:33)

4.3.2 Design of Desired controller udes (x)

Plugging Equation (4.33), into the Equation (4.11) to get the desired control law

udes (x), to cancel out the e�ect of unknown � (x)

udes (x) =

2
64

�upse+Lfh1(x)
Dr�vI2+Lfh2(x)
Dp

�vI3+Lfh3(x)
Dy

3
75+
0
@ �Dr 0 0

0 �Dp 0
0 0 �Dy

1
A

�1
2
64

p̂f�p
�

q̂f�q
�

r̂f�r
�

3
75 (4:34)

Here � is simulation parameter generally very small value and here we selected as

� = 0:01( Refer Appendix A for selecting value of �)
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4.4 Input data for FTC

Generally gain scheduling is carried out based on suitable aerodynamic parameter

which re�ect �ight condition in terms of mach nuber (M), Altitude and Angle-of-

Attack (�), So the parameter Turning rate time constant ( T� = mVT
QS C�

N
) is the best

choice. The pitch and yaw channel gain scheduling (body rate limiters of � 60

deg/sec) is as follow

Autopilot time constant is given by �ap = 0:10 T�

So, !0

�
!fy = !fz =

1
�fy

= 1
�fz

�
= min

n
8:0; 1

�ap

o
for outer loop of two-time sep-

aration design (To calculate _fz and _fy latex commands )

!in

�
!qf = !rf = 1

�qf
= 1

�rf

�
= min f25:0; 2:5!0g for inner loop of two-time scale

separation design ( To calculate _qf and _rf commands )

The uncertainty on aerodynamic data along with fault funtion over Nominal Con-

troller, for present Fault Tolerant Controller design is taken as

4C0
D = �10%C0

D 4CL = �10%CL 4Cm = �10% dCL

4Cy = �10%Cy 4Cq
m = �10% dCy 4C0

l = �20%C0
l

4C�
L = �15%C�

L 4C�
m = �15% dC�

L 4C�r
l = �15%C�r

l

Case study #1

The test pro�le of controller as autopilot demand along Roll, Pitch, Yaw as a

function of time is given below. Here along roll channel �d = 0 throughout. Lateral

acceleration demand along pitch channel is -20g along (8-10) seconds and 10g along

(12-17) seconds and for yaw is 20g along (5-7) seconds and 10g along (12-17) seconds.

Parameter Autopilot demand at di�erent time zones

Time (sec) 0.4 5.0 5.1 7.0 7.001 8.0 8.1 10.0 10.001 12.0 12.01 17.0 17.01
Roll demand(�d) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pitch demand(fz) 0.0 0.0 0.0 0.0 0.0 0.0 -20g -20g 0.0 0.0 10g 10g 0.0
Yaw demand(fy) 0.0 0.0 20g 20g 0.0 0.0 0.0 0.0 0.0 0.0 10g 10g 0.0

Table 4.1: Autopilot demand at di�erent time zones for case study-1
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Case study #2

The test pro�le of controller as autopilot demand along Roll, Pitch, Yaw as a

function of time is given below. Here roll channel demand is 10g along (5 -7) seconds

and -10g along (8-10) seconds. Lateral acceleration demand for pitch is 10g along

(5-7) seconds and -15g along (8-10) seconds and for yaw is 20g along (5-7) seconds

and -15g along (8-10) seconds.

Parameter Autopilot demand at di�erent time zones

Time (sec) 0.4 5.0 5.1 7.0 7.001 8.0 8.1 10.0 10.001 12.0 12.01 17.0 17.01
Roll demand(�d) 0.0 0.0 10g 10g 0.0 0.0 -10g -10g 0.0 0.0 0.0 0.0 0.0
Pitch demand(fz) 0.0 0.0 10g 10g 0.0 0.0 -15g -15g 0.0 0.0 0.0 0.0 0.0
Yaw demand(fy) 0.0 0.0 20g 20g 0.0 0.0 -15g -15g 0.0 0.0 0.0 0.0 0.0

Table 4.2: Autopilot demand at di�erent time zones for case study-2

The above designed controller performace is compared in the above given two test

cases i.e case #1 and case #2 with respect to nominal controller that is with out

actuator fault and uncertainties.

57



Chapter 5

Performance of Controller

5.1 Simulation Platform and Input data

A MATLAB Code is programmed to simulate the full scale 6-DOF of the missile

dynamics. A Nominal TwoTime Scale Separation technique based, nonlinear Lat-

eral Autopilot ( Pitch and Yaw) and Integrator Backstepping technique based Roll

Autopilot is also cosdired along with Fault Tolerant Controller for performance com-

parision.

All the wind tunnel aerodynamic parameters are used here as a look up table.

A second order actuation servo system is included into the control loop. All the

physical limitations of the actuation system i.e Dead Zone, Command Saturation

and Rate Saturation are cosidered.

The di�erential equations are numerically solved using Runga Kutta 4 method.

The missile being surface to air application, initially it will coming out of launcher

at around 400 m/s from T0 (u; v; w) =(45.0, 5.0, 5.0) m/s and the body rates

(p; q; r) =( 27.0, 13.0, 2.0 ) deg/s and ( ; �; �) =( 0.0, 55.0, 0.0 ) deg has been

considered. Initially the body pitch, yaw rate has been controlled (qfd = rfd = 0)

upto 2 seconds of �ight time and later (ayf ; azf ) demand has been tracked upto 10

seconds. In roll channel, �d = 0 for skid-to-turn �ight vehicle.

Missile mass m =( 155-100) Kg, xcg from nose = ( 2.0-1.7) m, Ixx=( 0.95-0.76)

kg�m2, Iyy=( 156-126) kg�m2, Izz=(161-131) kg�m2 at (0.0-7.0) seconds. During

7 seconds of powered �ight, thrust=1800 kgf
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5.2 Simulation Results

5.2.1 Performance comparison for Case study #1

�g 5.1: Comparative tracking performance of Latex Pitch command and pitch rate(Case 1)
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�g 5.2: Comparative tracking performance of Latex Yaw command and Yaw rate ( Case 1 )
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�g 5.3 : Comparative tracking performance of Roll demand (Case-1)
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�g 5.4 : Comparative �n de�ection time pro�les ( Case-1 )

62



�g 5.5 : Comparative performance of Pitch & Yaw de�ection (�p �y) time pro�les ( Case-1 )
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�g 5.6 : Comparive trackig performance of Roll rate (pf ) and Roll de�ection (�r)for Case-1

64



�g 5.7 : Comparative control law (�r; �p; �y) time pro�les ( Case-1 )
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�g 5.8 : Comparative performance of Angle-of-Attack & Roll Orientation time pro�les (Case-1)
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5.2.2 Performance comparison of Case study #2

�g 5.9 : Comparative tracking performance of Latex Pitch command and pitch rate(Case-2)

67



�g 5.10 : Comparative tracking performance of Latex Yaw command and Yaw rate ( Case-2 )
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�g 5.11 : Comparative tracking performance of Roll demand (Case-2)
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�g 5.12 : Comparative �n de�ection time pro�les ( Case-2 )
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�g 5.13: Comparative performance of Pitch & Yaw de�ection (�p �y) time pro�les ( Case-2 )
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�g 5.14 : Comparative trackig performance of Roll rate (pf ) and Roll de�ection (�r)for Case-2
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�g 5.15 : Comparative control law (�r; �p; �y) time pro�les ( Case-2 )
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�g 5.16 : Comparative performance of Angle-of-Attack & Roll Orientation time pro�les (Case-2)
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Chapter-6

Conclusion & Future Directions

6.1 Conclusions

This research demonstrates the design of Fault Tolerant Controller (FTC) in the

area of missile control problem associated with actuator faults and high plant uncer-

tainty. This FTC design methdology is carried out in Two-Time scale redesign tech-

nique with basic principle is that, the fast variables arising from designed high-gain

�lter in the nominal feedback control law in order to cancel the e�ect of uncertainties

in the plant, so that after a fast transient the closed loop trjectories converge to the

nominal trajectories.

Being a two stage design of FTC Viz. Nominal controller design and High-gain

�lter design, Time Scale Separation and Integrator Backstepping techniques are ap-

plied to design the former. The design of FTC is validated here through a full scale

6-DOF simulation considering detailed parameter uncertainties and sinusoidal na-

ture of actuator faults. A comparison is also made with nominal controller (plant

without faults and uncertainties) to bring out the salient features of the FTC design

cosidering 2 case studies.

The following variables are compared with same simulation platform

� Tracking performace of Lateral Pitch and Yaw accelerations.

� Tracking performance of Longitudinal Roll angle.

� Tracking performace of Pitch, Yaw and Roll rates.

� Tracking performance of individual �n de�ections.

� Time pro�le of both the control laws.

� Time history of Angle-of-Attack and Roll orientation.

Comparing the 6-DOF simulation results, the following salient features of the FTC

design may be noted
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� There is no signi�cant change in the transient response of the states of uncertain

system, in two case studies.

� It does not alter the nature of decoupling among the roll, pitch and yaw motion

axis.

� It does not alter the nature of fast time response of both latax as well as body

rates. This feature indicates the quick correction and as a result it improves

mission terminal performance such as miss distance and impact angle, even the

actuators are malfunctioning.

All these features imply on improvement of terminal performance of the interceptor

even against actuator faults and plant uncertainties. Hence, this research work may

give a signi�cant contribution in the �eld of guidance and control of missile.

6.2 Future Directions

The design is validated through 6-DOF simulation, where the measurements are

considered noise free. Only measurement error of constant bias value is considered for

simulation and performance analysis. The deign should be validated through Monte

Carlo simulation considering realistic measurement noise spectrum. This task can

be carried out in future.

Flight control and guidance loops of interceptor missiles are usually assumed to be

spectrally separated. Thus a hierarchical design approach is commonly used, where

an innerloop autopilot is constructed to follow the acceleration commands issued

by the outer loop guidance algorithm. The guidance law is designed based on low

order approximation of the autopilot dynamics. However since most guidance laws

are inversely proportional to time to go, spectral separation may not be valid near

interception, causing instability and, consequently unacceptable miss distances. The

strong requirement of future interceptors is the hit to kill miss distance.

The integrated �ight control and guidance law design may enhance the endgame

performance of the interceptor by accounting the coupling between the control and
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guidance dynamics.The integrated design may provide synergism between the two

control components, may also postpone the endgame instability. In such a design

problem, the entire guidance and control loop may be stated as a solution to the

�nite horizon control problem, instead of the common approach treating the inner

autopilot loop and outer guidance loop separately. A considerable research e�ort

may be required to �nd the potential for improved performance of an integrated

autopilot guidance design. So the design of integrated autopilot guidance controller

will be taken into account in future, which may minimize the miss distance and

control energy under worst case target maneuvers and measurement uncertainty
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Appendix A

Stability Analysis of
Uncertain Nonlinear System

Theorem :- Given a compact set 
x � Rn of initial conditions there exists an

�� > 0 such that for all 0 < � < ��and for all x (0) 2 
x the controller (2:5) ; (2:6) ;

(2:9) guarantees boundedness of x (t) to the origin.

In addition, given any � > 0, there exists an ��� > 0 such that for all x (0) 2 
x,

the solution x (t) of the nominal system (2:2) and x (t; �) of the uncertain system

(2:1)with the redesigned controller (2:5) ; (2:6) ; (2:9) satisfy

kx (t; �)� x (t)k � � 8t > 0 [1] (A1).

Proof :- With the o�-manifold variable

� , l +G (x) � (x) (A 2)

Substituting Eqn (A2) in Eqn (2.1), we get

_x = f (x) + g (x) [� (x) +G�1l + � (x)]

= f (x) + g (x) [� (x) +G�1 (� �G�) + �]

= ~f (x)+g (x)G�1 (x) � where ~f (x) = f (x)+g (x)� (x) (A 3)

Similarly, on substitution of Eqn (A2) in Eqn (2.7), we will get

� _� = ��+� J (x)
h
~f (x) + g (x)G�1 (x) �

i
where J (x) = @(G(x)�(x))

@x
(A 4)

For the reduced system, _x = ~f (x) we need Lyapunov function satisfying (A 5)

below. The following Lemma shows that its existence follows from Assumption 1.

Lemma 1 :- Assumption 1 implies that there exists a positive de�nite radially

unbounded C2Lyapunov function ~V (x) satisfying

@ ~V T

@x
[f (x) + g (x)� (x)] � �kxk2 8x (A 5)
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Considering the Lyapunov function candidate as

W (x; �) = ~V (x)+��T

2
(A 6)

we have,

_W = @ ~V T

@x

h
~f (x) + g (x)G�1 (x) �

i
-��

T

�
+�TJ (x)

h
~f (x) + g (x)G�1 (x) �

i
(A 7)

Because l (0) = 0 in (2.7), we get � (0) = G (x (0)) � (0) which means that for every

compact set 
x of initial conditions x (0) ; we can �nd a corresponding compact set


� of initial conditions � (0) ; we can �nd a level set 
c of W such that


xx
� � 
c (A 8)

and positive numbers L1;L2;L3 and L4 such that on this level set 
c


@ ~V@x 


 � L1 kxk (A 9)

kJ (x)k � L2 (A 10)


 ~f (x)


 � L3 kxk (A 11)

kg (x)G�1 (x)k � L4 (A 12)

hold. Using these inequalities, we can obtain from (A 7) and (A 8)

_W � �kxk2 + L kxk k�k � k�k2
�

+ L2L4 k�k2

where L = L1L4 + L2L3. Then, from the inequality

L kxk k�k � 1
2
kxk2 + L2

2
k�k2

we get

_W = �1
2
kxk2 �

h
1
�
� L2

2
� L2L4

i
k�k2

which means that for all 0 < � < �� where

�� = 1

L2L4+
L2

2

(A 13)
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Appendix B

Stability Analysis of NDI controller
using Time Scale Separation

In this chapter, we are trying to analyze the closed loop stability of a nonlinear

system using a two-time scale dynamic inversion controller. A state space formulation

is derived, assuming the inner-loop inversion is performed exactly. A Lyapunov

analysis is then performed to show that, under certain assumptions, the exponential

stability of the system about constant commanded state values is guaranteed with

su�ciently large inner-loop gain.

Time-scale separation exists in many dynamical systems. This phenomena can

arise due to small time constants, moments of inertia, �exible body dynamics and

many other e�ects. Using the natural separation between the fast and slow variables

to reduce the complexity of a dynamical system can greatly simplify the control

design and analysis problem.

Problem formulation

Let us consider a nonlinear a�ne control system [11]

_x = f (x)+ g (x) y (B 1)

_y = h (x; y)+k (x; y)u (B 2)

Where x 2 Rn is slow states, y 2 Rn is fast states and u 2 Rn is control input.

Further suppose the following assumptions are hold

Assumption 1:- The functions g (x) and k (x; y) are invertible.

Assumption 2:- The functions f (x) ; g (x) ; h (x; y)and k (x; y) are �nite inside a

level set of a Lyapunov funtion V for the system, which will be de�ned shortly.

Assumption 3:- The derivative of f (x) and g (x) with respect to x are �nite

inside the level set of V .

Assumption 4:- The desired value of x, x = xc is constant.

The two-time scale dynamic inversion controller for the system (B1-B2) is of th
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form

u = k�1 (x; y) f _yd � h (x; y)g (B 3)

yc = g�1 (x) f _xd � f (x)g (B 4)

With,

_xd = 
(xc � x) (B 5)

_yd = !iI (yc � y) (B 6)

and


 = Diag (!o1; !o2; � � � � � � ; !on)
Theorem :-Suppose Assumptions (1-4) hold for the dynamical system given by

equations (B1-B2) . Then, with the dynamic inversion controller speci�ed by equa-

tions (B3-B6), the states x will be exponentially stable about their commanded values

for any gain !i � !�i su�ciently large.

Proof:- The �rst step of the proof is to convert the dynamical system into a

state-space system for x and _x only. The stability of this system will then be studied

using Lyapunov analysis.

Rewrite g (x) as

g (x) = [g1 (x) ; g2 (x) ; � � � � � � ; gn (x)] (B 7)

where gi (x) is nx1 vector funtion. Then taking the derivative of (B 1) with

respective to time gives

�x = @f

@x
_x+
�
@g1
@x

_x; @g2
@x

_x; � � � � � � ; @gn
@x

_x
�
y+g (x) _y (B 8)

Substituting,

yc = g�1 (x) f _xd � f (x)g , y = g�1 (x) f _x� f (x)g and _y = !iI (yc � y) into

equation (B 8) gives

�x = @f

@x
_x+
�
@g1
@x

_x; @g2
@x

_x; � � � � � � ; @gn
@x

_x
�
g�1 (x) [ _x� f (x)]+!iI [ _xd � _x] (B 9)

Substituting for _xd and rearranging the results as

�x��@f
@x
� !iI

�
_x+!i
 (x� xc)�

�
@g1
@x

_x; @g2
@x

_x; � � � ; @gn
@x

_x
�
g�1 (x) [ _x� f (x)] = 0 (B 10)

Now, de�ne z1 = x � xc. For constant xc, _z1 = _x. Then de�ne z2 = _x. A

state-space system for z =
�
zT1 ; z

T
2

�T
is given by
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_z1 = z2 (B 11)

_z2 = �!i
z1 +
�
@f

@x
� !iI

�
z2 + l (z)

where l (z) =
�
@g1
@x
z2;

@g2
@x
z2; � � � � � � ; @gn@x z2

�
g�1 (x) [ _x� f (x)]

Rewring Eqn B-11 as

_z1 = z2 (B 12)

� _z2 = �
z1 � z2 + �
�
@f

@x
z2 + l (z)

�
where � = 1

!i

On application of Singular Perturbation Control theory [34] to Eqn (B 12)

�z2 = �
�z1 and _�z1 = �
�z1 which is exponentially stable for 
 > 0
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Appendix C

Theory of Feedback Linearization

C.0 Single Input-Single Output(SISO) systems

A Single Input Single Output (SISO) a�ne control system obeys the following state

and output relation [28], [35](
_x = f(x) + g(x)u (C 1)

y = h (x)

Where x 2 Rn, u 2 R , y 2 R and f; g : Rn ! Rn are smooth vector �elds and

h : Rn ! R is a smooth scalar function.

Di�erentiate output equation y with respect to time t along the trajectories of x

_y = @h(x)
@x

_x = @h
@x

[f (x) + g (x)u] (C 2)

= @h
@x
f (x) + @h

@x
g (x) u = Lf h (x) + Lgh (x) u

It is clear from the eqn C2, that there is no immediate change in y, if u is changed

immediately and the change comes gradually via x. The _y directly depends on u,

if and only if Lgh (x) =
@h
@x
g (x) 6= 0 and we will say that the relative degree of the

system, r = 1.

Now, let us assume that Lgh (x) = 0 and di�erentiate output once again, we will

get

�y = L2
fh (x) + LgLfh (x) u (C 3)

The system have said to relative degree, r = 2 if LgLfh (x) 6= 0. Repeat the

process upto r derivatives , and we will say the relative degree is r. So r th derivative

of output is as follows

y(r) = Lr
f h (x) + LgL

r�1
f h (x) u (C 4)

Relative Degree :- The SISO system given by equation C.1 is said to have relative

degree r at a point x0 if

1. LgL
r�1
f h (x) = 0 ; k = 0; 1; 2; � � � ; r � 1 for 8x in the neighbourhood of x0
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2. LgL
r�1
f h (x) 6= 0

The following formula describing the time derivatives of the output is an immediate

consequences of the de�nition of relative degree

dky

dtk
= y(k) =

(
Lk
fh (x) k = 0; 1; 2; � � � � � � ; r � 1 (C 5)

Lk
f h (x) + LgL

k�1
f h (x) u k = r

Remark:- For SISO linear system(
_x = Ax+Bu

y = Cx
(C 6)

The relative degree is the di�erence in degree between the numirator and denom-

inator.

Equivalently, the relative degree of SISO, LTI system is the positive integer r,

such that LgL
r�1
f h = C Ar�1B 6= 0

Strong relative degree :- A system is said to have strong relative degree if the

relative degree is r, for all x0 2 Rn

C.0.1 Input-Output Linearization

Consider a system with a strong relative degree r. Then we have the rth derivative

of the output is given by

y(r) = Lr
f h (x) + LgL

r�1
f h (x) u

If v is a reference signal, such that y(r) = v, therefore the feedback control law as

u =
�
LgL

r�1
f h (x)

��1 �
v � Lr

fh (x)
	

(C 7)

So, the resulting transfer function between v and y is given by

y (s) = 1
sr
v (s) (C 8)

Proposition:- Suppose a system of the form equation C.1 has relative degree r

at a point x0. De�ne

z ,

0
BB@

z1
z2
...
zr

1
CCA ,

0
BB@

�1 (x)
�2 (x)
...

�r (x)

1
CCA ,

0
BB@

h (x)
Lfh (x)

...
Lr�1
f h (x)

1
CCA
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and (C 9)

� ,

0
BB@

zr+1

zr+2
...
zn

9

1
CCA ,

0
BB@

�r+1 (x)
�r+2 (x)

...
�n (x)

1
CCA

The Normal form of a a�ne control system ( Eqn C.1) is given by

_z1 = z2

_z2 = z3

... (C 10)
_zr = b (z) + a (z)u

_� = q (z; �)

With output y = z1

Notice that if we choose the feedback law

u = [a (z)]�1 fv � b (z)g (C 11)

Then the resulting system from the reference input v to the output y = z1 is

linear.

Notice that the Internal dynamics/ Zero dynamics _� = q (z; �) are possibly non-

linear, so the system is not been fully linearized by the feedback law

u = [a (z)]�1 fv � �0z1 � �1z2 � � � � � � � � �r�1zr � b (z)g (C 12)

The resulting transfer funtion from input to output:

y(s)
v(s)

= 1
�r�1sr+������+�0 (C 13)

C.1 Multi Input-Multi Output (MIMO) Systems

The concepts used in the SISO system such as Input-State Linearization, Input-

Output Linearization, normal forms and zero dynamics and so on can be extended

to MIMO systems. For the MIMO case, we consider the square systems i.e systems

with same number of inputs as outputs.

_x = f (x) +
i=mP
i=1

gi (x)ui
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y1 = h1 (x)

y2 = h2 (x) (C 14)

...

ym = hm (x)

Where the state vectors u0is (i = 1; 2 � � � � � � ;m)are contro inputs, y0js (j = 1; 2 � � � � � � ;m)

are outputs, f & gi's are smooth vector �elds and hj's are smooth scalar functions. If

we collect the control inputs ui's into vector u, corresponding vectors into matrix G,

and the outputs into vector y , then the system equations can be written collectively
as

_x = f (x)+G (x)u (C 15)

y = h (x)

C 1.1 Feedback Linearization of MIMO systems

The approach to obtain the I/O linearization of MIMO systems is again to di�er-

entiate the outputs yj's of the system until the inputs appear, similarly to the SISO

case. The output di�erentiations can be written compactly as follows2
6664
y
(r1)
1

y
(r2)
2
...

y
(rm)
m

3
7775 =

2
6664

Lr1
f h1

Lr2
f h2
...

L
rm
f hm

3
7775+E (x)

2
664
u1
u2
...
um

3
775 (C 16)

Where the mxm matrix E (x) is de�ned as

E (x) =

2
6666664

Lg1L
r1�1
f h1 Lg2L

r1�1
f h1 � � � � � � LgmL

r1�1
f h1

Lg1L
r1�1
f h2 Lg2L

r1�1
f h2 � � � � � � LgmL

r1�1
f h2

...
...

...
...

...
...

...
...

...
...

Lg1L
r1�1
f hm Lg2L

r1�1
f hm � � � � � � LgmL

r1�1
f hm

3
7777775

(C 17)

The matrix E (x) is called the Decoupling matrix for the MIMO system. If the

decoupling matrix is non-singular in a region 
 around a point x0, the the input

transformation
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u = �E�1 (x)

2
6664

Lr1
f h1

Lr2
f h2
...

L
rm
f hm

3
7775+E�1 (x)

2
664
v1
v2
...
vm

3
775 (C 18)

yields a linear di�erential relation between the output y and the new input v as2
6664
y
(r1)
1

y
(r2)
2
...

y
(rm)
m

3
7775 =

2
664
v1
v2
...
vm

3
775 (C 19)

Note that the above Input-Output relation is decoupled , in addition to being

linear. Since only a�ects the corresponding the output yj, but not the others , a

control of the form (C.17) is called a decoupling control law or non-ineracting control

law.
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