

A Thesis

Submitted By

SACHIN SHARMA

for the award of the degree

of

MASTER OF TECHNOLOGY

Under the guidance of

Prof. Jagadeesh Kumar V

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

May 2014

Grip Force Measurement For Driver Fatigue Detection

THESIS CERTIFICATE

This is to certify that the thesis titled “Grip Force Measurement For Driver Fatigue

Detection”, submitted by Mr. Sachin Sharma, to the Indian Institute of Technology Madras,

Chennai for the award of the degree of Master of Technology, is a bona fide record of

research work done by him under my supervision. The contents of this thesis, in full or a part

has not been submitted to any other Institute or University for the award of any degree or

diploma.

 Dr. Jagadeesh Kumar V

 Research Guide

 Professor (CEC Head)

 Dept. of Electrical Engineering

 IIT-Madras, Chennai-600036

Place: Chennai

Date: 23 May 2014

i

ACKNOWLEDGEMENTS

I express my sincere and heartfelt gratitude to my guide, Dr. Jagadeesh Kumar V, Professor

(CEC Head) for giving me this highly rewarding opportunity to work with him. His courses

and insightful assignments helped me in understanding the finer aspects of Sensor selection

and using them. His suggestions were sound and timely, which ensured the smooth progress

of this work. His eye for detail, patience, meticulous nature, devotion to work is always a

source of inspiration for me.

I am extremely grateful to Dr. Bobby George, Assistant Professor, Department of Electrical

Engineering, IIT Madras, for his moral support and encouragement.

I thank all the teaching and non-teaching staff of the Department especially from

Measurements and Instrumentation Lab, for their great help and also thank to my friends

Rahul Bharadwaj, Rahul Tyagi, Anurag Singh, Suaib Danish, Piyush Kumar, Gaurav

Chandrakar, Aditya Arya, Rohit Kalla, Ritesh Pal Singh and Aniket Anil More, for giving me

their valuable time in taking data from the sensors and for their timely assistance in the

completion of this work.

Last but not the least, I would like to thank Almighty God, My parents and family for their

support and for uncountable blessings due to which I was able to complete the project on

time.

 Sachin Sharma

 EE12M097

ii

ABSTRACT

Statistics shows driver fatigue is a major cause of road accidents all around the world. This

project presents a simple and reliable method of driver fatigue detection by continuously

monitoring the driver’s grip force on the steering wheel. Four FSR (Force Sensing Resistor)

sensors attached to the steering wheel continuously measure the grip force on the steering

wheel exerted by the driver. The sensor output is read by a microcontroller unit for storage

and onward transmission to a personal computer. Data analysis is performed on the PC and

warning signals are generated by detecting fatigue through the changes in the grip force. The

alertness of the driver is assessed by using an algorithm based on ANOVA (Analysis of

Variance) test. This sensor fusion technology can be used in future smart vehicles to prevent

road accidents.

iii

TABLE OF CONTENTS

LIST OF TABLES…………………………………………………………….………..vi

LIST OF FIGURES...vii

ABBREVIATIONS………………………………………………………..………..…viii

CHAPTER 1: INTRODUCTION

1.1. Need for Measurement System…………………………..….………………………..1

1.2. Literature Survey………………………….…………………………………….….…2

1.2.1. Road Safety Activities undertaken during the Financial Year 2011....…….….3

1.2.2. Initiatives of NHAI for Road Safety Activities………………………….…….4

1.3. Objective and Scope of work ………………………………………….…….….…...5

CHAPTER 2: HARDWARE AND DESIGN SPECIFICATION

2.1. Block Diagram………………………………………….…………………..………...6

2.2. Hardware Selection…………………………………………………………….….….7

2.2.1. Gaming Console…………………………………………….……...…….……7

2.2.2. Sensor…………………………………………………………..……..….……8

2.2.3. Arduino Due Board………………………………………….….……………..9

2.2.4. Buzzer……………………………………………………….….…………….10

2.2.5. LED……………………………………………………….….………………10

2.2.6. Connecters and Wires………………………………………………………...10

2.3. Design Procedure……………………………….…………………………………...11

2.4. Constraints…………………………………………………….…………………….12

2.5. Arduino Due features………………………………………………………….…….13

CHAPTER 3: MEASUREMENT TECHNIQUE

3.1. Hardware Connections…………………………….………………………………...18

3.2. Sensor Calibration…………………………………………………………………...19

3.3. Programming………………………………………………………………………...21

iv

CHAPTER 4: DATA ANALYSIS

4.1. Testing Hardware…………………………………………….…………….…..……22

 4.1.1. Testing an FSR…………..……………………………………………...……22

 4.1.2. Testing an Arduino Due Board………………………………………………23

 4.1.3. Receiving Grip Force Signals………………………….…………..…………24

4.2. Matlab Graphical Analysis……………………………..………………..…………..25

 4.2.1. Test Driver 1…………………………………………………..…………..….25

 4.2.2. Test Driver 2…………………………………………………..……………...27

4.3. Anova Test in Excel……………………………………………..………………......28

 4.3.1. Test Driver 1………………………………………………….…..…………..28

 4.3.2. Test Driver 2…………………………………………………….…..………..29

 4.3.3. Test Driver 3……………………………………………………….…..……..29

 4.3.4. Test Driver 4………………………………………………………….…..…..30

 4.3.5. Test Driver 5…………………………………………………………….…....30

 4.3.6. Test Driver 6……………………………………………………………….…31

CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1. Conclusion……………………………………………………….…….……...……..32

5.2. Future Scope……………………………….………………………….………...…...33

 A. Op-Code Used in Arduino Programming………………………………………………..34

 B. Syntax and Operators Used in Arduino Programming…………………………….……..38

 C. Experimental Setup………………………………………………………...…..………...41

 D. Testing an Arduino Due Board…………………………………………………………..42

E. Data Logging in Matlab……………………………...…………………………..………..43

REFERENCES……………………………………………………………………………..46

Index………………………………………………….…………………………..……...…47

v

LIST OF TABLES

Table 4.3.1: Test Driver 1 Single Factor Anova……………………………………………..28

Table 4.3.2: Test Driver 1 Two-Factor with Replication Anova……………….……………28

Table 4.3.3: Test Driver 2 Single Factor Anova………………………………….………….29

Table 4.3.4: Test Driver 2 Two-Factor with Replication Anova…………………….………29

Table 4.3.5: Test Driver 3 Single Factor Anova………………………………….………….29

Table 4.3.6: Test Driver 3 Two-Factor with Replication Anova…………………….………29

Table 4.3.7: Test Driver 4 Single Factor Anova…………………………………….……….30

Table 4.3.8: Test Driver 4 Two-Factor with Replication Anova…………………….………30

Table 4.3.9: Test Driver 5 Single Factor Anova……………………………………….…….30

Table 4.3.10: Test Driver 5 Two-Factor with Replication Anova……………………….…..30

Table 4.3.11: Test Driver 6 Single Factor Anova…………………………………………....31

Table 4.3.12: Test Driver 6 Two-Factor with Replication Anova…………………………...31

vi

LIST OF FIGURES

Fig 1.1.1: Causes of Road Accidents in India………………………………...……………….2

Fig 2.1.1: Block Diagram………………………………………………………………..….....6

Fig 2.2.1: Gaming Console..…...7

Fig 2.2.2: FSR-406 Sensor..…...8

Fig 2.2.3: Arduino Due Board…………………………………………………………………9

Fig 2.2.1: Design Procedure..…...11

Fig 3.1.1: Hardware Connections…………………………………………………………….18

Fig 3.2.1: Sensor Calibration…………………………………………………………………20

Fig 4.1.1: Testing of an FSR Sensor…………………………………………………………22

Fig 4.1.2: Testing of an Arduino Due Board………………………………………………...23

Fig4.1.3: Receiving Grip force Signals………………………………………………….…...24

Fig 4.2.1.1: Test Driver 1 Left Hand Plot…………………………………….……………...25

Fig 4.2.1.2: Test Driver 1 Right Hand Plot…………………………………………….…….25

Fig 4.2.1.3: Test Driver 1 Combined Plot………………………………………….………...25

Fig 4.2.1.4: Zoomed version of Left Hand Plot……………………………………….……..26

Fig 4.2.1.5: Zoomed version of Right Hand Plot………………………….…………………26

Fig 4.2.1.6: Test Driver 1 Zoomed Combined Plot……………………….………………….26

Fig 4.2.2.1: Test Driver 2 Left Hand Plot……………………………….…………………...27

Fig 4.2.2.2: Test Driver 2 Right Hand Plot……………………….………….………………27

Fig 4.2.2.3: Test Driver 2 Combined Plot…………………………….……….……………..27

Fig C.1: Experimental Setup…………………………………………………………………45

Fig C.2: Connections at Microcontroller Unit..…...45

vii

ABBREVIATIONS

AC Alternating Current

ADC Analog to Digital Converter

AIMTC All India Motor Transport Congress

AITWA All India Transporter's Welfare Association

ARM Advanced RISC (Reduced Instruction Set) Machine

ATMS Advanced Traffic Management System

CEC Central Electronic Centre

CPU Central Processing Unit

DAC Digital to Analog Converter

DC Direct Current

DMA Direct Memory Access

ECG Electrocardiography

EEG Electroencephalography

EMG Electromyography

FM Frequency Modulation

FIAA Federation of Indian Automobile Associations

FSR Force Sensing Resistors

GND Ground

IRF International Road Federation

LED Light Emitting Diode

MCU Microcontroller Unit

N Newton

NHAI National Highways Authority of India

NHDP National Highways Development Project

PTF Polymer Thick Film

viii

https://www.google.co.in/url?q=http://www.ndtv.com/topic/all-india-motor-transport-congress-aimtc&sa=U&ei=uyFeU5OiMs6Urgf30YDABA&ved=0CCMQFjAB&usg=AFQjCNE93Km5J0C8b1WXAGw4we-H4iKrcg
http://www.aitwa.org/

PWM Pulse Width Modulation

R Resistance

RAM Random Access Memory

RC Registration Certificate

ROM Read Only Memory

RTO Regional Transport Office

RX Receiver

PC Personnel Computer

SIAM Society of Indian Automobile Manufacturers

SRAM Static Random Access Memory

TTL Transistor-Transistor Logic

TV Television

TX Transmitter

UART Universal Asynchronous Receiver/Transmitter

USART Universal Synchronous/Asynchronous Receiver/Transmitter

USB Universal Serial Bus

UT Union Territories

V Voltage

WIAA Western Indian Automobile Association

ix

CHAPTER 1

INTRODUCTION

1.1. Need for Measurement System

Driver fatigue has long been identified as one of the major causes of road accidents.

Thus, developing intelligent systems for assessing the driver’s vigilance level is becoming a

central issue in the field of active road safety research
[1]

. Such systems are based on the

assumption that the occurrence of fatigue or drowsiness can be related to measurable changes

in driver’s state and behavior. A crucial point is that the methods employed to detect driver’s

fatigue must be reliable and non-intrusive
[4]

.

The approaches presented in this literature can be grouped into two classes.

On one hand, there are methods based on signals from the driver
 [1]

. These include

physiological parameters, such as ECG, EEG and EMG, whose measurement usually requires

electrodes to be applied to the driver. Other driver-related signals are eye movement, head

positioning and facial expressions, which can be accessed using cameras and computer

vision.

On the other hand, analyzing the vehicle’s behavior including its speed, lateral position and

distance from the other vehicle is monitored
[2]

.

The measurement of driver-related signals generally results in more difficult and invasive.

1

1.2. Literature Survey

In India motor vehicle population is growing at a faster rate than the economic and

population growth. The surge in motorization coupled with expansion of road network has

brought with it the challenge of addressing adverse factors such as the increase in road

accidents.

Fig 1.2.1: Causes of Road Accidents in India
[3]

Road accidents are a human tragedy
[3]

. It involves high human suffering and socioeconomic

costs in premature deaths, injuries, loss of productivity etc. It is heartening to note that there

has been a marginal decline in road accidents during 2011.

However, the problem of road safety remains acute in India. During the year 2011, there were

around 498k road accidents that killed 142k persons and injured more than 500k persons,

many of them are disabled for the rest of their lives. These numbers suggest that few road

accidents occur per minute, and each road accident death in every four minutes. Sadly, many

of these victims are young people, those who are economically active.

2

The National Sleep Foundation also reported that 60% of adult drivers have driven while

felling drowsy in the past year, and 37% have ever actually fallen asleep at the wheel
[5]

.

1.2.1. Road Safety Activities undertaken during the Financial Year 2011-12 [3]

 The Ministry gave the slogan "Accidents bring tears, Safety brings Cheers" for the

year.

 A National Road Safety Week was observed throughout the Country during January

1st to7th, 2012 by involving all stakeholders.

 Media campaign was launched by the Ministry through the entire Doordarshan

network including the Regional Centers and Regional channels, All India Radio,

Vividh Bharati and all Regional stations, 35 Private TV Channels, Private FM radio

stations throughout the country and in leading newspapers throughout the country

with special emphasis on the Road Safety.

 The road safety material was dispatched in December 2011 consisting of children's

activity books (for two age groups), road signage and posters in regional

languages in 10,000 schools across the country in order to raise awareness of

road safety. Calendars with Road Safety messages were distributed.

 All State Govts/ UTs and NHAI organized events for the Road Safety Week along

with the stakeholders in their respective States such as SIAM, SRTUs, IRF, AIMTC,

FIAA, WIAA, Tire Manufacturers and Auto Spare Parts Manufacturers.

 Valedictory Function to commemorate the successful observance of the 23 rd. Road

Safety Week was held on Lal Chowk in Pragati Maidan on 9.12.2011 in association

with SIAM and other stakeholders like AIMTC, AITWA, FIAA and IRF.

3

 For the first time, road safety campaign through online media i.e. Internet and SMS

was carried out during 2011-12.

 Complete computerization of records of RTOs and issuance of driving license, RC

and other documents on smart card through central assistance is being carried

out. Approximately 95% of the work is complete linking most of the RTOs at the state

level and linking of all state level records at the national level of national data

base. Development of citizen friendly system - Vahan and Sarathi has already

been already launched on 20th July 2011.

 A series of seminars/workshops across the country have been planned to

sensitize all stakeholders and to work in an integrated manner. The First National

Workshop on road safety was held at New Delhi on 03.04.2012. The theme was

“improving the safety of more vulnerable road users”.

1.2.2. Initiatives of NHAI for Road Safety Activities
 [3]

 Safety Measures are inbuilt in the projects during Design, Construction and O and M.

 State-of-the-Art Advanced Traffic Management System (ATMS) consisting of

emergency call boxes, variable message signs, CCTVs, traffic counters cum

classifiers, etc. has been provided on selected sections mostly under NHDP Phase V.

 The Comprehensive Road Safety Manual has been prepared and hosted on NHAI

website.

4

1.3 Objective and Scope of Work

A promising approach is found in considering the data available at the interface between

driver and the vehicle, i.e., the steering wheel. This may provide direct information about

driver’s state and can be easier been acquired.

In general, the grip force that a driver applied to the steering wheel has been used in driver’s

navigation and driving detection systems. It is important to note that the effectiveness of such

systems can significantly be improved through the fusion of different kinds of sensors and

data.

The objective of this system is to apply low-cost distributed intelligent sensors, which can

easily be mounted on to a commercial steering wheel for analyzing real-time grip force

measurement using MCU (Microcontroller Unit) by a simple digital interface.

As a consequence of this, the grip force data is integrated into the information data of the

microcontroller, this data can be used to set the threshold value to buzz the alarm system to

alert the driver in real-time.

5

CHAPTER 2

HARDWARE AND DESIGN SPECIFICATION

2.1. Block Diagram

Systematic steps in the system are shown in the block diagram.

Fig 2.1.1: Block Diagram

6

2.2. Hardware Selection

 To simulate the driver’s grip force inside the laboratory we use the following hardware.

2.2.1. Gaming Console

Fig 2.2.1: Gaming Console
[6]

This is 5-in-1 gaming wheel with brake and pedal can be connected to PC, PSX, PS, PS2 and

PS3. The steering sensitivity and wheel angle are adjustable. It vibrates when your game is

on, giving you an amazing and real experience. It supports Plug and Play and is compatible

with windows 98/ME/NT4.0/2000/XP/VISTA/7
[6]

.

7

2.2.2. Sensor

Force Sensing Resistors
[7]

 (FSR) is a polymer thick film (PTF) device which exhibits a

decrease in resistance with an increase in the force applied to the active surface. Its force

sensitivity is optimized for use in human touch control of electronic devices. FSRs are not

a load cell or strain gauge, though they have similar properties.

Fig 2.2.2: FSR-406 Sensor
[7]

Characteristics of FSR
[7]

 Force sensitivity range <1N to>10N

 Force Resolution better than 0.5% of full scale

 Standoff Resistance >10kΩ

 Temperature Range -30
0
C to +70

0
C

 Sensitivity to Noise/Vibration not significantly affected

 Lifetime > 10 million actuations

8

2.2.3. Arduino Due Board

Fig 2.1.3: Arduino Due Board
[8]

Summary:

Microcontroller AT91SAM3X8E

Operating Voltage 3.3V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-16V

Digital I/O Pins 54 (of which 12 provide PWM output)

Analog Input Pins 12

Analog Outputs Pins 2 (DAC)

Total DC Output Current on all I/O lines 130 mA

DC Current for 3.3V Pin 800 mA

DC Current for 5V Pin 800 mA

Flash Memory 512 KB all available for the user

SRAM 96 KB (two banks: 64KB and 32KB)

Clock Speed 84 MHz

9

2.2.4. Buzzer
 [9]

 A buzzer is an audio signaling device, which may be mechanical, electromechanical, or

piezoelectric. Typical uses of buzzers and beepers include alarm devices, timers and

confirmation of user input such as a mouse click or keystroke.

Electromagnetic Buzzer (model: SB_PB5) - 5v (active buzzer / Piezo Buzzer) (operational

range 2V - 5 V) is used to indicate the driver whether it grip loosened or not in real-time.

2.2.5. LED

Light-emitting diode (LED) is a two-lead semiconductor device that resembles to a basic pn-

junction diode, except that LED can also emit light, When a forward voltage is applied to the

LED’s anode lead, current flows through it and it emits light energy. This phenomenon

occurs because they have large band gaps compared to conventional diode.

In LED electrons are able to recombine with holes within the device, releasing energy in the

form of photons. This effect is called electroluminescence, and the color of the light

(corresponding to the energy of the photon) is determined by the material used in making the

LED and energy band gap of the semiconductor.

2.2.6. Connecters and Wires

A five pin male-female connector is used to connect the Arduino Due board pins to buzzers,

LEDs and ground, and also a two pin connector is used to acquire signals from the FSR

sensors. Wires are used to connect the input-output assembly of the setup.

10

http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Alarm_devices
http://en.wikipedia.org/wiki/Timer
http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Pn-junction
http://en.wikipedia.org/wiki/Pn-junction
http://en.wikipedia.org/wiki/Electrons
http://en.wikipedia.org/wiki/Electron_hole
http://en.wikipedia.org/wiki/Photon
http://en.wikipedia.org/wiki/Electroluminescence
http://en.wikipedia.org/wiki/Band_gap

2.3. Design Procedure

The complete system can work in the manner shown below:

Fig 2.3.1: Design Procedure

11

2.4. Constraints

To make our system highly sensitive we need high processing power, so that at an instant it

will give us the processing result.

The average power consumed is less than 350 mW.

After knowing our requirement we have an idea of what type of microcontroller we need to

have. We should also know the application in which the microcontroller is going to be used.

In our case it is Grip Force Measurement, so we need to check some of the primary

requirements like:

Computational Performance: Generally microcontroller performance is measured in terms

of MIPS. This is the only system which is going to perform all computational tasks so it

should have high MIPS and higher operating frequency.

Power Consumption: We get low power consumption devices, so all subsystems should

consume as much as less power as possible.

To market we get many microcontrollers of similar specifications but different features and

resolutions. We select a chip that has all the features with the resolution as per our needs.

Availability of components: Components used in this design needs to be easily and

commercially available for a long time to come.

Memory: We should have enough memory in the microcontrollers to program it and to make

any changes in the future.

Online support: Selecting a microcontroller which has good online support will help us with

your ideas and solve most of your problems as the experience of other users is available for

you.

History: We have to check whether anyone has already used these types of hardware in the

space and what are their ratings.

After considering all these we have chosen ARM Cortex-M3 CPU based Atmel

AT91SAM3X8E microcontroller based evaluation board i.e. Arduino Due.

12

2.5. Arduino Due features
[8]

Overview:

The Arduino Due is based on the Atmel SAM3X8E ARM Cortex-M3 microcontroller. It is

the first Arduino board based on a 32-bit ARM core microcontroller. It has 54 digital

input/output pins (of which 12 can be used as PWM outputs), 12 analog inputs,

4 UARTs (hardware serial ports), a 84 MHz clock, an USB OTG capable connection, 2 DAC

(digital to analog), 2 TWI, a power jack, an SPI header, a JTAG header, a reset button and an

erase button.

Warning:

 Unlike other Arduino boards, the Arduino Due board runs at 3.3V. The maximum voltage

that the I/O pins can tolerate is 3.3V.

The board contains everything needed to support the microcontroller; simply connect it to a

computer with a micro-USB cable or power it with an AC-to-DC adapter or battery to get

good performance.

ARM Core benefits:

The Due has a 32-bit ARM core that can outperform typical 8-bit microcontroller boards. The

most significant differences are:

1. A 32-bit core, that allows operations on 4 bytes wide data within a single CPU clock

2. CPU Clock at 84 MHz

3. 96 K Bytes of SRAM

4. 512 K Bytes of Flash memory for code

5. A DMA controller, that can relieve the CPU from doing memory intensive tasks

13

Power:

The Arduino Due can be powered via computer’s USB connector or with an external DC

power supply. The external (non-USB) power can come either from an AC-to-DC adapter or

battery. The adapter jack can be connected by plugging a 2.1mm center-positive plug into the

Due board’s power jack. The leads of a battery can be inserted in the Ground and Vin pin

headers of the power connector.

The board can operate on an external DC supply of 6 to 20V. If we supply it with a less than

7V, the 5V pin may not supply five volts and the board may be unstable. If we are using more

than 12V, the voltage regulator may be overheat and damage the board. The recommended

range is from 7 to 12V.

The power pins
[8]

 are as follows:

Vin: The input voltage to the Arduino board when it's using an external power source (as

opposed to 5 volts from the USB connection or other regulated power source). We can supply

voltage through this pin, or if supplying voltage via the power jack, access it through this pin.

5V: This pin outputs a regulated 5V from the regulator on the board. The board can be

supplied with power either from the DC power jack (7 - 12V), the USB connector (5V), or

the VIN pin of the board (7-12V). Supplying voltage via the 5V or 3.3V pins bypasses the

regulator, and can damage your board. We don't advise it.

3.3V: A 3.3 volt supply generated by the on-board regulator. Maximum current draw is

800mA. This regulator can also provide the power supply to the SAM3X microcontroller.

GND: Ground pins.

IOREF: This pin on the Arduino board provides the voltage reference with which the

microcontroller operates. A properly configured shield can read the IOREF pin voltage and

select the appropriate power source or enable voltage translators on the outputs for working

with the 5V or 3.3V.

14

Memory:

The SAM3X has 512 KB (2 blocks of 256 KB) of flash memory for storing Arduino code.

The boot loader is pre-burned in a factory from Atmel and is stored in a dedicated ROM

memory. The available SRAM is 96 KB in two contiguous banks of 64 KB and 32 KB. All

the available memory (Flash, RAM and ROM) can be accessed directly as a flat addressing

space.

It is possible to erase the Flash memory of the SAM3X with the on-board erase button. This

will remove the currently loaded sketch from the MCU. To erase, press and hold the erase

button for a few seconds while the board is powered.

Input and Output:

Digital I/O: Pins from 0 to 53

Each of the 54 digital pins on the Due can be used as an input or output,

using pinMode(), digitalWrite(), and digitalRead()functions. They operate at 3.3 volts. Each

pin can provide (source) a current of 3 mA or 15 mA, depending on the pin, or receive (sink)

a current of 6 mA or 9 mA, depending on the pin. They also have an internal pull-up resistor

(disconnected by default) of 100 kΩ.

In addition, some pins have specialized functions:

Serial 0: 0 (RX) and 1 (TX)

Serial 1: 19 (RX) and 18 (TX)

Serial 2: 17 (RX) and 16 (TX)

Serial 3: 15 (RX) and 14 (TX)

Used to receive (RX) and transmit (TX) TTL serial data (with 3.3 V level). Pins 0 and 1 are

connected to the corresponding pins of the ATmega16U2 USB-to-TTL Serial chip.

PWM: Pins 2 to 13

Provide 8-bit PWM output with the analogWrite() function. The resolution of the PWM can

be changed with the analogWriteResolution() function.

15

http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/AnalogWriteResolution

SPI: SPI header

These pins support SPI communication using the SPI library. The SPI pins are broken out on

the central 6-pin header, which is physically compatible with the Due, Uno, Leonardo and

Mega2560. The SPI header can be used only to communicate with other SPI devices, not for

programming the SAM3X with the In-Circuit-Serial-Programming technique.

CAN: CANRX and CANTX

These pins support the CAN communication protocol but are not yet supported by

Arduino APIs.

LED: Pin 13

There is a built-in LED connected to digital pin 13. When the pin is HIGH, the LED is on,

when the pin is LOW, it's off. It is also possible to dim the LED because the digital pin 13 is

also a PWM output.

TWI 1: 20 (SDA) and 21 (SCL)

TWI 2: SDA1 and SCL1.

Support TWI communication using the Wire library.

Analog Inputs: Pins from A0 to A11

Arduino Due has 12 analog inputs, each of which can provide 12 bits of resolution (i.e. 4096

different values). By default, the resolution of the readings is set at 10 bits, for compatibility

with other Arduino boards.

It is possible to change the resolution of the ADC with analogReadResolution(). The Due’s

analog inputs pins measure from ground to a maximum value of 3.3V. Applying more than

3.3V on the Due’s pins will damage the SAM3X chip. The analogReference() function is

ignored on the Due.

The AREF pin is connected to the SAM3X analog reference pin through a resistor bridge. To

use the AREF pin, resistor BR1must be disordered from the PCB.

16

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/AnalogReadResolution

DAC:

These pins provide true analog outputs with 12-bits resolution (4096 levels) with

the analogWrite() function. These pins can be used to create an audio output using the Audio

library.

Other pins on the board:

AREF:

Reference voltage for the analog inputs. Used with analogReference().

Reset:

Bring this line LOW to reset the microcontroller.

Communication

[3]

The Arduino Due has a number of facilities for communicating with a computer, other

microcontrollers, and different devices like smart phones, tablets, cameras and so on.

The SAM3X provides one hardware UART and three hardware USARTs for TTL (3.3V)

serial communication.

The Programming port is connected to an ATmega16U2, which provides a virtual COM port

to software on a connected computer (To recognize the device, Windows machines will need

a .inf file, but OSX and Linux machines will automatically recognize the board as a COM

port.). The ATmega16U2 is also connected to the SAM3X hardware UART. Serial on

pins RX0and TX0 provides Serial-to-USB communication for programming the board

through the ATmega16U2 microcontroller.

The Arduino Due software includes a serial monitor which allows simple textual data to be

sent to and from the board. The RX (Receiving) and TX (Transmitting) LEDs on the board

will flash when data is being transmitted via the ATmega16U2 chip and USB connection to

the computer (but not for serial communication on pins 0 and 1).

17

http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/Audio
http://arduino.cc/en/Reference/Audio
http://arduino.cc/en/Reference/AnalogReference

CHAPTER 3

MEASUREMENT TECHNIQUES

3.1. Hardware Connections

The following circuit is built according to the given schematic.

Fig 3.1.1: Hardware Connections
[10]

18

3.2. Sensor Calibration

In human interface applications where fingers or Palm are the mode of sensing or actuation,

good control of these parameters is not generally possible. Since, human force sensing is

somewhat inaccurate; it is rarely sensitive to detect differences of less than ±70%.

For dynamic measurements of FSR or Variable Control, a current to voltage converter is

required; this produces an output voltage inversely proportional to FSR resistance; however

the FSR resistance is approximately inversely proportional to the applied force.

The end result is a direct proportionality between the force and voltage; in another way, this

circuit roughly gives a linear relationship between output voltage and applied force. This

linearization of the response optimizes the resolution and simplifies data interpretation.

Three methods can be utilized: Gain and Offset Trimming, Curve Fitting and Analog Voltage

Reading Method

1. Gain and offset trimming can be used as an easy method for calibration. The reference

voltage and feedback resistor of the current to voltage converter are adjusted for each

FSR to pull their responses closer to the nominal curve.

2. Curve fitting is the most appropriate calibration method. The parametric curve fit is done

for the nominal curve from a set of FSR devices, and the resultant equation is saved for

further use. Fit parameters are then established for each individual FSR (or sending

element in an array) in the set.

These parameters, along with measured sensor resistance (or voltage), are put into the

equation to obtain the force reading. If required, temperature compensation can also be

included in that equation.

19

3. Analog Voltage reading method is the simplest way to measure the resistive sensor whose

one end is connected to the power and other to a pull-down resistor and ground.

The midpoint between the fixed pull down resistor and the variable FSR resistor is

connected to the analog input of a microcontroller such as an Arduino Due shown below.

Fig 3.2.1: Sensor Calibration
[11]

The way this circuit works is that as the resistance of the FSR decremented, the total

resistance of the FSR and the pull-down resistor also decremented from about 10kΩ. It

means that the current flowing through both resistors enhances which in turn causes the

voltage across the fixed 10 kΩ resistor to increase.

This method takes somehow linear resistivity but does not provide linear voltage, which

is because the voltage equation
[11]

 for this is.

It means the voltage is proportional to the inverse of FSR resistance.

20

3.3. Programming

This system is computer controlled, so in order to correct working of this system, we

program its 32-bit AT91SAM3X8E microcontroller in C Language in Arduino Complier.

We also introduce some Matlab command in this program, to be able to take the data into

Matlab Environment for analysis purposes. The Following Block Codes
[12]

 is written

below.

 Initialize Variables

 Select Input and Output Pins

 Initialize the Function Loop

 Start Reading the Analog Data

 Convert Analog to Digital Data

 Processed the Given Data

 Setting the Threshold Values

 Applying Various Infinite Loops

 Inserting Matlab Commands

 Generates Delays

21

CHAPTER 4

TESTING AND RECEIVING DATA

4.1. Testing Hardware

After making necessary connections we are ready to test our hardware.

4.1.1. Testing an FSR

The simplest way to determine how FSR works
[7]

 is to connect a multimeter in resistance

measurement mode, connect multimeter probes to the tabs of sensor and see how the

resistance changes. Because the resistance varies a lot, an auto-ranging meter works well

here. Otherwise, you may change the tab on your own.

Fig 4.1.1: Testing of an FSR Sensor

22

4.1.2. Testing an Arduino Due Board

We make a small program of serial data transfer to blink an LED and see that on the

Arduino 1.5.3 software serial monitor.

Fig 4.1.2: Testing of an Arduino Due Board
[1]

To build the circuit, attach a 220Ω resistor to pin 13 of the Arduino board, then attach

long leg of an LED (Positive leg, called the anode) to the 220Ω resistor. Attach a short leg

(Negative leg, called the cathode) to ground. Then we plug the Arduino board into our

computer, open the program window, and enter the code sketch in Appendix-D.

23

4.1.3. Receiving Grip Force Signals

After attaching FSR sensor to the steering wheel and making complete hardware

connections as shown in figure 3.1.1. Attach the USB micro side of the USB cable to the

Due's Programming port (this is the port closer to the DC power connector). To upload a

sketch, then open the serial monitor on the software environment.

Start gripping the FSR sensors to see if readings are shown or not, if everything goes well

then you will see some readings on the serial monitor according to your program
[13]

.

Fig 4.1.3: Receiving Grip force Signals

24

4.2. Matlab Graphical Analysis
[14]

4.2.1. Test Driver 1

Left Hand Plot

Fig 4.2.1.1: Test Driver 1 Left Hand Plot

Right Hand Plot

Fig 4.2.1.2: Test Driver 1 Right Hand Plot

Combined Plot

Fig 4.2.1.3: Test Driver 1 Combined Plot

25

Zoomed version of Left Hand Plot

Fig 4.2.1.4: Zoomed version of Left Hand Plot

Zoomed version of Right Plot

Fig 4.2.1.5: Zoomed version of Right Hand Plot

Zoomed version of Combined Plot

Fig 4.2.1.6: Test Driver 1 Zoomed Combined Plot

26

4.2.2. Test Driver 2

Left Hand Plot

Fig 4.2.2.1: Test Driver 2 Left Hand Plot

Right Hand Plot

Fig 4.2.2.2: Test Driver 2 Right Hand Plot

Combined Plot

Fig 4.2.2.3: Test Driver 2 Combined Plot

27

4.3. Anova Test in Excel
[15]

We have huge amount of data to analyze, we have to maintain this data in Excel sheets. If

you want to see this data please click on the link below.

Raw Test Drivers Readings.xlsx

 The reason for doing an ANOVA is to see if there is any difference between groups on

some variable. The equation of sample variance
[17]

is

∑(̅)

where, the divisor is called the degrees of freedom (DF), the summation is called the sum

of squares (SS), the result is called the mean square (MS) and the squared terms are

deviations from the sample mean. The critical value of F is a function of the numerator

degrees of freedom. If F ≥ FCritical , then reject the null hypothesis
[17]

. The computer

method calculates the probability (p-value) of a value of F greater than or equal to the

observed value. The null hypothesis is rejected if the p-value is less than or equal to the

significance level.

4.3.1. Test Driver 1

Anova: Single Factor

Table 4.3.1: Test Driver 1 Single Factor Anova

Anova: Two-Factor with Replication

Table 4.3.2: Test Driver 1 Two-Factor with Replication Anova

28

Source of Variation SS DF MS F P-value F crit

Between Groups 8.74E+09 3 2.91E+09 10781.9 0 1.547405

Within Groups 3.89E+09 14400 270225.4

Total 1.26E+10 14403

Source of Variation SS DF MS F P-value F crit

Sample 450.8744 9 50.09715 121.7813 5.3E-219 1.360569

Columns 2647.601 2 1323.8 3218.029 0 1.609678

Interaction 118.9794 18 6.609965 16.06818 4.32E-50 1.264816

Within 4430.454 10770 0.41137

Total 7647.909 10799

Raw%20Test%20Drivers%20Readings.xlsx

4.3.2. Test Driver 2

Anova: Single Factor

Table 4.3.3: Test Driver 2 Single Factor Anova

Anova: Two-Factor with Replication

Table 4.3.4: Test Driver 2 Two-Factor with Replication Anova

4.3.3. Test Driver 3

Anova: Single Factor

Table 4.3.5: Test Driver 3 Single Factor Anova

Anova: Two-Factor with Replication

Table 4.3.6: Test Driver 3 Two-Factor with Replication Anova

29

Source of Variation SS DF MS F P-value F crit

Between Groups 8.74E+09 3 2.91E+09 10778.81 0 1.547405

Within Groups 3.89E+09 14400 270225.5

Total 1.26E+10 14403

Source of Variation SS DF MS F P-value F crit

Sample 235.5883 9 26.17648 43.55808 1.98E-77 1.360569

Columns 2808.849 2 1404.424 2336.985 0 1.609678

Interaction 57.59408 18 3.199671 5.324305 1.48E-12 1.264816

Within 6472.293 10770 0.600956

Total 9574.324 10799

Source of Variation SS DF MS F P-value F crit

Between Groups 8.74E+09 3 2.91E+09 10775.28 0 1.547405

Within Groups 3.89E+09 14400 270226.3

Total 1.26E+10 14403

Source of Variation SS DF MS F P-value F crit

Sample 1285.361 9 142.8179 92.39892 1.1E-166 1.360569

Columns 3959.74 2 1979.87 1280.917 0 1.609678

Interaction 292.2508 18 16.23616 10.50431 3.01E-30 1.264816

Within 16646.82 10770 1.545666

Total 22184.18 10799

4.3.4. Test Driver 4

Anova: Single Factor

Table 4.3.7: Test Driver 4 Single Factor Anova

Anova: Two-Factor with Replication

Table 4.3.8: Test Driver 4 Two-Factor with Replication Anova

4.3.5. Test Driver 5

Anova: Single Factor

Table 4.3.9: Test Driver 5 Single Factor Anova

Anova: Two-Factor with Replication

Table 4.3.10: Test Driver 5 Two-Factor with Replication Anova

30

Source of Variation SS DF MS F P-value F crit

Between Groups 8.74E+09 3 2.91E+09 10787.17 0 1.547405

Within Groups 3.89E+09 14400 270225.4

Total 1.26E+10 14403

Source of Variation SS DF MS F P-value F crit

Sample 855.9851 9 95.10945 297.3024 0 1.360569

Columns 607.0637 2 303.5318 948.8095 0 1.609678

Interaction 162.3861 18 9.021451 28.20013 6.04E-94 1.264816

Within 3445.41 10770 0.319908

Total 5070.845 10799

Source of Variation SS DF MS F P-value F crit

Between Groups 8.74E+09 3 2.91E+09 10787.12 0 1.547405

Within Groups 3.89E+09 14400 270225.4

Total 1.26E+10 14403

Source of Variation SS DF MS F P-value F crit

Sample 366.088 9 40.67644 102.3818 1.4E-184 1.360569

Columns 624.8742 2 312.4371 786.3977 0 1.609678

Interaction 73.03815 18 4.057675 10.21308 3.18E-29 1.264816

Within 4278.939 10770 0.397302

Total 5342.939 10799

4.3.6. Test Driver 6

Anova: Single Factor

Table 4.3.11: Test Driver 6 Single Factor Anova

Anova: Two-Factor with Replication

Table 4.3.12: Test Driver 6 Two-Factor with Replication Anova

31

Source of Variation SS DF MS F P-value F crit

Between Groups 8.74E+09 3 2.91E+09 10784.54 0 1.547405

Within Groups 3.89E+09 14396 270075.2

Total 1.26E+10 14399

Source of Variation SS DF MS F P-value F crit

Sample 292.1832 9 32.4648 111.6982 3.6E-201 1.360569

Columns 610.0887 2 305.0444 1049.534 0 1.609678

Interaction 54.73209 18 3.040672 10.46172 4.25E-30 1.264816

Within 3130.272 10770 0.290647

Total 4087.276 10799

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1. Conclusion

Repeatability of results is confirmed by performing six successive measurements. By

performing ANOVA (Analysis of Variance) Test in Microsoft Excel and also by doing a

graphical analysis in Matlab we conclude that the average force of left hand is 0.4 N

because most of the times we use our left hand for changing the gear. Right hand average

force is around 1 N and combined average force of both the hands is around 1.7 N.

A threshold value is to be set by using this analysis, i.e. for left hand threshold value is

0.22 N and 0.51 N for right hand. If the readings are below these thresholds, then

microcontroller buzzes the alarm to alert the driver in real time. For the left hand, we also

provide five second delay to re-grip the senor after changing the gear, if it is not so,

microcontroller buzz the alarm to alert the driver.

More tests will be conducted on the system with the advice of medical personals in order

to locate the accurate change in steering grip force in order to minimize false alarm.

However, fatigue is a complex and safety-related matters and its detection should not be

based on steering grip force monitoring alone
[16]

.

Consequently, the driver fatigue detection system needs to be merged into a sensor

decision-making system that integrates the outputs from other fatigue detection system

currently being developed.

Perhaps the percentage of road fatalities will fall tremendously and thus making our roads

a safe passage to all our destinations when this system will be available in the market.

The system may be a reminder to all drivers that they should be in the best of alertness
[5]

when they are behind the wheels or otherwise the system will automatically remind them.

32

5.2. Future Scope

1. To measure the grip force that lies in the geometry of sensor, that are not easily

available according to our requirement, but the sensor manufacturing company will

make it if we give them bulk order. Because for measuring force we have to

symmetrically place the sensors on the steering wheel that are different for different

vehicles.

2. Since the upper coating of our sensor is delicate and need special precaution. We

put paper tape on it that causes an error in readings. So, we calibrate our program to

subtract this force from applying force. Sensor manufacturing companies will place

a good protective covering on the sensors to work under rugged conditions.

3. In the future by using appropriate algorithms, we can know that how much time the

driver left the steering wheel and using this data; the vehicle’s intelligent system can

control the vehicle in auto driver mode to avoid fatal accidents. That system also

alerts the driver and nearby vehicles by giving special light and sound signal, that

are approved by the Government for sleeping drivers.

33

APPENDIX-A

Op-Code Used in Arduino Programming

 setup()

The setup() function is called when a sketch starts. Use it to initialize variables, pin modes,

start using libraries, etc. The setup function will only run once, after each power up or reset of

the Arduino board.

 loop()

After creating a setup() function, which initializes and sets the initial values, the loop()

function does precisely what its name suggests, and loops consecutively, allowing your

program to change and respond. Use it to actively control the Arduino board.

 if/else

if/else allows greater control over the flow of code than the basic if statement, by allowing

multiple tests to be grouped together. For example, an analog input could be tested and one

action taken if the input was less than 500, and other action taken if the input was 500 or

greater.

 for

For statement is used to repeat a block of statements enclosed in curly braces. An increment

counter is usually used to increment and terminate the loop. For statement is useful for any

repetitive operation, and is often used in combination with arrays to operate on collections of

data/pins.

 while

while loops will loop continuously, and infinitely, until the expression inside the parenthesis,

() becomes false. Something must change the tested variable, or the while loop will never

exit. This could be in your code, such as an incremented variable, or an external condition,

such as testing a sensor.

34

http://arduino.cc/en/Reference/Setup
http://arduino.cc/en/Reference/Loop
http://arduino.cc/en/Reference/If
http://arduino.cc/en/Reference/For
http://arduino.cc/en/Reference/While

 break

Break is used to exit from a do, for, or while loop, bypassing the normal loop condition. It is

also used to exit from a switch statement.

 void

The void keyword is used only in function declarations. It indicates that the function is

expected to return no information to the function from which it was called.

 int

Integers are your primary data-type for number storage. On the Arduino Due, an int stores a

32-bit (4-byte) value. This yields a range of -2,147,483,648 to 2,147,483,647 (minimum

value of -2^31 and a maximum value of (2^31) - 1).

int's store negative numbers with a technique called 2's complement method. The highest bit,

sometimes referred to as the "sign" bit, flags the number as a negative number. The rest of the

bits are inverted and 1 is added.

 float

The data type for floating-point numbers, a number that has a decimal point. Floating-point

numbers are often used to approximate analog and continuous values because they have

greater resolution than integers. Floating-point numbers can be as large as 3.4028235E+38

and as low as -3.4028235E+38. They are stored as 32 bits (4 bytes) of information.

Floats have only 6-7 decimal digits of precision. That means the total number of digits, not

the number to the right of the decimal point. Unlike other platforms, where you can get more

precision by using a double (e.g. up to 15 digits), on the Arduino, double is the same size as a

float.

35

http://arduino.cc/en/Reference/Break
http://arduino.cc/en/Reference/Void
http://arduino.cc/en/Reference/Int
http://en.wikipedia.org/wiki/2%27s_complement
http://arduino.cc/en/Reference/Float

 pinMode()

Configure the specified pin to behave either as an input or an output. See the description

of digital pins for details on the functionality of the pins.

As of Arduino 1.0.1, it is possible to enable the internal pull-up resistors with the mode

INPUT_PULLUP. Additionally, the INPUT mode explicitly disables the internal pull-ups.

 digitalWrite()

Write a HIGH or a LOW value to a digital pin. If the pin has been configured as an OUTPUT

with pinMode(), its voltage will be set to the corresponding value: 5V (or 3.3V on 3.3V

boards) for HIGH, 0V (ground) for LOW.

If the pin is configured as an INPUT, digitalWrite() will enable (HIGH) or disable (LOW) the

internal pull-up on the input pin. It is recommended to set the pinMode()

to INPUT_PULLUP to enable the internal pull-up resistor.

 digitalRead()

Reads the value from a specified digital pin, either HIGH or LOW.

 analogRead()

Reads the value from the specified analog pin. The Arduino board contains a 6 channels (8

channels on the Mini and Nano, 16 on the Mega), 10-bit analog to digital converter. This

means that it will map input voltages between 0 and 5 volts into integer values between 0 and

1023. This yields a resolution between readings of: 5 volts / 1024 units or, .0049 volts (4.9

mV) per unit. The input range and resolution can be changed using analogReference().

 analogWrite()

Writes an analog value (PWM wave) to a pin. Can be used to light an LED at varying

brightnesses or drive a motor at various speeds. After a call to analogWrite(), the pin will

generate a steady square wave of the specified duty cycle until the next call

to analogWrite() (or a call to digitalRead() or digitalWrite() on the same pin).

36

http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Tutorial/DigitalPins
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/AnalogRead
http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Tutorial/PWM

 delay()

Pauses the program for the amount of time (in milliseconds) specified as parameter. (There

are 1000 milliseconds in a second.)

 Serial

Used for communication between the Arduino board and a computer or other devices. All

Arduino boards have at least one serial port (also known as a UART or USART): Serial. It

communicates on digital pins 0 (RX) and 1 (TX) as well as with the computer via USB. Thus,

if you use these functions, you cannot also use pins 0 and 1 for digital input or output.

You can use the Arduino environment's built-in serial monitor to communicate with an

Arduino board. Click the serial monitor button in the toolbar and select the same baud rate

used in the call to begin().

 end()

Disables serial communication, allowing the RX and TX pins to be used for general input and

output. To re-enable serial communication, call Serial.begin().

37

http://arduino.cc/en/Reference/Delay
http://arduino.cc/en/Reference/Serial
http://arduino.cc/en/Serial/End
http://arduino.cc/en/Serial/Begin

APPENDIX-B

Syntax and Operators Used in Arduino Programming

Syntax:

 ; (semicolon)

Used to end a statement

 {} (curly braces)

Curly braces (also referred to as just "braces" or as "curly brackets") are a major part of the C

programming language. They are used in several different constructs, outlined below, and

this can sometimes be confusing for beginners.

An opening curly brace "{" must always be followed by a closing curly brace "}". This is a

condition that is often referred to as the braces being balanced.

The Arduino IDE (integrated development environment) includes a convenient feature to

check the balance of curly braces. Just select a brace, or even click the insertion point

immediately following a brace, and its logical companion will be highlighted.

 // (single line comment) and /* */ (multi-line comment)

Comments are lines in the program that are used to inform yourself or others about the way

the program works. They are ignored by the compiler, and not exported to the processor, so

they don't take up any space on the Atmega chip.

Comments only purpose are to help you understand (or remember) how your program works

or to inform others how your program works.

38

http://arduino.cc/en/Reference/SemiColon
http://arduino.cc/en/Reference/Braces
http://arduino.cc/en/Reference/Comments
http://arduino.cc/en/Reference/Comments

 #define

#define is a useful C component that allows the programmer to give a name to a constant

value before the program is compiled. Defined constants in Arduino don't take up any

program memory space on the chip. The compiler will replace references to these constants

with the defined value at compile time.

 #include

#include is used to include outside libraries in your sketch. This gives the programmer access

to a large group of standard C libraries (groups of pre-made functions), and also libraries

written especially for Arduino.

Operators:

Arithmetic Operators

 = (assignment operator)

 + (addition)

 - (subtraction)

 * (multiplication)

 / (division)

 % (modulo)

Comparison Operators

 == (equal to)

 != (not equal to)

 < (less than)

 > (greater than)

 <= (less than or equal to)

 >= (greater than or equal to)

39

http://arduino.cc/en/Reference/Define
http://arduino.cc/en/Reference/Include
http://arduino.cc/en/Reference/Assignment
http://arduino.cc/en/Reference/Arithmetic
http://arduino.cc/en/Reference/Arithmetic
http://arduino.cc/en/Reference/Arithmetic
http://arduino.cc/en/Reference/Arithmetic
http://arduino.cc/en/Reference/Modulo
http://arduino.cc/en/Reference/If
http://arduino.cc/en/Reference/If
http://arduino.cc/en/Reference/If
http://arduino.cc/en/Reference/If
http://arduino.cc/en/Reference/If
http://arduino.cc/en/Reference/If

Boolean Operators

 andand (and)

 || (or)

 ! (not)

Bitwise Operators

 and (bitwise and)

 | (bitwise or)

 ^ (bitwise xor)

 ~ (bitwise not)

 << (bitshift left)

 >> (bitshift right)

Compound Operators

 ++ (increment)

 -- (decrement)

 += (compound addition)

 -= (compound subtraction)

 *= (compound multiplication)

 /= (compound division)

 and= (compound bitwise and)

 |= (compound bitwise or)

40

http://arduino.cc/en/Reference/Boolean
http://arduino.cc/en/Reference/Boolean
http://arduino.cc/en/Reference/Boolean
http://arduino.cc/en/Reference/BitwiseAnd
http://arduino.cc/en/Reference/BitwiseAnd
http://arduino.cc/en/Reference/BitwiseAnd
http://arduino.cc/en/Reference/BitwiseXorNot
http://arduino.cc/en/Reference/Bitshift
http://arduino.cc/en/Reference/Bitshift
http://arduino.cc/en/Reference/Increment
http://arduino.cc/en/Reference/Increment
http://arduino.cc/en/Reference/IncrementCompound
http://arduino.cc/en/Reference/IncrementCompound
http://arduino.cc/en/Reference/IncrementCompound
http://arduino.cc/en/Reference/IncrementCompound
http://arduino.cc/en/Reference/BitwiseCompoundAnd
http://arduino.cc/en/Reference/BitwiseCompoundOr

APPENDIX-C

Experimental Setup

Overview of the complete system

Fig C.1: Experimental Setup

Through Preview of Microcontroller Unit

Fig C.2: Connections at Microcontroller Unit

41

APPENDIX-D

Testing an Arduino Due Board

/* Blink turns on an LED on for two and half second, then off for two and half second,

repeatedly. */

/* There is a built-in LED connected to digital pin 13. When the pin is at HIGH, the LED

is on, when the pin is at LOW, it's off. We can also dim the LED because the digital pin13

is also a PWM output. */

int led = 13;

// the setup routine runs infinitely:

void setup() {

Serial.begin(19200); // Send debugging information through the Serial monitor

 // Initialize the digital (PWM) pin as an output.

 pinMode(led, OUTPUT);

} // End of function setup

// the loop routine runs infinitely forever:

void loop() {

 digitalWrite(led, HIGH); // turn on the LED (HIGH is the voltage level)

 delay(2500); // wait for two and half second

 digitalWrite(led, LOW); // turn off the LED by making the voltage LOW

 delay(2500); // wait for two and half second

} // End of Infinite loop

42

APPENDIX-E

Data Logging In Matlab

/* Matlab Program for data logging and graphical analysis */

close all

clear all

t = 0:1:30;

data = zeros(length(t),10);

data_2 = zeros(1,6);

%% Serial Comm

s1 = serial ('COM10');

set (s1,'BaudRate',19200);

%set (s1,'Timeout', 0.01);

fopen(s1);

%% Main Program

for i= 1:length(t)

 idn = fgets(s1);

 if (~isempty(idn))

 C = textscan(idn, '%f32%f32%f32%f32%f32%f32%f32%f32%f32','delimiter',',');

 forceLeft = (C{1})

 conductanceLeft = (C{2})

 resistanceLeft = (C{3})

 forceRight = (C{4})

 conductanceRight = (C{5})

 resistanceRight = (C{6})

43

 forceCombined = (C{7})

 conductanceCombined = (C{8})

 resistanceCombined = (C{9})

data(i,:) = [t(i) forceLeft conductanceLeft resistanceLeft forceRight conductanceRight

resistanceRight forceCombined conductanceCombined resistanceCombined];

 end

 % str = sprintf('%3.1f,%4.1,%3.1f\r',x);

 % fwrite(s1,str); %% send data to arduino

 %

 % xprev = fgets(s1); %% receive data from arduino

 % xdot= str2double(xprev);

 % x = x + xdot*Ts;

xlswrite('Data.xls',data);

deviation = std(data(:,2));

variance = var(data(:,2));

deviation2 = std(data(:,5));

variance2 = var(data(:,5));

deviation3 = std(data(:,8));

variance3 = var(data(:,8));

data_2(1,:) = [deviation variance deviation2 variance2 deviation3 variance3];

xlswrite('Std Var.xls',data_2);

figure,

plot(data(:,4),data(:,2));xlabel('Left Resistance(ohm)');ylabel('Left Force(N)'); grid on

figure,

plot(data(:,7),data(:,5));xlabel('Right Resistance(ohm)');ylabel('Right Force(N)'); grid on

figure,

plot(data(:,10),data(:,8));xlabel('Combined Resistance(ohm)');ylabel('Combined Force(N)');

grid on

figure,

44

plot(data(:,3),data(:,2));xlabel('Left Conductance(umho)');ylabel('Left Force(N)');grid on

figure,

plot(data(:,6),data(:,5));xlabel('Right Conductance(umho)');ylabel('Right Force(N)');grid on

figure,

plot(data(:,9),data(:,8));xlabel('Combined Conductance(umho)');ylabel('Combined

Force(N)');grid on

figure,

plot(t,data(:,2));xlabel('Time(s)');ylabel('Left Force(N)');grid on

figure,

plot(t,data(:,5));xlabel('Time(s)');ylabel('Right Force(N)');grid on

figure,

plot(t,data(:,8));xlabel('Time(s)');ylabel('Combined Force(N)');grid on

fclose(s1);

45

REFERENCES

[1] Q. Wang, J. Yang, et.al, “Driver fatigue detection: A survey,” in Proc. 6th World

Congress on Intelligent Control and Automation (WCICA 2006), vol. 2, June 2006, pp.

8587–8591

[2] Federico Baronti, et.al, 2009, Distributed Sensor for Steering Wheel Grip Force

measurement in Driver Fatigue Detection, EDAA, 978-3-9810801-5-5

[3] http://www.morth.nic.in

[4] Y. Lin, et.al., 2007, An Intelligent Noninvasive Sensor for Driver Pulse Wave

Measurement, IEEE Sensors Journal, Vol. 7, No. 5

[5] Dr. Herlina Abdul Rahim, et.al, 2010, Grasp hand approach to detect the attentiveness of

driver via vibration system, IEEE, 978-1-4244-7122-5/10

[6] http://www.zebronics.com

[7] http://www.interlinkelecteonics.com

[8] http://arduino.cc

[9] http://www.thefreedictionary.com/buzzer

[10] http://www.kicad-pcb.org

[11] https://learn.adafruit.com/force-sensitive-resistor-fsr

[12] http://arduino.cc/en/Reference/HomePage

[13] http://www.tekscan.com

[14] http://www.mathworks.in

[15] http://office.microsoft.com/en-us/excel/

[16] Tnum Chia Chieh, et.al. 2003, Driver Fatigue Detection using Steering Grip Force,

IEEE, 0-7803-8173-4/03.

[17] http://en.wikipedia.org/wiki/Analysis_of_variance

46

http://www.morth.nic.in/
http://www.zebronics.com/
http://www.interlinkelecteonics.com/
http://arduino.cc/
http://www.thefreedictionary.com/buzzer
http://www.kicad-pcb.org/
https://learn.adafruit.com/force-sensitive-resistor-fsr
http://arduino.cc/en/Reference/HomePage
http://www.tekscan.com/
http://www.mathworks.in/
http://office.microsoft.com/en-us/excel/
http://en.wikipedia.org/wiki/Analysis_of_variance

Index

A

Abstract, iii

Abbreviations, vii-ix

Acknowledgement, ii

Anova Test in Excel, 32-35

Arduino Due Board, 9

Arduino Due features, 13

B

Block Diagram, 6

Buzzer, 10

C

Conclusion, 36

Connecters and Wires, 10

Constraints, 12

D

Data Logging In Matlab, 26-28

Design Procedure, 11

F

Future Scope, 37

G

Gaming Console, 7

H

Hardware Selection, 7

I

Index, 47

Initiatives of NHAI for Road

Safety Activities, 4

L

LED, 10

List of Figures, vii

List of Tables, vi

Literature Survey, 2-4

M

Matlab Graphical Analysis, 29-

31

N

Need for Measurement

System, 1

O

Objective and Scope of Work,

5

Op-Code Used in Arduino

Programming, 38-41

P

Programming, 21

R

Receiving Grip Force Signals,

25

References, 46

Road Safety Activities, 3

S

Sensor, 8

Sensor Calibration, 19-20

Syntax and Operators Used in

Arduino Programming, 42-44

T

Table of Contents, iv-v

Thesis Certificate, i

Testing Hardware, 22

Testing an FSR, 22

Testing an Arduino Due Board,

23-24

47

