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ABSTRACT

KEYWORDS: TAgged GEometric History length, Simultaneous Multithread,

Branch History Guided Pefecthing

The techniques of Instruction Level Parallelism (ILP) and pipeline have been used well
to speed up the execution of instructions. The conditional branches are the critical factor to
the effectiveness of a deep pipeline since the branch instructions can always break the flow
of instructions through the pipeline and result in high execution cost. Branch prediction
in simultaneous multithreaded processors is difficult because multiple independent threads
interfere with shared prediction resources. TAgged GEometric history length (TAGE) pre-
dictor is implemented by combining several prediction algorithms. It relies on (partial)

hit-miss detection as the prediction computation function.

Instruction cache misses stall the fetch stage of the processor pipeline and hence af-
fect instruction supply to the processor. Instruction prefetching has been proposed as a
mechanism to reduce instruction cache (I-cache) misses. A hardware-based instruction
prefetching mechanism, Branch History Guided Prefetching (BHGP) is implemented to

improve the timeliness of instruction prefetches.

The entire project work is implemented in Bluespec System Verilog and synthesized in

Xilinx ISE.
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CHAPTER 1

INTRODUCTION

1.1 Overall Architecture

The Processor design team of Reconfigurable and Intelligent Systems Engineering (RISE)
Lab in the Computer Science Dept. of IIT Madras has been actively involved in building
a Superscalar processor for Server applications. The proposed processor is a 64 bit, single
core, quad threaded superscalar processor. The processor strictly follows RISC-V Instruc-
tion set Architecture (ISA). The entire design of the processor is done using a Hardware

Description Language (HDL) called Bluespec System Verilog (BSV).

The CPU core is based on the Tomasulo Algorithm. The Microarchitecture of the CPU
core is an Out of order microprocessor that is capable of fetching, decoding and issuing
4 instructions every clock cycle. A Centralized Reservation station is implemented to
utilize the reservation station entries in a more efficient manner. The Execution units are
duplicated to support for Quad issue. The Common Data Bus (CDB) used for Operand
forwarding can forward the results of at most 4 execution units. The Reorder buffers are
designed to commit maximum of four instructions in every clock cycle. My project work
involves the design of Branch Predictor and Instruction Prefetching unit related to the CPU

core.



1.2 Objective

1)To design Branch Predictor which can handle 4 threads.

e Gshare
e Tournament

e TAGE

2)To design Instruction Prefetching Unit

1.3 Organization of the thesis

Chapter 2  describes about the need for branch Predictor, overview of basic branch pre-
dictors. It also describes about the HDL called Bluespec System Verilog, its key features,
BSV constructs. It finally tells about the proposed microarchitecture of the superscalar

processor based on the Tomasulo algorithm.
Chapter 3 starts with detailed description of Branch Prediction, components involved in
prediction and design of the gshare, tournament and TAGE branch predictors. It also com-

pares the various configurations of converting the above predictors to handle multithread.

Chapter 4 describes about need for instruction prefetching and it describes about design

and implementation of BHGP instruction prefetching scheme in the processor.

Chapter 5 describes about how the branch predictor design is verified in Bluespec Sys-

tem Verilog. It also describes about the test cases generated to verify the design.

Chapter 6 concludes with a short description about the future work.



CHAPTER 2

BACKGROUND

This chapter deals about the need for branch predictor. It also deals about the key fea-
tures of Bluespec System Verilog (BSV), why Bluespec is used, how to build a design in

the BSV.

2.1 Need for Branch Predictor

The need for branch prediction arises from the use of pipelining in modern microarchi-
tectures. The goal of pipelining is to utilize the hardware to the fullest possible extent all
the time, it is necessary to make sure that each stage of the pipeline contains an instruction
as often as possible. If there are no changes in program control flow, then the solution
is simple, just make sure that instructions are read from memory quickly enough to keep
all the stages full all the time. However, when branches cause the program to behave in
ways that the processor does not expect, the solution becomes much more complicated. A

branch is a change in the control flow of a program which breaks sequentiality.

Imagine that a branch instruction has moved through the fetch and decode stages and is
now being executed. This execution stage is the first time that the processor knows whether
or not the branch will be taken. In general the result of this decision is based on a compare
between two other data elements. The problem arises because until this comparison occurs,

the processor does not know the next correct instruction to execute.



The stages prior to the execution cycle have already begun speculatively processing
instructions that follow the branch, yet if the branch is taken, these are not the correct
instructions. Therefore, all the stages before the execution cycle must be flushed and in-

struction fetch must precede from the target location of the taken branch.

This flushing of the pipeline wastes many cycles of execution time, thereby decreasing
the performance of the processor. In an effort to save these wasted cycles, processor de-
signers try to predict the direction of each branch instruction before the next instruction
is fetched from memory. If the prediction is correct, the next instruction after the branch
executes will be the correct instruction to execute next. If the prediction is incorrect, how-
ever, the pipeline must be flushed, and the correct instruction read into the pipeline. This

incorrect prediction is known as a misprediction.

Branch instructions are executed by the branch functional unit. For a conditional branch,
it is not until it exits the branch unit and when both the branch condition and the branch
target address are known that the fetch stage can correctly fetch the next instruction. This

delay in processing conditional branches incurs a penalty in fetching the next instruction.

The primary aim is to minimize the number of such stall cycles and/or to make use of
these cycles to do potentially useful work. The current dominant approach to accomplish

this is via branch prediction.

Branch prediction research focuses on improving the performance of pipelined micro-
processors by accurately predicting ahead of time whether or not a change in control flow

will occur.



2.2 Overview of basic Branch Predictors

2.2.1 Static Branch Prediction

Static branch prediction algorithms tend to be very simple and by definition do not
incorporate any feedback from the run-time environment. This characteristic is both the
strength and weakness of static prediction algorithms. By not paying any attention to the
dynamic run-time behavior of a program, the branch prediction is incapable of adapting to
changes in branch outcome patterns. These patterns may vary based on the input set for

the program or different phases of a program’s execution.

The simplest branch prediction strategy is to predict that the direction of all branches
will always go in the same direction (always taken or always not taken). Older pipelined

processors, such as the Intel 1486 used the always-not-taken prediction algorithm.

A variation of the single-direction static prediction approach is the backwards taken/-
forwards not-taken (BTFNT) strategy. A backwards branch is a branch instruction that has
a target with a lower address (i.e., one that comes earlier in the program). The rationale
behind this heuristic is that the majority of backwards branches are loop branches, and
since loops usually iterate many times before exiting, these branches are most likely to be
taken. For example, the Intel Pentium 4 processor uses the BTFNT approach as a backup

strategy when its dynamic predictor is unable to provide a prediction.

Although static branch predictors have poor prediction accuracy, their major advan-
tages are that they can be accessed instantly, very simple to implement and they require
very little hardware resources. Static branch predictors are of less interest in the context of
future-generation, large transistor budget, very large-scale integration (VLSI) processors

because the additional area for more effective dynamic branch predictors can be afforded.



2.2.2 Profile Static Branch Prediction

Profile-based static branch prediction involves executing an instrumented version of a
program on sample input data, collecting statistics, and then feeding back the collected
information to the compiler. The compiler makes use of the profile information to make
static branch predictions that are inserted into the final program binary as branch hints.
The compiler inserts branch hints corresponding to the more frequently observed branch
directions during the sample executions. If during the profiling run, a branch was observed
to be taken more than half of the time, then the compiler would set the branch hint bit to
predict-taken. The advantage of profile-based prediction techniques and the other static
branch prediction algorithms is that they are very simple to implement in hardware. One
disadvantage of profile-based prediction is that once the predictions are made, they are

forever set in stone” in the program.

2.2.3 Dynamic Branch Prediction

Dynamic branch prediction algorithms take advantage of the run-time information avail-
able in the processor, and can react to changing branch patterns. Dynamic branch predic-

tors typically achieve high branch prediction rates.

There are some branches that static prediction approaches cannot handle, but the branch
behavior is still fundamentally very predictable. Consider a branch that is always taken
during the first half of the program, and then is always not taken in the second half of
the program. Profiling will reveal that the branch is taken half of the time, and any static

prediction will result in a prediction accuracy of 50 percent.

On the other hand, if we simply predict that the branch will go in the same direction

as the last time we encountered the branch, we can achieve nearly perfect prediction, with



only a single misprediction at the halfway point of the program when the branch changes

directions.

2.23.1 Smith’s Algorithm

Smith’s algorithm is one of the earliest proposed dynamic branch direction prediction
algorithms, and one of the simplest. The predictor consists of a table that records for each
branch whether or not the previous instances were taken or not taken. Each counter tracks
the past branch directions. The branch address program counter (PC) is hashed down to i
bits. Each counter in the table has a width of k bits. The most significant bit of the counter
is used for the branch direction prediction. If the most-significant bit is a one, then the
branch is predicted to be taken; if the most significant bit is a zero, the branch is predicted

to be not-taken.

After a branch has resolved and its true direction is known, the counter is updated
depending on the branch outcome. If the branch was taken, then the counter is incremented
only if the current value is less than the maximum possible. If the branch was not taken,
then the counter is decremented if the current value is greater than zero. This simple finite
state machine is also called a saturating k-bit counter. The counter will have a higher value
if the corresponding branch was often taken in the last several encounters of this branch.
The counter will tend toward lower values when the recent branches have mostly been not

taken.

Figure: 2.1 illustrates the hardware for Smith’s algorithm.

The case of Smith’s algorithm when k = 1 simply keeps track of the last outcome of a

branch that mapped to the counter.
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Branch
Address

Update Counter value
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. Branch Prediction
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Branch Qutcome

Figure 2.1: Smith Predictor with Saturating k-bit Counters

The 1-bit saturating counter (1bC) has two states: 0,1 where the state 0 is called not-
taken and it indicates that the branch is not-taken, while state 1 is called taken and it reflects
that the branch is taken. Some branches are predominantly biased toward one direction.
A branch at the end of a for loop is usually taken, except for the case of the loop exit.
This one exceptional case is called an anomalous decision. The outcomes of several of
the most recent branches to map to the same counter can be used if k greater than 1. By
using the histories of several recent branches, the counter will not be thrown off by a
single anomalous decision. Figure: 2.2 shows hardware implementation of 1-bit saturating

counter.
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NT

Predict Not-taken Predict Taken

Figure 2.2: 1-bit saturating counter

The 2-bit saturating counter (2bC) is used in many branch prediction algorithms. There
are four possible states: 00, 01, 10, 11. States 00 and 01, called strongly not-taken (SN)
and weakly not-taken (WN), respectively, provide predictions of not-taken. States 10 and
11, called weakly taken (WT) and strongly taken (ST), respectively, provide a taken-branch
prediction. The reason states 00 and 11 are called ”strong” is that the same outcome must

have occurred multiple times to reach that state.

Prior to the anomalous decision, both 1-bit and 2-bit branch predictors predict the
branches accurately. On the first anomalous decision, 1-bit branch predictor mispredicts
because it only remembers the most recent branch and predicts in the same direction. This
occurs despite the fact that the vast majority of prior branches were taken. On the other
hand, 2-bit branch predictor makes the correct decision because its prediction is influenced

by several of the most recent branches instead of the single most recent branch.



— Taken .
v

"""" > Not-taken | S

Figure 2.3: 2-bit saturating counter

For tracking branch directions, 2-bit counters provide better prediction accuracies than
1-bit counters due to the additional hysteresis. Adding a third bit only improves perfor-
mance by a small increment. In many branch predictor designs, this incremental improve-

ment is not worth the 50 percent increase in area of adding an additional bit to every 2-bit

counter.
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2.3 Bluespec System Verilog

Bluespec System Verilog(BSV) is a a high-level functional hardware description pro-
gramming language for chip design and electronic design automation. The justification
behind writing chip designs in Bluespec is that it leads to shorter, more abstract, and
verifiable source code, as well as type-checked numeric code. Because of its expressive
power(comparable to most advanced programming languages), full synthesizability, and
quality of synthesis, Bluespec is fundamentally changing long-held assumptions about de-

sign flow.

2.3.1 Key Features of BSV

e Powerful parameterization and ’generate’.

e High-level of abstraction.

Fully synthesizable at all levels of abstraction.

Advanced clock management.

Powerful static checking

2.3.2 Overview of the BSV build process

The following are the steps involved in building a BSV design:

1. A designer writes a BSV program. It may optionally include Verilog, SystemVerilog,

VHDL, and C components.

2. The BSV program is compiled into a Verilog or Bluesim specification. This step has

two distinct stages:

11



e pre-elaboration - parsing and type checking

e post-elaboration - code generation

3. The compilation output is either linked into a simulation environment or processed

by a synthesis tool.

Once the Verilog or Bluesim implementation is generated, the workstation provides the

following tools to help analyze your design:

e Interface with an external waveform viewer with additional Bluespec-provided an-
notations, including structure and type definitions.

e Schedule Analysis viewer providing multiple perspectives of a modules schedule.

e Scheduling graphs displaying schedules, conflicts, and dependencies among rules
and methods.

2.3.3 Bluespec SystemVerilog Constructs

2.3.3.1 Rules
Rules are used to describe how data is moved from one state to another, instead of the
Verilog method of using always blocks. Rules have two components:

e Rule conditions: Boolean expressions which determine when the rule is enabled.

e Rule body: a set of actions which describe state transitions

2.3.3.2 Modules

A module consists of three things: state, rules that operate on that state, and an interface
to the outside world (surrounding hierarchy). A module definition specifies a scheme that

can be instantiated multiple times.

12



2.3.3.3 Interfaces

Interfaces provide a means to group wires into bundles with specified uses, described by
methods. An interface is a reminiscent of a struct, where each member is a method. Inter-

faces can also contain other interfaces.

2.3.3.4 Methods

Signals and buses are driven in and out of modules using methods. These methods are

grouped together into interfaces. There are three kinds of methods:

e Value Methods: Take O or more arguments and return a value.

e Action Methods: Take O or more arguments and perform an action (side-effect) in-
side the module.

e ActionValue Methods: Take O or more arguments, perform an action, and return a
result.

2.3.3.5 Functions

Functions are simply parameterized combinational circuits. Function application simply

connects a parameterized combinational circuit to actual inputs.

2.3.3.6 Application Areas of Bluespec System Verilog

Modeling for Software development

Modeling for Architecture Exploration

Verification

IP creation

13



2.3.4 Building a design in Bluespec System Verilog

The various steps involved in building a design in BSV is shown in Figure: 2.4.

.bsv

High level description
in the form of rules

~ ¥
/" Evaluate \\..\
| highlevel
\_ description /
BSV = Pre-
Compiler files elaboration
I o T —_
_~Translate rule~._
H description \\I
\_ intohardware  /
—bE Post- .
files elaboration /
Y 4
v ho
Verilog Bluesim
Implementation Implementation

Figure 2.4: Building a design in BSV

1. The designer writes the BSV code and it may contain Verilog, VHDL and C compo-

nents.

2. The BSV code is compiled into a Verilog or a Bluesim specification. This step has 2

stages:

e Pre-elaboration parsing and type checking.

e Post-elaboration code generation.

3. The compiled output is either linked to a simulation environment or processed by

synthesis tool.

14



2.4 Microarchitectural description of the Superscalar Pro-

cessor

The Microarchitectural description of the proposed Superscalar Processor based on the

Tomasulo Algorithm is as shown in Figure: 2.5.
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Figure 2.5: Microarchitectural description of the Superscalar Processor
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The Microarchitecture is a 64bit, Quad threaded, Out of order microprocessor that is
capable of fetching, decoding and issuing 4 instructions each clock cycle. The operands
are fetched during issue of the instructions. The instructions after getting issued are stored
in the centralized reservation station. The Reservation station can dispatch a maximum of

12 instructions: 4 of ALU, 4 of FPU, 4 of BRANCH in the same clock cycle.

There are 8 Register files: Integer register file, Floating register file for each thread.
There are 4 Reorder Buffers (ROB): One Reorder Buffer for each thread. The Execution
units are of ALU, FPU, BRANCH, MEMORY type. The Execution units are duplicated
4 times to avoid waiting of the ready instructions in Reservation station. The results from
the execution units are forwarded to the reservation station to update the operands with the
data. The Common Data Bus (CDB) used for Operand forwarding can forward the results
of at most 4 execution units. Selection of the execution units which need to drive the bus is
done by prioritization schemes. The Reorder Buffer can commit 4 instructions in a clock

cycle. Committing the instruction can be to either register file or memory unit.

16



CHAPTER 3

BRANCH PREDICTION

This chapter starts with detailed description of Branch Prediction, components involved
in prediction and design of the gshare, tournament and TAGE branch predictors It also
compares the various configurations of converting the above predictors to handle multi-

thread.

The behavior of branch instructions is highly predictable. A key approach to minimizing
branch penalty and maximizing instruction flow throughput is to speculate on both branch
target addresses and branch conditions of branch instructions. As a static branch instruction
is repeatedly executed at run time, its dynamic behavior can be tracked. Based on its past

behavior, its future behavior can be effectively predicted.

3.1 Components of Branch Prediction

There are two fundamental components of branch prediction:
e Branch Target Speculation

e Branch Condition Speculation

With any speculative technique, there must be mechanisms to validate the prediction

and to safely recover from any mispredictions.



3.1.1 Branch Target Speculation

Branch target speculation involves the use of a branch target buffer (BTB) to store previ-
ous branch target addresses. BTB is a small cache memory accessed during the instruction
fetch stage using the instruction fetch address (PC). Each entry of the BTB contains two
fields: the branch instruction address (BIA) and the branch target address (BTA). When
a static branch instruction is executed for the first time, an entry in the BTB is allocated
for it. Its instruction address is stored in the BIA field, and its target address is stored in
the BTA field. Assuming the BTB is a fully associative cache, the BIA field is used for
the associative access of the BTB. The BTB is accessed concurrently with the accessing
of the I-cache. When the current PC matches the BIA of an entry in the BTB, a hit in the
BTB results. This implies that the current instruction being fetched from the I-cache has
been executed before and is a branch instruction. When a hit in the BTB occurs, the BTA
field of the hit entry is accessed and can be used as the next instruction fetch address if that

particular branch instruction is predicted to be taken.
Figure: 3.1 shows the Branch Target Buffer.

If the branch predictor predicts not-taken, the target is simply the next sequential in-
struction. If the branch predictor predicts taken and there is a hit in the BTB, then the
BTB’s prediction is used as the next instruction’s address. It is also possible that there is
a taken-branch prediction, but there is a miss in the BTB. In this situation, the processor
may stall fetching until the target is known. If the branch has a PC-relative target, then the
fetch only stalls for a few cycles to wait for the completion of the instruction fetch from the
instruction cache, the target offset extraction from the instruction word, and the addition of
the offset to the current PC to generate the actual target. Another approach is to fall back

to the not-taken target on a BTB miss.

18



Branch Instruction Address field ~ Branch Target Address field

PC

ﬂ_§ BIA BTA

Access
BTB

Speculative Target
Address

Figure 3.1: Branch Target Speculation using Branch Target Buffer

By accessing the BTB using the branch instruction address and retrieving the branch
target address from the BTB all during the fetch stage, the speculative branch target address
will be ready to be used in the next machine cycle as the new instruction fetch address if
the branch instruction is predicted to be taken. If the branch instruction is predicted to be
taken and this prediction turns out to be correct, then the branch instruction is effectively

executed in the fetch stage, incurring no branch penalty.

The nonspeculative execution of the branch instruction is still performed for the purpose
of validating the speculative execution. The branch instruction is still fetched from the I-
cache and executed. The resultant target address and branch condition are compared with
the speculative version. If they agree, then correct prediction was made; otherwise, mis-
prediction has occurred and recovery must be initiated. The result from the nonspeculative

execution is also used to update the content, i.e., the BTA field, of the BTB.

19



If the branch is discovered later on to have been mispredicted, actions are taken to
recover the state of the processor to the point before the mispredicted branch, and execution
is resumed along the correct path. The penalty associated with mispredicted branches in
modern pipelined processors has a great impact on performance. The performance penalty

is increased as the pipelines deepen.

3.2 Branch Condition Speculation

Dynamic branch predictors may require a significant amount of chip area to imple-
ment, especially when more complex algorithms are used. For small processors, such as
older-generation CPUs or processors targeted for embedded systems, the additional area
for these prediction structures may simply be too expensive. For larger, future-generation,
wide-issue superscalar processors, accurate conditional branch prediction is critical. Fur-
thermore, these processors have much larger chip areas, and so considerable resources may
be dedicated to the implementation of more sophisticated dynamic branch predictors. An
additional benefit of dynamic branch prediction is that performance enhancements can be
realized without profiling all the applications that one wishes to run, and recompilation is

not needed so existing binary executables can benefit.

The main idea behind the majority of dynamic branch predictors is that each time the
processor discovers the true outcome of a branch (whether it is taken or not taken), it makes
note of some form of context so that the next time it encounters the same situation, it will
make the same prediction. dynamic branch predictors make note of context (in the form of

branch history), and then make their predictions based on this information.
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3.2.1 Gshare Branch Predictor

The two-level predictor employs two separate levels of branch history information to
make the branch prediction. The gshare two-level predictor uses a history of the most
recent branch outcomes. These outcomes are stored in the branch history register (BHR).
The BHR is a shift register where the outcome of each branch is shifted into one end, and
the oldest outcome is shifted out of the other end and discarded. The branch outcomes
are represented by zeros and ones, which correspond to not-taken and taken, respectively.
Therefore, an h-bit branch history register records the h most recent branch outcomes. The
branch history is the first level of the gshare two-level predictor. The second level of the
gshare two-level predictor is a table of saturating 2-bit counters (2bCs). This table is called
the pattern history table (PHT). The PHT is indexed by hashing of the branch address with

the contents of the BHR.

The hashing function used is a bit-wise exclusive-OR operation. The combination of
the BHR and PC tends to contain more information due to the non-uniform distribution
of PC values and branch histories. This is called index sharing. Indexing the BHT with
the XOR of the branch history and address eliminates a significant amount of the aliasing
that occurs using the traditional 2-bit prediction scheme and also takes advantage of recent

branch history information.

Figure: 3.2 shows the hardware organization of a sample gshare predictor.

The counter in the indexed PHT entry provides the branch prediction in the same fash-
ion as the Smith predictor (prediction is determined by the most-significant bit of the
counter). Updates to the counter are also the same as for the Smith predictor counters:

saturating increment on a taken branch, and saturating decrement on a not-taken branch.
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Figure 3.2: gshare predictor

When using only m bits of branch address (where m is less than the total width of the
PC), the branch address must be hashed down to m bits, similar to the Smith predictor. If
the number of global history bits used h is less than the number of branch address bits used
m, then the global history is XORed with the upper h bits of the m branch address bits.
The reason for this is that the upper bits of the PC tend to be sparser than the lower-order

bits.

The intuition behind using the global branch history is that the behavior of a branch
may be linked or correlated with a different earlier branch. The size of the gshare two-
level predictor depends on the total available hardware budget. In general, for an X K-byte

budget, the PHT will contain 4X counters.
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3.2.1.1 Reasons for Branch Mispredictions

Branch mispredictions can occur for a variety of reasons. Some branches are simply
hard to predict. Other mispredictions are due to the fact that any realistic branch predictor
is limited in size and complexity. There are several cases where a branch is fundamentally
unpredictable. The first time the predictor encounters a branch, it has no past information
about how the branch behaves, and so at best the predictor could make a random choice
and expect a 50 percent prediction rate. A similar situation occurs any time the predictor
encounters a new branch history pattern. A predictor needs to see a particular branch (or
branch history) a few times before it learns the proper prediction that corresponds to the
branch (or branch history). During this training period, it is unlikely that the predictor will

perform very well.

If the program enters a new phase of execution (for example, a compiler going from
parsing to type-checking), branch behaviors may change and the predictor must relearn the

new patterns.

The physical constraints on the size of branch predictors introduces additional sources
of branch mispredictions. For example, if a branch predictor has a 128-entry table of
counters, and there are 129 distinct branches in a program, then there will be at least one
entry that has two different branches mapped to it. If one of these branches is always taken
and the other is always not taken, then they will interfere with each other and cause branch
mispredictions. Interference is also called aliasing because both branches are aliases for

the same predictor entry.

For capacity problems, the only solution is to increase the size of the predictor struc-
tures. This is not always possible due to die area, latency, and/or power constraints. For
aliasing, a wide variety of algorithms have been developed to address this problem, couple

of those predictors are to be followed.
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3.2.2 Tournament Branch Predictor

Different branches in a program may be strongly correlated with different types of his-
tory. Because of this, some branches may be accurately predicted with global history-
based predictors, while others are more strongly correlated with local history. Programs
typically contain a mix of such branch types, and for example, choosing to implement a
global history-based predictor may yield poor prediction accuracies for the branches that

are more strongly correlated with their own local history.

Figure: 3.3 illustrates the hardware for the tournament selection mechanism with two

generic component predictors PO and P1

Branch Address — — = |
Bimodal PHT Gshare PHT

BHR

——= Xor

Branch Prediction

Figure 3.3: Tournamnet predictor
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To address this issue, a proposed multischeme branch predictor is the tournament algo-
rithm. The predictor consists of two component predictors PO (bi-modal predictor) and P1
(gshare prredictor) and a meta-predictor M. The component predictors can be any of the

single-scheme predictors.

The meta-predictor M is a table of 2-bit counters indexed by the low-order bits of the
branch address. This is identical to the lookup phase of 2-bit predictor , except that a
(meta-prediction of zero indicates that PO should be used, and a (meta-)prediction of one
indicates that P1, should be used (the meta-prediction is made from the most-significant bit

of the counter). The meta-predictor makes a prediction of which predictor will be correct.

Figure: 3.4 lists the state transitions of the tournament meta- predictor

PO Correct ? P1 Correct? Modification to M

0 0 Do Nothing

0 I Saturating Increment

I 0 Saturating Decrement

1 1 Do Nothing

Figure 3.4: Tournamnet meta-predictor update rules
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After the branch outcome is available, PO and P1, are updated according to their respec-
tive update rules. Although the meta-predictor M is structurally identical to 2-bit predictor,
the update rules (i.e., state transitions) are different. When P1’s prediction was correct and
PO mispredicted, the corresponding counter in M is incremented, saturating at a maximum
value of 3. Conversely, when P1, mispredicts and PO predicts correctly, the counter is
decremented, saturating at zero. If both PO and P1, are correct, or both mispredict, the

counter in M is unmodified.

The prediction lookups on PO, P1 and M are all performed in parallel. When all three
predictions have been made, the meta-prediction is used to drive the select line of a multi-

plexer to choose between the predictions of PO and P1.

Either or both of the two components of a tournament hybrid predictor may themselves
be hybrid predictors. By recursively arranging multiple tournament meta-predictors into a

tree, any number of predictors may be combined.
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3.2.3 TAGE predictor

State-of-art conditional branch predictors exploit several different history lengths to cap-
ture correlation from very remote branch outcomes as well as very recent branch history.
Hybrid predictors were initially relying on meta-predictors to select a prediction from a

few different predictors.

The Optimized GEometric History Length (O-GEHL) predictor is able to exploit very
long history lengths in the hundreds bits range. It achieved state-of-art branch prediction
accuracy for storage budgets in the range of 32K bit-1M bit range. It uses a medium N of
prediction tables (ex. 4 to 8) and limited hardware logic for prediction computation and it

is the most storage-effective reasonably implementable conditional branch predictor.

The O-GEHL predictor relies on an adder tree as the final prediction computation func-
tion, but its main characteristic is the use of a geometric series as the list of the history
lengths. This allows the O-GEHL predictor to exploit very long history lengths as well as

to capture correlations on recent branch outcomes.

TAGE stands for TAgged GEometric history length. TAGE is derived from tagged
PPM-like (Prediction by Partial Match) predictor. It relies on a default tagless predictor
backed with a plurality of (partially) tagged predictor components indexed using different
history lengths for index computation. These history lengths form a geometric series. The
prediction is provided either by a tag match on tagged predictor component or by default
predictor. In case of multiple hits, the prediction is provided by the tag matching table
with the longest history. The main contributions of the conditional branch predictor are
the use of geometric history length series in PPM-like predictors and a new and efficient
predictor update algorithm. TAGE predictor outperforms the O-GEHL predictor at equal
storage budgets and equivalent predictor complexity (number of tables, computation logic,

etc.)
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TAGE is more cost effective solution for this prediction combination functions for pre-
dictors relying on several predictor components indexed with different history lengths.
Using geometric history length as the O-GEHL predictor, the TAGE predictor uses (par-
tially) tagged components as the PPM-like predictor. TAGE relies on (partial) hit-miss
detection as the prediction computation function. TAGE provides state-of-art prediction

accuracy on conditional branches.

The quality of the prediction scheme is very dependent on the choice of the final pre-
diction computation function, but also on the careful design of the predictor update policy.
With the current update policy, partial tagging appears to be more efficient than adder tree

for final prediction computation.

3.2.3.1 Index Computation

Branch predictor behavior might be sensitive to the initialization state of the predictor.
In order to approach a realistic initialization point, the predictor counters are in reset state.
For computing indexes for global history predictors, hashing the branch history with the

branch address is done ( similar to gshare index computation).

While computing index, the global history has to be folded in order to access the tagged
structures. A possible way to implement history folding would be to use a tree of XORs.
For example, for the 40-bit history, h[0 : 9] xor h[10 : 19] xor h[20 : 29] xor h[30 : 39]
requires a depth-2 tree (assuming 2-input XORs). For the 80-bit history, this requires a
depth-3 tree. In practice, history folding can be implemented by taking advantage of the
fact that we are not folding a random value, but a global history value derived from the
previous history value. In a similar fashion, tag can also be generated by folding PC and
global history together. The TAGE predictor relies on using a very long global branch

history (in hundred bits range). This global history is speculatively updated and must be
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restored on misprediction. This can be implemented using shift registers to store global

branch history.

3.2.3.2 Predictor Structure

Geometric history length prediction was introduced in O-GEHL predictor. It features
M distinct prediction tables Ti, indexed with hash functions of the branch address and
global history. Distinct history lengths are used for computing the index of distinct tables.
Table TO is indexed using the branch address. The history lengths used for computing the

indexing functions for tables Ti, are of the form

L(i)=apow(i-1)*L(1)

i.e., the lengths L(i) form a geometric series.

Using a geometric series allows to use very long history lengths for indexing some
prediction tables, while still dedicating most of the storage space to predictor tables using
short history lengths. For example, in the current structure of 5-component predictor, the
first component is default predictor, it is indexed by branch address (PC) and the remaining
components are indexed using a =2 and L(1) = 10 leads to the following series 10, 20, 40,

80.

Figure: 3.5 illustrates a TAGE predictor. The TAGE predictor features a base predic-
tor TO in charge of providing a basic prediction and a set of (partially) tagged predictor
components Ti. These tagged predictor components Ti, are indexed using different history

lengths that form a geometric series

The base predictor used in TAGE is a simple PC-indexed 2-bit counter bimodal table.
An entry in a tagged component consists a counter ctr which provides the prediction, a

(partial) tag and a useful counter u, both u and ctr are 2-bit counters.
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Figure 3.5: 5-component TAGE predictor

3.2.3.3 Prediction Computation

At prediction time, the base predictor and the tagged components are accessed simulta-
neously. The base predictor provides a default prediction. The tagged components provide
a prediction only on a tag match. The final prediction is provided by the hitting tagged pre-
dictor component that uses the longest history, in case of no matching tagged component,

the default prediction in used.

In the remainder of the thesis, the provider component means the predictor component
that ultimately provides the prediction and alternate prediction (altpred) as the prediction

that would have occurred if there had been a miss on the provider component.
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For example, if there are tag hits on T2 and T4 and tag misses on T1 and T3, then T4 is the
provider component and T2 provides altpred. If there is no hitting component then altpred

is the default prediction.

3.2.3.4 Predictor Updation

The useful counter u of the provider component is updated when the alternate prediction
altpred is different from the final prediction pred. u is incremented when the actual predic-
tion is correct and decremented otherwise. Moreover, the useful counter is also used as an
age counter and is gracefully reset. Periodically, the whole column of the most significant
bits of the u counters is reset to zero, then the whole column of the least significant bits are
reset. If the graceful resetting of useful counters is missing, some entries will be marked

useful almost indefinitely.

On correct prediction, the prediction counter of provider component is updated (incre-
mented). If the overall prediction is incorrect, first we update (decrement) the provider
component prediction counter. As a second step, if the provider component Ti is not the
component using longest history, we try to allocate an entry on a predictor component Tk
using a longer history than Ti. Atmost a single component is allocated. The allocation

process is described below.

All uk counters are read from predictor components Tk, we apply these rules:

1) Priority for allocation

o [f there exists some k, such that entry uk = 0 then the component Tk is allocated Else

e The u counters from the components Tk, are all decremented (no new entry is allo-
cated)
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2) Avoiding ping-pong phenomenon: If two components Tj and Tk, j less than k can be
allocated (i.e., uj = uk = 0) then Tj is chosen with a higher probability than Tk. This can

be implemented in hardware using a simple linear feedback register.

3) Initializing the allocated entry: The allocated entry is initialized with the prediction

counter set to weakly taken (01). Counter u is initialized to O (i.e., strongly not useful)

This new entry delivers the prediction on the occurrence of the same (history, PC) pair.

The update policy is designed to minimize the perturbation induced by a single oc-
currence of a branch, in order to minimize it at most one tagged entry is allocated on a
misprediction. The selection of the entry to be allocated is managed through the useful
counter u. We manage u with two objectives, the value of u is high only if there was some
benefit since the last allocation of the entry: rule (1) guarantees that entries that were re-
cently used are not reallocated. Second, by decreasing the u counter when the entry is
not selected, and its graceful reseting, we try to mimic a pseudo least recently used policy.
The useful counter u is set to strong not useful, until the entry effectively helps to provide a
correct prediction, it is the natural target for next replacement. This property could induce
ping-pong phenomena on branches competing for a single entry, rule (2) was used to avoid

such ping-pongs.

Updating the predictor is not on the critical path. Therefore, complex update policy
may be applied. While studies have detailed update policies in branch predictors, the

importance of a careful design of the update policy has been rarely pointed out.

Most of the storage budget in the TAGE predictor is dedicated to the storage of the
(partial) tags. Therefore the main task is to correctly dimension the tag width. Using a
large tag width leads to waste part of the storage while using a short tag width leads to
false tag match detections, which may result in a misprediction that may trigger a new

entry allocation. This new entry may eject some useful prediction.
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3.2.3.5 Implementation Issues

Prediction response time:

The Prediction response time on most global predictors involves three components: the
index computation, the predictor table read and the prediction computation logic. Very
simple indexing functions using two stages of 3-entry exclusive-OR gates can be used
for indexing the predictor components without impairing the prediction accuracy. The
prediction table read delay depends on the size of the tables. In TAGE predictor, (partial)
tags are needed for the prediction computation. The tag computation may span during the
index computation and table read without impacting the overall prediction computation
time. The last stage in the prediction computation on the TAGE predictor consists of the
tag match followed by the prediction selection. The tag match computations are performed

in parallel on the tags flowing out from the tagged components.

At equal storage budgets, the response time is slightly longer than that of more conven-

tional gshare and tournament predictors for which the prediction computation is simpler.

Update implementation

The predictor update must be performed at commit time. On correct prediction, only
the prediction counter ctr and the useful counter u of the matching component must be
updated i.e., single predictor component is accessed. On a misprediction, a new entry
must be allocated in a tagged component. Therefore a prediction can potentially induce up
to three accesses to the predictor, i.e., read of all prediction tables at prediction time, read

of all prediction tables at commit time and write of two predictor tables at update time.
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3.3 SMT Branch Predictor Design

3.3.1 SMT Overview

In general, multithreading permits additional parallelism in a single processor by shar-
ing the functional units across various threads of execution. In addition to the sharing of
functional units, each thread must have a copy of the architected state. To combat this
overhead, many other processor resources end up being shared by multiple threads. Ac-
complishing this sharing of resources also requires that the processor be able to perform
switching between the threads efficiently, so as to not drastically affect performance. In
fact, one can hide many of the memory stalls and control changes by switching threads at

those occurrences.

Simultaneous multithreading (SMT) processors are able to use resources that are pro-
vided for extracting instruction-level parallelism (e.g. rename registers, out-of-order is-
sue) to also extract thread-level parallelism. An SMT processor uses multiple-issue and
dynamic scheduling resources to schedule instructions from different threads that can op-
erate in parallel. Since the threads execute independently, one can issue instructions from

these various threads without considering dependencies between them.

SMT is a form of multithreading that seamlessly interleaves the processing of instruc-
tions from multiple threads of execution in a single, shared processor pipeline. In a typical
SMT system, a single set of branch predictors is shared between several concurrently run-

ning threads.

Branch prediction in simultaneous multithreaded processors is difficult because multi-
ple independent threads interfere with shared prediction resources. This interference can

be positive or negative. As threads with very different control behavior interfere with
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shared prediction resources leading to negative interference within the branch predictor.
The interference that occurs due to the sharing of branch predictors between threads could
in fact be positive aliasing, where the leading thread trains the predictor for the trailing

threads with similar control flow.

3.3.2 Exploring Efficient SMT Branch Predictor Design

There are four possible configurations for branch prediction in simultaneous multithreaded

processors:

e Shared Configuration
e Split Branch Configuration
e Split Branch Table Configuration

e Split History Configuration

Thread 0
N
N
Thread 1 X .
“ History Predictor
Thread 2 p s
Thread 3 :

Figure 3.6: Shared Configuration
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3.3.2.1 Shared Configuration

The most resource conservative branch predictor configuration for an SMT is a totally
shared predictor (Figure: 3.6 ). In this case, each thread shares both the history register
and BHT. This configuration allows for the most interference between threads. This inter-
ference can occur both in the history register and in the BHT. This interference reduces the

accuracy. This configuration allows most interference and requires least hardware.

Predictor

History ——A
ThreadO
History ES Predictor
Thread 1
Thread 2 ) _ -
) History S Predictor
Thread 3
History Predictor

Figure 3.7: Split Branch Configuration

3.3.2.2 Split Branch Configuration

The next logical configuration was providing each thread with its own predictor (Figure:
3.7). This configuration completely eliminates interference between threads. In this case,
the predictor acts exactly as it would in a single-threaded environment. This configuration

requires most hardware. This configuration provides highest prediction accuracy.
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3.3.2.3 Split Branch Table Configuration

The third configuration is a partial split of the branch predictor (Figure: 3.8). In this
case, each thread accesses a common branch history register, but then indexes into its own

predictor. This configuration allows interference only in the branch history register.

Predictor
Thread ID
Thread O
' | # Predictor
Thread 1
History 1
Thread 2 & _
Predictor
Thread 3
Predictor

Figure 3.8: Split Branch Configuration

3.3.2.4 Split History Configuration

The final branch predictor configuration is the opposite of partial split of predictor re-
sources (Figure: 3.9). This configuration allots each thread its own history register while
indexing into a common predictor. This configuration again only allows interference at
one of the two possible places, in the predictor. By only replicating the branch history
register, a small resource, instead of the predictor, a much larger resource, the split history
configuration eliminates one of the sources of interference in a much more cost and space

efficient manner than the split branch table configuration. The hope of this configuration is
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that interference in the larger predictor will have less effect than interference in the smaller

branch history register.

Thread ID
History e
|

Thread O |

History
Thread 1 4 !

Predictor

Thread 2 ;

History
Thread 3

History

Figure 3.9: Split History Configuration

Considering all the facts like hardware complexity, reduction in the accuracy by sharing
resources, the fourth configuration split history turns out to be the best way because of the
relative unimportance of branch prediction accuracy in a multithreaded environment, we
conclude that valuable development time and on-chip resources should be applied to other

more important issues.

All the three branch predictors discussed in this chapter (gshare, tournament and TAGE)

are implemented for SMT using this split history configuration technique discussed above.
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CHAPTER 4

INSTRUCTION PREFTCHING

4.1 Need for Prefetching

As processor speeds have increased over the past few decades, the gap between mem-
ory access latency and the processor cycle time has steadily increased. Consequently, the
performance penalty of an I-cache miss has increased. In addition, current superscalar pro-
cessors fetch and issue multiple instructions per cycle which compounds the miss penalty.
Reducing I-cache misses is therefore critical for restoring a balance between the fetch and

the execution stages of these wide issue processors.

The common solution for reducing I-cache misses is to increase the cache size. How-
ever, the size of the I-cache is limited by timing and area considerations, and may also be
reaching a point of diminishing returns. Prefetching would be a more viable alternative, if

an effective predictor of instruction miss addresses were available.

With the current trends toward wider issue processors and an increasing gap between
the CPU cycle time and the memory access latency, to avoid a fetch bottleneck it is critical

to issue prefetches earlier.



4.2 Branch History Guided Prefetching

Branch History Guided Prefetching (BHGP), that uses branches as trigger points to initi-
ate prefetches to candidate blocks. The prefetch candidate blocks contain instructions that
resulted in I-cache misses (N - 1) branches after some previous execution of the triggering
branch. BHGP selects its prefetch candidate block without needing a branch predictor to

predict the outcome of each of these N branches.

Generally, the target address of a branch instruction is the beginning of a basic block
which may span multiple cache lines. BHGP maintains both the address and the length of

prefetch candidate blocks, so that entire blocks can be prefetched in a timely fashion.

4.2.1 BHGP Structure

Branch History Guided Prefetching (BHGP) exploits a correlation between the execu-
tion of a branch instruction and later I-cache misses. This correlation is expected since
control flow changes caused by branches lead to many I-cache misses. BHGP identifies
those branches that are followed by I-cache misses at an appropriate later time and exploits

the regularity of this correlation to prefetch some candidate block of instructions.

For example, a branch instruction (Br-1 ) will be associated with candidate block (BB-
I) if there is an I-cache miss to BB-1 exactly (N - 1) branches after Br-1 is executed. When

Br-1 is next executed, a prefetch for BB-1 is initiated.

The prefetch hardware consists of 5 structures: Prefetch Table (PT), Branch History
Queue (BHQ), and three registers: BB, L, and M. The PT is a small associative cache.
Each entry of the PT contains the address of a branch instruction, the beginning address of
its associated prefetch candidate block, and the length of the block (in cache lines). The

BHQ is maintained as a FIFO buffer and always holds the addresses of the most recent N
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branches executed (N = 5 in Figure 1). Whenever a branch is executed by the processor
it is enqueued to the tail of the BHQ and the entry at the head of the BHQ is pushed out
(dequeued). The BB register holds the address of the instruction that followed the most
recently executed branch (potentially the beginning address of the prefetch candidate block

for the branch at head of the BHQ).

For example, Br 5 is the most recent branch and BB-18 is the address of the instruction
executed after Br5; BB-18 may become the beginning address of the next prefetch candi-
date block to be associated with the branch at the head of the BHQ, namely, Br-1 (presently
BB-12 is associated with Br-I). The L register stores the number of I-cache lines referenced
since the most recent branch and will be used as the length of the prefetch candidate block.
The M register is a 1 -bit flag which is reset to 0 whenever a branch instruction is executed

and is set to 1 whenever there is an I-cache miss.

Figure: 4.1 illustrates the operation of BHGP using a high level block diagram.

Current Instruction(Br_6) Prefetch Table
c. Enqueue Br_6 !a. Lookup Br_6in PT
in BHQ trigger L_6 prefetches
, BHQ from BB_6
Tail| Br_>
| Br_6 BB_6 LB
Br 4 BB L M :
Br_3 BB_18 L_18 1
Br_2 J B 1 BB.12 |L 12
Head| Br_1

b. If M=1, lookup Br_1 in PT, update entry
toBB_18,L 18

Figure 4.1: BHGP Operation
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4.2.2 BHGP Operation

Consider the sequence Br-1, Br-2, Br-3, Br-4, Br-5, Br-6 of six branches in an execution.
Each branch may be taken or not taken and the BHQ may contain multiple instances of
the same branch. Figure 4.1 shows the state of BHQ some time after Br5 is executed, but
before Br-6; suppose that the current state of PT is as shown. BB shows that BB-18 is
the block that was entered after Br5, the L register is counting up the number of cache
lines in BB-18, and M = 1 indicates that there was an I-cache miss when referencing some
instruction in BB-18. Eventually branch Br-6 (the final instruction of BB-18) becomes the

current instruction and the following three events occur:

a) The PT is searched for a Br-6 entry. If there is a match, a prefetch is initiated for the

entire candidate block (BB-6 of length L-6 lines in Figure 4.1).

b) If M = 1, there was an I-cache miss after Br-5 and the corresponding prefetch can-
didate block in the BB register (BB-18) and its length in the L register (L-18) need to be
associated with the branch at the head of the BHQ, Br-1 in Figure 4.1. If a PT entry for
Br-1 already exists, it is updated to BB-18 and L-18. Otherwise, a new entry is created

with this information and replaces some other PT entry.

c¢) Br-6 is enqueued to the tail of the BHQ and Br-1 is pushed out of the BHQ. In
addition, the L register is set to 1, M is reset to 0, and the BB register is updated with the

address of the first instruction after Br-6.

It is important to note that if no cache miss occurs after BrS is executed, then M is still
0 when Br-6 occurs, and the PT entry for Br-1, if any, is left unchanged. Each PT entry
thus associates a branch with its most recently missed (MRM) candidate block, i.e., the

block that experienced a miss most recently while that branch resided at the BHQ head.
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To limit the number of useless prefetches, BHGP prefetches the MRM candidate block
only if it is not already present in the cache and its confirmation bit is set to 1. Each line in
the next level of memory hierarchy (L2 cache) has a confirmation bit that is used to track
whether the line was referenced while it resided in L1 after it was last prefetched. The
confirmation bit of a line is initialized to 1 and is reset to 0 whenever the line is prefetched
and replaced in L1 without being used; it is set to 1 again only when the line experiences
a demand miss. Prefetch requests are squashed if the lines confirmation bit is O in the L2

directory.
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CHAPTER 5

VERIFICATION

5.1 Verification Setup
The set up for verification process is shown in fig: 5.1.

ASSEMBLY FILE BINARY FILE

ASSEMBLER —

Instructions.s Instructions.txt

i

DESIGN
UNDER
VERIFICATION

ANALYSE

RESULTS

Figure 5.1: Verification Setup

Bluespec Compiler converts the design in BSV to synthesizable Verilog code. Questa

simulator was used to verify the various functionalities of the design.



The functionality of the design was verified using a test bench which provides a set of
instructions composed of various test scenarios to the main module. display statements
were embedded/included in the code to monitor the functionality of the modules in various

clock cycles. The design was simulated using Questa simulator (Modelsim).

The test instructions in mnemonics form (assembly code) are given to the ABACUS
assembler. The assembler gives the instructions in binary form. These are stored in a data

file and are used in the test bench for verifying the design.

5.2 Verification Strategy

The verification process mainly focused on verifying functional behaviour of the design.
The main challenge involved in the verification of the branch predictor was that it gets the
feed back from the execution unit on whether the prediction was correct or not. So the
test bench was so modified that it would also process the instruction along with the branch
predictor and produce the results after required number of cycles. These results are then

used to update the branch history tables.

So, the test scenarios were generated to verify the following aspects of the design.

e Filling up of branch history tables.

Updation of prediction bits.

Branch Predictor SMT behaviour.

Address conversions to point to the correct BTB.

Updation of Global BHR.
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5.3 Synthesis Report

The design has been synthesized using Xilinx ISE for Virtex 6 XC6VLX240T-FF1156.
All default settings were used. The design strategy was set to optimization for speed. The

slice utilization and timing summary are provided below:

Device Utilization Summary :

Slice Logic Utilization:
Number of Slice Registers : 1142 out of 301440
Number of Slice LUTs : 662 out of 150720
Number used as Logic : 662 out of 150720

Number of fully used LUT-FF pairs: 488 out of 11923
Timing Summary :

Minimum period: 3.581ns
Maximum Frequency: 279.252MHz

Minimum input arrival time before clock: 1.186ns

Maximum output required time after clock: 0.779ns
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Gshare, Tournament and TAGE branch predictors are successfully implemented in Blue-
spec System Verilog. In order to achieve high accuracy conditional branch predictors must
exploit several different history lengths to capture correlation from very remote branch
outcomes as well as very recent branch history. Branch prediction accuracy is less im-
portant in an SMT system than in a traditional superscalar processor. This phenomenon
occurs because other threads fill in the processing void left when a long latency hazard is
encountered by one. BHGP causes each branch execution to trigger a prefetch of its MRM
candidate block. In this technique branch instructions are used to trigger the prefetch can-

didate blocks occurring (N - 1) branches later.

Future Work:

Simple tuning of TAGE branch predictor for allowing slightly better usage of storage

budget

e First to enhance the behaviour of the bimodal base predictor.

e Second, using slightly different tag widths on different tagged components make a
better usage of the storage space. More precisely, width of the tag should increase
with history length: a false match is more harmful on the components using longest
history.
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