
Design and Implementation of a Fixed-Point

Systolic Architecture for an MVDR Wide-Band

Beamformer in FPGA

A THESIS

submitted by

GIRISH M

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

JUNE 2014

THESIS CERTIFICATE

This is to certify that the thesis titled Design and Implementation of a Fixed-

Point Systolic Architecture for an MVDR Wide-Band Beamformer in

FPGA, submitted by Girish M, to the Indian Institute of Technology, Madras,

for the award of the degree of Master of Technology , is a bona fide record of

the work done by him under my supervision. The contents of this thesis, in full

or in parts, have not been submitted to any other Institute or University for the

award of any degree or diploma.

Dr. Nitin Chandrachoodan

Advisor,

Associate Professor,

Dept. of Electrical Engineering,

IIT-Madras, 600 036

Place: Chennai

Date: 13th June 2014

ACKNOWLEDGEMENTS

I would like to thank my Guide Dr.Nitin Chandrachoodan for giving me an

opportunity to work under his guidance and for supporting me with valuable

information and suggestions throughout my project work. I would also like to

express my sincere gratitude to him for giving me enough freedom to explore a

new tool and showing the right directions to proceed. I also take this moment

as an opportunity to thank Sh. Ananthanarayanan, Director, NPOL, my parent

organization, Sh. S.K.Shenoi, Group Head and Smt. Subhadra Bhai, Division

Head for supporting me to pursue my M.Tech program.

I would like to thank Dr.Srikrishna Bashyam for the motivating Adaptive Signal

Processing classes and Dr. Dileep Nair for being my faculty adviser and supporting

me throughout my course here. Great thanks to Ajmal, Pavan, Jobin, Karthikeyan

in particular and other members of ESL group for giving valid inputs through their

presentations and mode of work. Thanks are due to Ramprasad who inspired me

with his skills in Latex and prompted me to use the same. Also, I would cherish

the time that I had spent with friends like Vijay, Syed, Avinash and Mahesh in

the DSDL lab. Special thanks to Janaki Madam for giving an access to the DSDL

lab.

I would like to thank all my batchmates especially Senthil and Selwin for being

my good friends for these two years and helping me out in domestic issues. I cannot

miss to acknowledge my family here especially my kids Gayatri and Giridhar who

were not so troublesome to their Mother during these two years. I have no words

to express my gratitude to my wife, Shiny, for taking care of my kids and certain

familial and domestic issues in my absence.

This thesis is dedicated to my family and to all my loved ones.

iii

ABSTRACT

This thesis presents the design and implementation of a Fixed point Systolic Ar-

chitecture for an MVDR Wide-Band Beamformer. The design is accomplished

using a systolic array approach minimizing the latency and the resources con-

sumed without trading off much on speed and the signal processing constraints,

which basically include the SNR requirements and stationarity assumptions. Be-

sides the design itself is scalable to meet larger array and wider band requirements.

Moreover the proceesing elements in the array are pipelined and regular in nature,

which makes it more tractable.

The goal is to simulate the design and realize it on a Xilinx FPGA platform

and evaluate the results for various fixed-point precisions.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

ABSTRACT iv

LIST OF TABLES ix

LIST OF FIGURES x

ABBREVIATIONS xii

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 3

1.3 Thesis organisation . 3

2 MVDR Wide-Band Beamformer 4

2.1 Adaptation . 4

2.2 Computational Analysis . 5

2.2.1 Flow Diagram . 5

2.2.2 Computational Requirements 7

2.2.3 Case Study . 8

2.3 Robust Inverse Free Square Root Algorithm 9

v

2.3.1 Inverse Free Method . 9

2.3.2 Cholesky Factorization of CSD Matrix 10

2.3.3 Adding Robustness . 11

2.3.4 Cholesky Factor Update 12

2.4 Beamformer on various Platforms 14

2.4.1 DSP based approach . 14

2.4.2 GPU based approach . 15

2.5 why FPGA based approach . 16

3 Design Philosophy 18

3.1 Systolic Array based Design . 18

3.2 Existing Architecture . 18

3.2.1 Features . 19

3.2.2 Desired Features . 19

3.3 Architecture for Cholesky factor update 23

3.3.1 Architecture 1 . 23

3.3.1.1 Concept . 23

3.3.1.2 Analysis . 25

3.3.2 Architecture 2 . 26

3.3.2.1 Concept . 26

3.3.2.2 Analysis . 27

3.3.3 Architecture 3 . 27

3.3.3.1 Concept . 27

vi

3.3.3.2 Analysis . 30

3.4 Architecture for Back-Solve Process 30

3.4.1 Concept . 30

3.4.2 Analysis . 31

4 Implementation and Simulation Results 33

4.1 Tools used . 33

4.2 Implementation . 33

4.2.1 Bin Vector Generation 34

4.2.1.1 Signal Generator 34

4.2.1.2 Input Buffer . 35

4.2.1.3 FFT Core . 36

4.2.1.4 Bin Storage . 36

4.2.2 MVDR Beamformer Power Computation module 38

4.2.2.1 Systolic Array for Cholesky Factor Update . . . 38

4.2.2.2 Systolic Array for Back-Solve Process 46

4.2.2.3 Power computation 48

4.3 Simulation Results . 50

4.3.1 Resource Utilization Summary 50

4.3.2 Timing Summary . 51

4.3.3 Evaluation for various Precision 54

4.3.4 Simulation Waveforms 54

4.3.5 Summary & Scope for Future 57

vii

5 REFERENCES 58

viii

LIST OF TABLES

2.1 Specifications . 8

4.1 Device Utilization Summary . 51

4.2 Timing Summary . 51

4.3 Performance of Design with various precisions 54

ix

LIST OF FIGURES

1.1 Beam Pattern of a CBF. 2

1.2 Energy Plots of a CBF & MVDR BF. 2

2.1 Flow Diagram . 6

3.1 Timing Diagram. 21

3.2 Block Diagram. 22

3.3 Architecture 1. 25

3.4 Architecture 2. 26

3.5 Architecture 3. 28

3.6 Systolic Array for Cholesky Factor Update. 29

3.7 Systolic Array for Back-Solve process. 31

4.1 Signal Generator module. 34

4.2 Input Buffer module. 35

4.3 FFT Core module with IP Core. 37

4.4 Bin Storage. 37

4.5 MVDR Beamformer Power Computation Module. 39

4.6 Control logic for PE1. 40

x

4.7 CORDIC IP Core in Translate (T) and Sine Cosine Generation (R)

mode. 41

4.8 Correction logic for the Translate core. 42

4.9 Common blocks of PE1 PE2 and PE3. 42

4.10 lfifo block expanded. 43

4.11 lxsel block expanded. 43

4.12 Shimming Delays. 44

4.13 First Rotation Correction. 45

4.14 Matrix Multiplication. 45

4.15 Division Function. 47

4.16 Control Logic for Solver Block & Steering vector ROMs. 47

4.17 Complex Multiplier. 49

4.18 Magnitude Function. 49

4.19 Accumulator Function. 50

4.20 Stage 5 Output of the Cholesky factor update array. 52

4.21 Stage 6 Output of the Cholesky factor update array. 53

4.22 Accumulator Output. 54

4.23 System Output: Case 1 . 55

4.24 System Output: Case 2 . 56

xi

ABBREVIATIONS

CBF Conventional Beamformer

MVDR Minimum Variance Distortion-less Response

CSD Cross Spectral Density

FPGA Field Programmable Gate Array

ASIC Application Specific Integrated Chip

DSP Digital Signal Processor

GPU Graphics Processing Unit

SNR Signal to Noise Ratio

FFT Fast Fourier Transform

CORDIC COordinate Rotation DIgital Computer

PE Processing Element

MRA Maximum Response Axis

CHAPTER 1

Introduction

1.1 Motivation

Beamformer is an essential component in sensor arrays used in any sonar or radar

application irrespective of the deployment, be it Commercial or Military, espe-

cially because of the SNR improvement that it provides. Adaptive Beamformer

differs from a Conventional Beamformer in its beam pattern. The latter has a fixed

Beam pattern depending on the geometry of the array, while the Beam pattern of

the former adapts to the environment depending on the amount of interferences.

A conventional Delay-Sum Beamformer and its beam pattern are shown in Fig-

ure.1.1.

MVDR Beamformer [12] tries to minimize the variance or power of the combined

output from a sensor array in a least square sense subject to a constraint that the

signal from a desired direction is passed in without distortion. The Power Plots

of the Conventional and MVDR Beamformer are shown in Figure.1.2.

The solution to this problem amounts to computation of a set of adaptive weights

which in turn involves the computation of inverse of the Cross-Correlation/Cross-

Spectral-Density Matrix. The Inverse computation is of the order of N3 opera-

tions, where N is the size of the input data. There are techniques available in

literature to compute the weights without performing the inverse computation.

One such technique is explored and applied to the problem in this project and a

new architecture to realize the same in fixed-point precision has been proposed.

𝜃

d

Delays

τ8

τ7

τ6

τ5

τ4

τ3

τ2

τ1

Σ
Output

Beam

Pattern

8

1

2

3

4

5

6

7

Figure 1.1: Beam Pattern of a CBF.

−80 −60 −40 −20 0 20 40 60 80
−35

−30

−25

−20

−15

−10

−5

0

P
o

w
e

r
(d

B
)

look direction (degrees)

CBF vs ABF Power Plot

CBF

MVDR

Figure 1.2: Energy Plots of a CBF & MVDR BF.

2

1.2 Objective

The main objective of this work is to design and implement an MVDR wide-band

Beamformer using fixed-point precision in FPGA with an intent to minimize the

latency and resources consumed without trading off much on speed and signal

processing contraints like SNR and stationarity assumptions. The scope of the

work confines to sensor arrays which are either linear or circular in nature which

can cater for an azimuthal resolution in the range of 1 to 2 degrees. The band of

operation of the array is assumed to be in lower range typically from 100 Hz to 15

KHz with a maximum band width of 5 KHz. This band is further split into narrow

bands with a resolution of the order of 100 to 200 Hz. The array size, number

of sub apertures and the number of look Angles per aperture are decided by the

application and whether the architecture can meet these specifications depends on

the operational clock frequency of the Systolic Array.

1.3 Thesis organisation

The rest of the thesis is organized as described below.

Chapter 2 discusses about the MVDR Beamformer and its adaptation to cater

for a wider band and the parameters of significance. A typical array of interest is

considered and the memory and computational requirements are discussed. This

chapter also deals with the technique adopted to realize the inverse free adaptive

MVDR beamformer and explores in brief the other existing platforms that are

used to realize the same application and their pros and cons.

Chapter 3 explains in detail the proposed final architecture along with archi-

tectures which were used to arrive at the final one. This chapter also discusses

about the implementation approach, tools and the IP cores used to realize the

architecture.

Chapter 4 summarizes the performance analysis with simulation results.

3

CHAPTER 2

MVDR Wide-Band Beamformer

2.1 Adaptation

The MVDR Beamformer proposed is a wide-band beamformer for an M sensor

array. The array could be of any arbitrary geometry and the path delays that the

signal encounters while impinging the array matter. The signal is assumed to be

narrow band or of single frequency. In order to cater for a wider band, the desired

band is split into multiple narrow bands and an MVDR beamformer is constructed

for each narrow band. Hence the computations are done in the frequency domain

rather than in the time domain.

The Sensor array data is received as a block of time series.This time series is

normalized to have zero mean and unit variance prior to the beamforming. The

preprocessed data is used to compute the FFT and the frequency bins in the band

of interest are selected for the beamforming.

Supposing there are K bins of interest, the number of cross-spectral density ma-

trices that have to be computed are K each of dimension M×M . The number of

steering vectors required for N is of the order of N×K each of dimension M×1.

The steering vectors can be grouped to form a 3d matrix of size N×K×M . The

adaptive weights are computed using the following formula

wj (θ) =
R−1
j Aj (θ)

AHj (θ)R−1
j Aj (θ)

(2.1)

where

θ is the look angle or Beam direction,

j is a bin of interest ranging from 1 to K,

Aj (θ) is the steering vector corresponding to the jth bin in the look angle θ and is

computed as ejωτ i , τ i are the respective path delays to each of the sensors in the

array. In equation (2.1), Rj is the Cross-Spectral Density Matrix corresponding

to the jth bin and is obtained by

Rj = E
[
XjX

H
j

]
(2.2)

where Xj in equation (2.2), is the array snapshot vector or bin vector comprising

of the FFT coefficients w.r.t jth bin from the M sensors. The power associated

with each bin in the given look angle is given as

Pj (θ) =
1

AHj (θ)R−1
j Aj (θ)

(2.3)

and the net power in the given look angle is just the sum of all the individual

powers of the bins

P (θ) =
∑

K
j=1Pj (θ) (2.4)

2.2 Computational Analysis

2.2.1 Flow Diagram

The flow diagram for the MVDR Wide-Band Beamformer is as depicted below in

Figure.2.1.

The digital time series data from the sensors is subjected to FFT and the bins

which fall in the band of interest are extracted to form bin vectors. In practice

equation (2.2) cannot be estimated by time averaging because the bin vector or

the observations in the frequency domain is never truly stationary and/or ergodic.

As a result the available averaging time is limited. One approach of time varying

5

S1

B-Point

FFT

B-Point

FFT

B-Point

FFT

.

.

.

.

.

.

.

.

.

.

𝑋𝑗

S2

SM

Steering Vectors 𝐴𝑗(𝜃)

MVDR Beamformer Weights

𝑤𝑗 𝜃 =
𝑅𝑗
−1𝐴𝑗(𝜃)

𝐴𝑗
𝐻(𝜃)𝑅𝑗

−1𝐴𝑗(𝜃)

Output 𝑌𝑗 𝜃 =

𝑤𝑗
𝐻(𝜃)𝑋𝑗

𝑅𝑗,𝑡 =

1 − 𝛼 𝑅𝑗,𝑡−1 + 𝛼𝑋𝑗𝑋𝑗
𝐻

𝑅𝑗
−1

Power Output

𝑃 𝜃 =

1

𝐴𝑗
𝐻(𝜃)𝑅𝑗

−1𝐴𝑗(𝜃)
𝑗

Figure 2.1: Flow Diagram

adaptive estimation of Rj proposed by Owsley [2] is using an exponential averager

which is given by

Rj,t = (1− α)Rj,t−1 + αXj,tX
H
j,t (2.5)

where α is a smoothing factor. In dynamic situations where the direction of

arrival of a particular interference is varying with time, the effective averaging

time for estimating the inter-element CSD Matrix Rj is limited by a temporal

stationarity assumption. Thus the variance of the elements which contribute to

Rj, which is actually inversely proportional to the averaging time, has a lower

bound determined by the finite averaging time. Specifically if NI is the number

of statistically independent vectors of Xj, which are exponentially averaged to

obtain a stable and invertible estimate of Rj, then the variance on the beam power

estimator statistic as found in (2.3) is inversely proportional to NI −M + 1, and

M < NI . Usually NI is of the order of 3 to 4 times of M by empirical observations

6

and theoretical suggestions.

1 2 3 ... NI

—— —— —— —... ———
B Samples B Samples B Samples ... B Samples

For every snapshot of B Samples, the following tasks have to be carried out.

1. B-point FFT for M Sensors.

2. Form bin vectors Xj and find Xj,tX
H
j,t for all the K bins in the band of

interest.

3. Update Rj as in equation (2.5)

After NI snapshots

1. Compute R−1
j for all the K bins.

2. Find optimal weights as in equation (2.1).

3. Find ‖wHj (θ)Xj‖2 for all the K bins and sum them to obtain the total power
in a particular look direction θ.

4. Repeat steps 2 & 3 to get the power output in all the look directions, N .

5. Alternatively steps 2 & 3 can be skipped to compute the power directly by
using the equations (2.3) and (2.4).

6. Repeat step 5 for all the look directions, N .

2.2.2 Computational Requirements

The computations involved in the foreground process of updating the Rj Matrices

are

1. For FFT say NF operations.

2. To find Xj,tX
H
j,t, M

2K (4Mult+ 2Add) /2 +MK (4Mult+ 2Add) /2 opera-
tions.

3. To update Rj, M
2K (4Mult+ 2Add) /2 + MK (4Mult+ 2Add) /2 opera-

tions.

7

Therefore the total number of operations for NI snapshots is

NI (NF + (M2K +MK) (4Mult+ 2Add)) and they have to be performed in a

span of NIBTS units of time.

The number of operations involved in computing the power estimate for various

look directions are as listed below,

1. To find R−1
j for all the K bins, KM3 operations.

2. To find power in all the N look directions,
NK ((M2 +M) (4Mult+ 2Add) + (MAdd)) operations.

Therefore the total number of operations involved in the above process of comput-

ing the power for various look angles is of the order of

KM3 + NK ((M2 +M) (4Mult+ 2Add) + (MAdd)) and they have to be com-

pleted in a span of NIBTS units of time. Assuming a lower bound for NI ' 4M ,

the timing requirement that restricts the pipelining of the above two processes can

be obtained as 4MBTS units of time.

2.2.3 Case Study

A typical case of interest is considered here and the specifications are as follows

Main Array Circular Array of 32 Sensors
Aperture size 12 Sensors

Resolution 1.250

Number of Look Angles/Aperture 9
Band of Interest 1KHz to 3.5KHz

Sampling Frequency 24KHz
FFT size 256

Number of Bins of Interest 28

Table 2.1: Specifications

For the case considered above, where M = 12, B = 256 and TS = 41.67µs the

timing parameter which governs the pipelining of the above two processes turns out

to be 0.512 secs. This timing parameter is what is referred to as the Averaging

Period.

8

2.3 Robust Inverse Free Square Root Algorithm

The MVDR weights in equation (2.1) requires the computation of the inverse of

the cross spectral density matrix R−1
j . For a broadband beamformer, this has

to be done for all the frequency bins in the band of interest. Since the Inverse

computation is intensive and requires operations of the order of M3, a better way

to compute the weights was proposed by Owsley.

2.3.1 Inverse Free Method

Relooking at the Optimal weights equation (2.1), It is clear that to get rid of the

Inverse term, some algebraic manipulations are required. In that point of view,

equations (2.1) and (2.3) can be re-written as,

wj (θ) =
pj (θ)

AHj (θ) pj (θ)
(2.6)

and

Pj (θ) =
1

AHj (θ) pj (θ)
(2.7)

respectively. Where,

pj (θ) = R−1
j Aj (θ) (2.8)

and

Aj (θ) = Rjpj (θ) (2.9)

From (2.9) and (2.6), It is evident that the optimal weights could be computed in

two steps.

Step1 involves the solution of expression given in equation (2.9) for vector pj (θ).

9

Step2 involves substituting the solution obtained in Step 1 for pj (θ) in equation

(2.6).

2.3.2 Cholesky Factorization of CSD Matrix

The cross spectral density matrix, is usually computed using the equation,

Rj = XjX
H
j (2.10)

where the Expectation in equation (2.2) has been replaced by stochastic approxi-

mation.

Applying Cholesky Fcatorization on the CSD Matrix, equation (2.9) can be rewrit-

ten as

Aj (θ) = LjL
H
j pj (θ) (2.11)

where Lj is the Cholesky factor or the Square root of Rj and is a Lower triangular

matrix. LHj is the complex transpose of Lj. Substituting for LHj pj (θ) as uj (θ)

results in

Aj (θ) = Ljuj (θ) (2.12)

and

uj (θ) = LHj pj (θ) (2.13)

Further Algebraic manipulation leads to

AHj (θ) pj (θ) = ‖uj (θ) ‖2 (2.14)

10

thereby reducing the optimal weights in equation (2.6) and power in equation (2.7)

as follows

wj (θ) =
pj (θ)

‖uj (θ) ‖2
(2.15)

and

Pj (θ) =
1

‖uj (θ) ‖2
(2.16)

The problem of solving for weights and the power estimate has narrowed down

to solving two quantities uj (θ) and pj (θ) Wherein, uj (θ) could be computed

from equation (2.12) by forward substitution as Lj is a lower triangular matrix.

Having computed uj (θ), pj (θ) could be obtained from equation (2.13) by a back

substitution.

2.3.3 Adding Robustness

The MVDR weights are optimized by minimizing the total power at beamformer

output with a unity gain constraint for a signal from a desired Look Angle. This

constraint makes it a highly selective spatial filter. If the true target DOA is

slightly off the desired Look Angle, the signal will be treated as interference.

Therefore the power output in the beamformer for targets which lie in between

the Look Angles will be reduced. To mitigate this effect it is desirable to slightly

broaden the spatial response of the filter so as to make it robust. One simple

method to achieve this is diagonal loading, in which a small value is added to

the diagonal elements of the CSD matrix Rj initially at the beginning of every

averaging period,i.e.

Rj = Rj + εI (2.17)

11

where ε = 0.01

The statistics of the interference will generally be non-stationary as discussed

earlier and hence the CSD Matrices are estimated using an exponential averager

with a forgetting/smoothing factor as in equation (2.5). The smoothing factor α

can be obtained as

α =
1

1 + Tc
Ta

(2.18)

where Tc is the Averaging Period or the Time constant of integration and Ta is

the time required to collect one snapshot of array data from M sensors. For the

better estimate of the CSD matrix, the criteria on time constant has already been

discussed. The ratio of Tc
Ta

should be chosen accordingly.

2.3.4 Cholesky Factor Update

The Cholesky factor of Rj can be updated directly from the Bin vectors without

explicitly computing the cross spectral density matrix Rj. The procedure for up-

dating the Cholesky factor Lj is similar to the way the CSD Matrices are updated

as in equation (2.5). The update can be rewritten as

Lj,tL
H
j,t = (1− α)Lj,t−1L

H
j,t−1 + αXj,tX

H
j,t (2.19)

The new update of the Cholesky factor Lj,t can be obtained recursively by means

of a unitary transformation. If Q is the unitary transformation, then equation

(2.19) can be written as

Lj,tL
H
j,t = ([βLj,t−1 | γXj,t]Q) ([βLj,t−1 | γXj,t]Q)H (2.20)

12

Where β =
√

1− α and γ =
√
α

The transformation forces the elements in Xj,t to zero as illustrated below,

[βLj,t−1 | γXj,t]Q→ [βLj,t | 0] (2.21)

The above unitary transformation is accomplished using two Givens rotations [6],

the first involving the bin vector Xj alone

∣∣∣∣∣∣∣∣∣∣∣∣∣

re (x1) im (x1)

re (x2) im (x2)

. .

re (xM) im (xM)

∣∣∣∣∣∣∣∣∣∣∣∣∣
Q→

∣∣∣∣∣∣∣∣∣∣∣∣∣

re (x̂1) 0

re (x̂2) im (x̂2)

. .

re (x̂M) im (x̂M)

∣∣∣∣∣∣∣∣∣∣∣∣∣
and the second rotation involving the updated bin vector X̂j and the Cholesky

factor Lj

∣∣∣∣∣∣∣∣∣∣∣∣∣

l11 re (x̂1)

re (l12) + j∗im (l12) re (x̂2) + j∗im (x̂2)

. .

re (l1M) + j∗im (l1M) re (x̂M) + j∗im (x̂M)

∣∣∣∣∣∣∣∣∣∣∣∣∣
Q→

∣∣∣∣∣∣∣∣∣∣∣∣∣

l̄11 0

re
(
l̄12
)

+ j∗im
(
l̄12
)

re (x̄2) + j∗im (x̄2)

. .

re
(
l̄1M
)

+ j∗im
(
l̄1M
)

re (x̄M) + j∗im (x̄M)

∣∣∣∣∣∣∣∣∣∣∣∣∣
The above two Rotations continue until all the elements in Xj are nullified updat-

ing all the columns of the Cholesky factor Lj. The Update process continues until

the Averaging period and the Weights and the Power are computed by solving for

uj and pj, substituting the updated Cholesky factor in equations (2.12) and (2.13)

respectively.

13

2.4 Beamformer on various Platforms

The platforms used to implement the Beamformer or in general a Signal Process-

ing application range from ASICs to General Purpose DSPs to GPUs and FPGAs

these days. Choosing a platform and precision to realize most of the Signal Pro-

cessing applications depend on the dynamic range of the data to be processed.

There are certain applications which could very well be implemented using fixed-

point precision rather than floating point precision depending on the dynamic

range of the data to be processed. Though ASICs were designed to perform a

specific application, they were not scalable and the demanding requirements to

cater for larger arrays and highly computational intensive Algorithms paved way

for various other platforms like DSPs, GPUs and FPGAs.

2.4.1 DSP based approach

General Purpose DSPs are limited by the computing power they possess. Though

they are easily programmable, they are bound by the incoming data rates and

the sequence of tasks which need to be performed on the incoming data. They

have a fixed architecture and generally do not support pipelining of the data.

Consider the case of an Analog Devices Tiger SHARC processor which operates

at 500 MHz bus speed and 200 MHz core clock. Though the core operates at

high clock speed, it is restricted by the resources to perform a highly computation

intensive algorithm which acts on multiple sensors at the same time, on its own.

As in the case of a wide-band Beamformer application, the incoming data time

series is subjected to a frequency domain transformation using an FFT processor.

A single FFT function call or subroutine may have to cater for all the sensors in

the DSP, whereas each sensor could be handled by an individual FFT processor

in the FPGA. This can drastically bring down the FPGA clock speed and thereby

the power dissipated considering the power per unit area metric. Moreover the

14

tasks to be performed on the data, have to be categorized into foreground and

background processes in the case of DSPs. The number of having such processes

is limited and scheduling of these processes is again critical and needs to be done

with proper care to avoid stalls and conflicts. The job of partitioning the tasks

into sub tasks so as fit into DSPs becomes crucial here and hence the DSPs need to

be chosen depending on the application. For instance in the case of a wide-band

MVDR beamformer, one approach would be to divide the process of updating

the CSD Matrices for the various bins of interest among various cores within a

DSP and have a cluster of such DSPs to handle a set of apertures. This would

be a foreground process along with the computation of instantaneous beamformer

outputs and FFT on the incoming data. The computation of adaptive weights

followed by the beamformer output power which is a slower process will be run

as a background process in parallel. Thus the area over which an application

is realized increases enormously by having a cluster of DSPs, though decreasing

the power dissipation but increasing the space requirements which are critical in

certain space and defence applications.

2.4.2 GPU based approach

GPUs have potential computational power and basically behave as a parallel co-

processor to the CPU capable of outperforming a general CPU in terms of FLOPS

and Bandwidth. The stream processor or the cores within the GPU behave like

processing elements which enable data parallelism. The architecture also supports

pipelining. Though they have high computational power, they have their own

restrictions in the form of limited memory, be it local memory or shared memory

and the pattern in which the data are accessed. Moreover the interface between

the CPU and the GPU also is critical in terms of bandwidth. It has also been

observed that GPUs are efficient as long as they operate on large chunks of data in

one shot which tries to utilize all the cores rather than performing operations on

15

small chunks of data. Hence the CPU has to cater for a high speed bus interface

with sufficiently large memory in order to utilize the computing power of GPU to

its fullest extent. Besides they are not always reliable for hard real-time applica-

tions because of the scheduling overheads and the above mentioned limitations.

The same rationale with regard to task partitioning holds for GPUs as well. More-

over the overheads involved in running the application in GPUs and DSPs are more

as the applications are realized in the form of software which is either interrupt

driven or controlled by a handshaking mechanism which can hamper the hard

real-time behaviour of the applications which has sampling rates of the order of

GHz. Though the modern DSPs have addressed some of the above mentioned

issues with evolving architectures, the software to realize the application needs to

be written taking into account all the restrictions imposed by the processor and

the compiler together.

2.5 why FPGA based approach

FPGAs on the other hand with huge resources of logic cells, DSP blocks and mem-

ories and higher operational speeds are a better choice to realize hard real-time

applications as the designs are realized as hardware which are data driven in most

cases and not restricted by any software overheads which include scheduling and

function calls of interruptive nature. The designs are often realized using multi-

ple instances running in parallel to meet the demanding requirements put forth

by multi-sensor applications. The designs are scalable in nature by utilizing the

unused resources within the FPGA with the in-system programmability feature.

The other significant advantage of FPGA is that the designs could be realized us-

ing fast parallel pipelined architectures which relax the clock speed and memory

requirements resulting in periodic and regular hardware blocks. In short, FPGAs

become an obvious choice because of the following reasons

16

1. The designs are realized as hardware and are scalable

2. They provide in-system programmability

3. They are free from software overheads

4. Fast Parallel Pipelined Architectures which often result in periodic and reg-
ular structures relaxing the constraints can be realized

With the advent of time-area optimized Intellectual Property (IP) Cores, it is no

more difficult to realize any signal processing algorithm in FPGAs. The critical

component in the realization is however meeting all the timing requirements with

respect to the design realization.

17

CHAPTER 3

Design Philosophy

3.1 Systolic Array based Design

The proposed architecture is parallel pipelined systolic array architecture. The

term Systolic comes from human cardiac system to describe the circulation of

blood to and from heart through blood vessels to various parts of the body. From

the VLSI point of view, it is analogous to the data being pumped into a Processing

Element (PE) and pumped out of it after getting processed. Ideally the data should

be continuous so that PEs can keep processing them and pump the processed data

out of the system. In other words the PEs shouldnt starve for data.

3.2 Existing Architecture

Gentleman & Kung [1] were the first to propose a Systolic array based approach

to compute the weights using the Recursive Least Squares (RLS) method. The

approach had two steps basically a QR update from the observation vectors fol-

lowed by a Back-Solve process. This work was followed by Hudson & Shepherd

[4] who proposed a kalman closed loop feedback structure, which computes the

weights based on the error residuals in a recursive manner. Many authors like

Schreiber, Mcwhirter, Owsley, Liu, Rader etc [2], [3], [5], [7], [8] and more recently

Dick and Harris [11] followed up with really good work proposing and publishing

literatures on the proposed architectures either individually or teaming up with

others which can be considered to fall in one of the two following categories. The

first category comprises of architectures where the weights are computed recur-

sively in every iteration, whereas the second comprises of architectures where the

weights are computed over a period of time and the iterations are meant only

to update the intermediate data which is used subsequently, after a prescribed

number of iterations, in weights computation. All the architectures proposed use,

in one-way or the other, orthogonalization techniques which make use of unitary

transformations like Givens, Modified Givens, Gram-Schmidt and House-Holder

transformations etc on the observation vectors.Authors like Frantzeskakis, Liu [9]

and Gotze, Schwiegelshohn [10] have also proposed architecture to avoid divisions

in the weights computation.

3.2.1 Features

Most of the authors have emphasized and tried to achieve architectures with the

following features

• Single and pipelined in nature

• Consume least memory resources

• Provide maximum parallelism

• Compute Weights in every iteration

3.2.2 Desired Features

All the above architectures can very well be adopted for the problem under con-

sideration which is a wide-band MVDR Beamformer. A wide-band MVDR beam-

former as explained in previous chapter comprises of a number of narrow band

beamformers depending on how finer the wider band is split into. From the Adap-

tation proposed in the previous chapter, the incoming time series is subjected to

FFT to get the narrow bands or the centre frequencies of narrow bands in the

wider-band of interest. Adopting the above proposed architectures would result

19

in a 2-D Systolic array comprising of K 1-D Systolic Arrays catering for each of the

K narrow bands considered. The architecture further blows up to a 3-D Systolic

Array by adding another dimension which is the number of Apertures considered

within the Sensor Array. Though this architecture is memory-less and provides

maximum parallelism, the amount of resources consumed is enormous. Moreover

the latency of most of the proposed architectures are of the order of the size of

Observation vectors as these vectors are pumped in one element at a time to the

Systolic Array.

So the objective here is to propose a fast parallel pipelined architecture that would

minimize the resources along with the latency in the pipeline without trading off

much on the timing constraints put forth by the algorithm. The architecture pro-

posed as part of the thesis is two-step process and basically involves the Cholesky

factor update as the first and two Back-Solve processes in cascade as the second

step. The first of the Back-Solve processes in cascade aids in computing the power

in the beam while the second uses the output from the first to compute the weights

for each of the narrow band beamformers considered. Each step is realized as an

independent systolic array with adequate memory to interface between the arrays

and accommodate all the narrow bands and apertures enabling in diminishing the

3-D Systolic Array to a 2-D Systolic Array. The proposed architecture is a square-

root free architecture and makes use of CORDIC algorithm to realize the Givens

Rotations used in the Cholesky factor update step.

In adaptive filters, it is of utmost importance how quicker the weights are com-

puted and applied to the new set of observation vectors. The minimum number

of iterations required to converge to the optimal weights is fixed for a given algo-

rithm and for a given set of parameters. Given these constraints how faster the

hardware can accomplish this goal is the question. The answer lies in Latency.

Reducing the Latency or the time which the data spends in the pipeline helps in

accomplishing this goal.

For the MVDR wide-band Beamformer under consideration, the first step involv-

20

ing the updating of Cholesky factors of the CSD matrices with the incoming bin

vectors and the second step involving the computation of the adaptive weights

and the beamformer output power from the updated Cholesky factor are executed

in tandem except that the latter phase operates on the updated Cholesky factor

obtained from the previous averaging cycle. This can be better explained using a

timing diagram as shown in Figure.3.1.

1st Averaging

Cycle

2nd Averaging

Cycle

3rd Averaging

Cycle

FFT

Period

Time for NI Update

Cycles

Time for Weights &

Power Computation

Time instant at which new set of Weights, obtained from

the updated Cholesky factor during the 1st Averaging cycle,

become available to be applied on the latest bin vectors

Time for NI Update

Cycles

Time for Weights &

Power Computation

Time instant at which new set of Weights, obtained from the

updated Cholesky factor during the 2nd Averaging cycle,

become available to be applied on the latest bin vectors

TU

TU TW

TW

Figure 3.1: Timing Diagram.

From the philosophy of pipelining, the update period TU could very well be ex-

tended till the start of the third averaging cycle and there is no restriction on

weights computation period TW as such. From the algorithm point of view, the

quicker the weights are computed and applied on the new bin vectors, the bet-

ter the estimate at the beamformer output and thereby better reconstruction of

the dynamically varying scenarios. Hence the total time required to compute the

weights i.e. (TU + TW) must be minimized. The lower limit for this quantity

21

is however the time taken for one averaging cycle or the time taken to update

the Cholesky factor of the CSD matrices for NI iterations or snapshots. But this

could end up in an architecture which consumes more resources and the hardware

realizing the weights and power computation module remaining idle for most of

the time. The latency mentioned here has two components, one associated with

the pipeline architecture for Update module and the other associated with the ar-

chitecture for weights and power computation module. One way of bringing down

the latency is to apply the observation vector as a whole to the systolic array

rather than one element at a time. Another option is to avoid the reverse paths

in the Back-Solve process as seen in most of the existing architectures. Though

the options could consume additional resources, they bring down the latency sig-

nificantly and have been incorporated in the proposed architectures.

The basic block diagram of the MVDR wide-band Beamformer is as shown in

Figure.3.2.

Beamformer Output

Power

Beamformer Output

Time series

Steering

Module IFFT

Processor

MVDR

Weights &

Power

Computation

Module

Signal

Injector

for Sensors

(Signal

+

Noise)

Steering

Vectors

Memory

FFT

Processor Dual port

RAM

(Bin

vectors)

B-WAG

B-RAG

Dual port

RAM

(Weight

vectors)

Complex

Multiplier

*

W-WAG

W-RAG

Adder

Figure 3.2: Block Diagram.

22

The Steering Module in the block diagram tries to compute the dot product be-

tween the Weight vectors and the appropriate Bin vectors wHj (θ)Xj as discussed

in the computational analysis in Chapter 2. The output from the Steering module

is fed to an Inverse FFT module to get the beamformer output time series. The

Steering Module comprises of an FFT module along with the Dual port RAMs

and their respective address generators to hold the Bin vectors and Weight vec-

tors. If the weight vectors Dual port RAM is initially loaded with the Steering

vectors, then the Beamformer would behave like a conventional Beamformer in

the absence of MVDR Weights and Power Computation module. So the major

block or the block of importance is the MVDR Weights an Power Computation

module. Three Architectures have been proposed for Cholesky factor update each

evolved out of the former with an intent to reduce the resources and latency. The

architecture for the Back-Solve process is developed as an independent Systolic

array with intermediate buffering of the updated Cholesky factors to derive the

weights and power.

3.3 Architecture for Cholesky factor update

3.3.1 Architecture 1

3.3.1.1 Concept

Figure.3.3 shows the schematic of the architecture. Here the observation vectors

which are basically the Bin vectors are applied as a whole to the first stage. The

first real rotation as discussed in the adaptation part of Chapter 2, is accomplished

using two vectoring mode operations of CORDIC algorithm. The first complex

element in the observation vector is subjected to a translation (T in Rotation1)

resulting in an angular output and a real component which is basically the mag-

nitude of the complex input. The angular output is fed as an input to the second

23

vectoring mode operation (R in Rotation1) along with the other complex elements

in the observation vector. Hence they have to be delayed till the angular output

from the first vectoring mode operation of the first rotation is obtained. Mean-

while the magnitude output obtained from the translation operation of the first

element of the observation vector forms the imaginary input to the first translation

operation in the second rotation step (T in Rotation2) to get the angular output

required for the second complex rotation. The real input is the first element in

the first column of the Cholesky factor, as the diagonal elements in the Cholesky

factor are always real. The angular output is used to generate the elements of the

rotation matrix required for the second complex rotation which are basically the

sine and cosine of the angular input. This is done using a rotation mode operation

(S in Rotation2) of the CORDIC algorithm. The remaining complex elements

in the first column of the Cholesky factor and the complex vector obtained from

the first rotation form two columns of the matrix to be multiplied by the rotation

matrix. This Matrix Multiplication is realized using a set of Complex Multipliers

in parallel accomplishing the second rotation and thereby updating the first col-

umn of the Cholesky factor. The reduced observation vector from the first stage

is passed onto the second stage to update the next column of the Cholesky factor.

• T ⇒ (x, y, 0)→ (r, 0, θ)

• R⇒ (x1, y1, θ1)→ (x2, y2, θ2)

• S ⇒ (1, 0, θ)→ (cosθ, sinθ, 0)

The second and the subsequent stages excluding the last stage are a replica of the

first stage except for a reduction in number of vectoring mode operations and in

the size of the Matrix Multiplier at each stage. This reduction is obvious because

24

𝑙 1,1

.

.

xM

.

lM,1

l3,1

l2,1

l1,1

x3

x2

x1

.

.

T

R

R

R

T S M

A

T

R

I

X

M

U

L

T

 (C)

𝑙 2:M,1

𝑥 2:M,1

First stage: 2 Ts, (M-1) Rs, 1 S & Complex

Matrix Multiplication of (M-1)x2 with 2x2

Rotation 1 Rotation 2

𝑙 2,2

.

.

xM

.

lM,2

l4,2

l3,2

l2,2

x4

x3

x2

.

.

T

R

R

R

T S M

A

T

R

I

X

M

U

L

T

(C)

𝑙 3:M,2

𝑥 3:M,2

Second stage: 2 Ts, (M-2) Rs, 1 S & Complex

Matrix Multiplication of (M-2)x2 with 2x2

Rotation 1 Rotation 2

…

T: Translate Operation using CORDIC IP Core R: Rotate operation using CORDIC IP Core S: Sine Cosine generation using CORDIC IP Core

Number of CORDIC Cores: M(M+1)/2 + 2M - 1

lM,M
xM

T
T

𝑙 M,M

Last stage: 2 Ts

Rotation 1 Rotation 2

Figure 3.3: Architecture 1.

the size of the observation vector gets reduced by a factor of 1 at each stage.

The last stage basically comprises of two rotations involving real elements and

this is accomplished using two translate or vectoring mode operations of CORDIC

algorithm. At the end of the last stage, the bin vector is nullified and the appro-

priate Cholesky factor gets updated. In the next cycle the Cholesky factor of the

next bin gets updated and so on.

3.3.1.2 Analysis

The bin vectors can be pumped in continuously one after the other as the hard-

ware for the first rotation is free to handle the subsequent bin vectors while the

hardware for the second rotation deals with the output of the first rotation of

the previous bin vector. This helps in bringing down the latency by an order of

the size of the observation vector compared to the architectures discussed in the

previous section.

From the figure, it is clear that a total of M + 2 CORDIC IP cores are required

to reduce the first element in the bin vector to zero. The next element in the bin

vector can be reduced with M + 1 CORDIC IP cores (M − 1 for Rotation1) &

25

(2 for Rotation2). Similarly the third will require M CORDIC IP cores (M − 2)

& (2) for Rotation1 and Rotation2 respectively and so on. Therefore this archi-

tecture requires a total of M (M + 1) /2 + 2M − 1 CORDIC IP cores.

3.3.2 Architecture 2

3.3.2.1 Concept

In the previous architecture, the first rotation in the every stage was accomplished

using a set of vectoring mode operations in parallel designated asR. But as pointed

out in the analysis of the previous section, these operations are realized with

individual CORDIC IP cores in real hardware, which consume a great amount

of resources. In fact the first rotation can be accomplished the same way as

the second rotation by having a single Rotation mode operation to generate the

elements of the rotation matrix followed by a Matrix Multiplier realized as a set

of Real Multipliers in parallel rather than Complex Multipliers. The resulting

architecture will be as shown in Figure.3.4.

𝑙 1,1

x1

l1,1

.

.

xM lM,1

l3,1

l2,1

x3

x2

.

.

T
T S

M

A

T

R

I

X

M

U

L

T

 (C)

𝑙 2:M,1

𝑥 2:M,1

First stage: 2 Ts, 2 Ss, Real & Complex Matrix

Multiplication of (M-1)x2 with 2x2

Rotation 1 Rotation 2

S

M

A

T

R

I

X

M

U

L

T

….

T: Translate Operation using CORDIC IP Core S: Sine Cosine generation using CORDIC IP Core Number of CORDIC Cores: 4M + 2

lM,M

xM
T

T

𝑙 M,M

Last stage: 2 Ts

Rotation 1 Rotation 2

𝑙 2,2

x2

l2,2

.

.

xM lM,2

l4,2

l3,2

x4

x3

.

.

T
T S

M

A

T

R

I

X

M

U

L

T

 (C)

𝑙 3:M,2

𝑥 3:M,2

Second stage: 2 Ts, 2 Ss, Real & Complex

Matrix Multiplication of (M-2)x2 with 2x2

Rotation 1 Rotation 2

S

M

A

T

R

I

X

M

U

L

T

Figure 3.4: Architecture 2.

26

3.3.2.2 Analysis

From the figure, it is evident that the structure for the first rotation looks sim-

ilar to the second rotation except for the Matrix Multiplier which is real. This

architecture results in additional delay, though not as large as the pipeline delay,

due to the addition of the Multipliers in the first stage and there is no significant

reduction in the hardware as the CORDIC IP cores in the first rotation of the

previous architecture have been replaced by Multipliers. However the number of

CORDIC IP cores required for the update has come down to 4M + 2.

3.3.3 Architecture 3

3.3.3.1 Concept

The similarity in the structures for the first and second rotation in architecture

2 can be exploited to bring down the resources further. Also the Complex Mul-

tiplier in the second rotation step can be reused with appropriate manipulation

to perform the real Matrix Multiplication in the first rotation step. However, this

imposes a constraint on the way the bin vectors and the Cholesky factor columns

are accessed. They have to be accessed in a interleaved manner enabling the merg-

ing of the structures to accomplish both the rotations resulting in an architecture

as shown in Figure. 3.5.

The architecture illustrates a single stage in detail wherein Multiplexers are in-

serted before the first translate step and the Matrix Multiplier to enable interleav-

ing of the bin vectors and Cholesky factors at the input and the outputs of the first

and second rotation respectively with appropriate shimming delays. A correction

module is inserted in the architecture which comprises of an adder & a subtracter.

This correction module aids in reusing the Complex Multipliers to perform the

real Matrix Multiplication in the first rotation. A Systolic array comprising of

27

𝑙 1.re

x2.re

x2.im

x1.re

0

0

x1.im

T

S

M

A

T

R

I

X

M

U

L

T

(C)

DT DX

DS

First Rotation

Correction

DX DM

𝑙 2.im

𝑙 2.re

𝑥 2.re

𝑥 2.im

l1.re FIFO

l2.im FIFO

l2.re FIFO

Number of CORDIC Cores: 2M + 1

First Stage illustrated

Figure 3.5: Architecture 3.

28

various processing elements combining the operations that suits each element is

shown in Figure. 3.6.

PE1

PE2

PE2

PE2

.

.

.

x1

x2

x3

xM

𝑙 11

𝑙 21

𝑙 31

𝑙 M1

PE1

PE2

PE2

.

.

.

𝑙 22

𝑙 32

𝑙 M2

PE1

PE2

.

.

.

𝑙 33

𝑙 M3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

PE1
𝑙 (M-1)(M-1)

PE2
𝑙 M(M-1)

PE3
𝑙 MM

Systolic Array to Update the Cholesky Factors

PE1 Constituents:

T, S Blocks, FIFO, Multiplexers, Shimming Delays

and the necessary Control Logic

PE2 Constituents:

Complex Multiplier, FIFO, Multiplexers &

Shimming Delays

PE3 Constituents:

T Block, FIFO, Multiplexers, Shimming Delays

and the necessary Control Logic

Figure 3.6: Systolic Array for Cholesky Factor Update.

Each Column in the array represents a stage. PE1 or the Processing Element 1

basically comprises of the T and S operations as discussed in Architecture 1 along

with the control logic and FIFOs to hold the diagonal elements of the Cholesky

factor. The shimming delays are also incorporated into the element. It generates

the sine and cosine component required for the rotation matrix and passes it to

PE2. All the PE2 receive the outputs from PE1 at the same instant though it

appears to be sequential in the schematic. PE2 comprises of Complex Multipli-

ers, Correction module, Multiplexers, FIFOs to hold the lower triangular elements

of the Cholesky factor and the shimming delays. The outputs from PE2 in one

column proceed to the next column. PE3 is for the last stage and has a single T

operation along with FIFO and Multiplexers.

29

3.3.3.2 Analysis

The hardware corresponding to the first rotation in every stage has been com-

pletely removed. Though Multiplexers and a Correction module have been added

to the architecture, they don’t consume much resources as that of the Multipliers

and CORDIC IP cores. Moreover the total number of CORDIC IP cores required

has come down to 2M + 1. Thus a significant reduction in hardware has been

achieved. However the latency has gone up by a factor of 2 because of the pres-

ence of feedback paths in order to enable the same structure to perform both the

rotations. The same latency as that of the previous architecture could be retained

by operating the IP cores at double the clock rate. This could have implications

on the upper bounds of various parameters of significance like number of bins,

number of look angles, number of apertures and so on when compared to the

previous architectures. Nevertheless the architecture will fit into an FPGA which

may not be sufficient to hold the former architectures for a given set of parameters

specified within the limits.

3.4 Architecture for Back-Solve Process

3.4.1 Concept

The architecture for Back-solve process is developed to facilitate the computation

of power as soon as the updated Cholesky factors become available after the aver-

aging period. The computation of adaptive weights can be avoided if power alone

is required as the output as it would bring down the hardware requirements. In

most cases power output is sufficient and requires a single Back-Solve step. The

computation of adaptive weights requires another Back-Solve step in cascade with

appropriate buffering of Cholesky factors. However a copy of the same architec-

ture can cater for both the Back-Solve steps. The idea is to propagate the solution

30

obtained for each equation to the next to get its solution as early as possible. The

solving begins with the division of the first element of the steering vector with the

first diagonal element of the updated Cholesky factor. The solution is propagated

down to all the rest of the equations as shown in Figure. 3.7.

/

*

*

*

.

.

𝑙 11

𝑙 21

𝑙 31

𝑙 M1

𝑙 MM

-

-

.

.

-

/

*

*

.

.

𝑙 22

𝑙 32

𝑙 M2

-

.

.

-

A1

A2

A3

AM

/

*

.

.

𝑙 33

𝑙 M3

.

.

-

/

*

𝑙 (M-1)(M-1)

...

-

...

𝑙 (M-1)(M)
/

u1

u2

u3

u(M-1)

uM

u1

u1

u1

u2

u2
u3

u(M-1)

‘/’ : Division Operation involving Complex Dividend and Real Divisor

‘*’ : Complex Multiplication

‘-’ : Subtraction

‘A’ : Steering vector

‘u’ : Intermediate vector, the reciprocal of its magnitude gives the

MVDR power

Solver block

Substitution block

Figure 3.7: Systolic Array for Back-Solve process.

Similarly the solution of the next equation is propagated to the rest of the equa-

tions so that they get nearer to the solution faster.

3.4.2 Analysis

The architecture requires 2M Division operations and M (M − 1) /2 Complex

Multiplication operations to cater for the complex nature of Steering vectors and

achieve parallelism. Though there is a significant increase in the resources com-

pared to the existing architectures, there is a significant reduction in latency be-

cause there are no reverse paths involved. Moreover the Back-Solve process is a

critical step in the computation of weights and can be done faster compared to the

Cholesky factor update process because the latter has a lower time bound of one

31

FFT snap-shot time period. This can be considered as the minimum time interval

to complete an update cycle. This is not a hard bound because the hardware

could be made to run faster. But it would lead to a situation where the hardware

starves for the next set of bin vectors. In the case of a Back-Solve process, there

is no such bound. Sooner the weights get computed, sooner they become available

to the bin vectors giving rise to better estimates.

32

CHAPTER 4

Implementation and Simulation Results

4.1 Tools used

Most of the control logic required for the architecture have been realized in verilog

and verified using the Xilinx ISE version 14.4. The control logic are then converted

to blocks using the Xilinx System Generator tool which in turn invokes the Matlab

Simulink graphical environment. CORDIC algorithm, which is used to accomplish

the Givens rotations, FFT algorithm and other major operations like Division have

been implemented using the Xilinx IP cores which are available from the System

Generator environment in the form of blocks. FIFOs and Dual port RAMs used in

the architectures are also available as system generator blocks. wherever possible

ready made Xilinx blocks have been made use of so as to exploit the resources and

features available on the Xilinx FPGA platforms. These blocks are integrated in

the Simulink environment to realize the final architecture. Matlab equivalent of

the Hardware is also generated in tandem with the help of Matlab functions and

Simulink blocks.

4.2 Implementation

The implementation is divided into two parts. The first part is the bin vector

generation from the sensor samples and the second part is the MVDR Beamformer

power computation module which takes bin vectors as its input. Most of the

blocks are realized using the standard blocks and templates available in the System

Generator environment.

4.2.1 Bin Vector Generation

The bin vector generation comprises of the following components.

4.2.1.1 Signal Generator

This is a matlab component and is not realized in hardware. It generates the

signal as received at the input of the sensors with uncorrelated noise added to

it. This component is essential in testing the design and tries to emulate the

actual scenario with various SNR conditions and directional signals. Figure. 4.1

represents the Signal Generator block in the System Generator environment. It

Figure 4.1: Signal Generator module.

has two inputs namely the DoA which can select one of the nine look angles and

the tonal Frequency which lies in the band of interest. The SNR conditions are

set with in the function.

34

4.2.1.2 Input Buffer

The role of this component is in rate conversion and is primarily implemented

using the Dual Port RAMs. As an attempt to bring down the resources, a single

FFT IP core is used to get the FFT output for all the sensors. Hence there is

a need to multiplex the sensor time series data to the input of the FFT core.

The write operations to the RAM happen at the sampling rate, while the read

operations happen much faster and the rate depends on the number of look angles

and bins in the band of interest. The read & writes happen in a ping pong

fashion. The address generators associated with the RAMs are also included with

this component. This component is composed of two blocks namely IN WAG and

IN RAG as depicted in Figure. 4.2.

IN WAG comprises of a Write Address Generator for the write page of the

Figure 4.2: Input Buffer module.

Dual Port RAM. It also generates a page pointer (pg ptr) and a data updated

(data updtd) signal. These signals are used by IN RAG and assist in accessing the

RAM in a ping-pong fashion. IN RAG comprises of a Read Address Generator

for the read page of the Dual Port RAM. It also generates the channel enable

signals to multiplex the sensors along with a fft start signal to start the FFT

35

operation on the sensor inputs. Each sensor is provided with a read and write page

in IN RAG and IN WAG respectively. The Address Generators along with control

signals were realized using the System Genrator Black Box template. The Dual

Port RAMs are realized using the Xilinx System Generator standard DPRAM

blocks.

4.2.1.3 FFT Core

The FFT Core component comprises of a Multiplexer to time multiplex the sen-

sor inputs, an FFT IP core and additional logic to generate the control signals

for the subsequent components. The FFT IP core used is a Xilinx System Gen-

erator IP core version 7.1 [13]. It is configured to perform a 256 point FFT in

pipelined streaming IO mode. The twiddle factor width is chosen as 24. The

input precision is in Fix 16 15 format. In order to retain the same precision at

the output of the core, a suitable scaling factor is provided to the scaling input

of the IP core. Truncation is used as the rounding mode. The done signal from

the FFT core is used to generate the control signals like done4wag, done4rag and

bme (bin memory enable) for the Bin vector memory. Figure. 4.3 shows the FFT

IP core block.

Control signals like done4wag and bme are used to generate the write address

to store the bins obtained from the FFT core component in the respective sensor

Bin memories.

4.2.1.4 Bin Storage

The Bin Storage component comprises of two blocks namely the BV WAG and

BV RAG as depicted in Figure. 4.4.

BV WAG block houses the write pages of the Dual Port RAMs used to store the

FFT bins from all the sensors and a common Write Address Generator. The bme

from the fft core component enables in choosing the appropriate Bin Memory for

36

Figure 4.3: FFT Core module with IP Core.

Figure 4.4: Bin Storage.

37

each sensor. It also generates two control signals for BV RAG namely the page

pointer (pg ptr) and bins updated status (data updtd), which assist in ping-pong

access of the Dual Port RAMs. The BV RAG block houses the read pages of the

Dual Port RAMs and a common Read Address Generator to read out the bin

vectors from the appropriate Bin Memory to Cholesky Factor Update block in the

MVDR Beamformer power computation module. The Address Generators along

with control signals were realized using the System Generator Black Box template.

The Dual Port RAMs are realized using the Xilinx System Generator blocks.

4.2.2 MVDR Beamformer Power Computation module

MVDR Beamformer Power Computation module comprises of two major compo-

nents as shown in Figure. 4.5. The Systolic Arrays for Cholesky Factor Update

and Back-Solve Process. The Figure 4.5 depicts the actual implementation in the

Xilinx System Generator environment.

4.2.2.1 Systolic Array for Cholesky Factor Update

This array has 12 stages to cater for the case of a 12 sensor sub-aperture and is

expandable by adding hardware columns comprising of a PE1 and appropriate

number of PE2s to meet the needs of a larger sub aperture. PE1 as dicussed in

Chapter 3, has three control logic blocks which govern the flow of data and the

operations performed on it. They are the lfifologic, lxlogic and the philogic as

shown in Figure.4.6. The control logic blocks are realized using the System Gen-

erator Black Box template. lfifologic provides the reset to the other control logic

blocks and generates a write enable (fifo we) and select (ival sel) to enable the

writes to Cholelsky factor FIFO and switch between its initial value and updated

values respectively. The lxlogic in the first stage doesn’t have (ps ready) signal,

which is essential from the second stage onwards to know the status of the previous

stage. The (fifo rd) signal from lxlogic enables in reading out the Cholesky factor

38

Array for Cholesky Factor Update

Array for Back-Solve

Figure 4.5: MVDR Beamformer Power Computation Module.

39

Figure 4.6: Control logic for PE1.

FIFO contents. The (dvalid) signal goes as the data valid input to the CORDIC

Translate IP core and (dselect) enables in interleaving the Cholesky factors and

the bin vectors. philogic block generates the phase valid signal (phvalid) to the

Sine Cosine CORDIC IP core and a select signal (zselect) to switch between zero

data and first rotation outputs to the Complex Multipliers in PE2.

The two major blocks in PE1 are the Translate and the Sine Cosine CORDIC IP

cores [14] which together perform the first and second rotations on the diagonal

elements of the Cholesky factors. The Translate IP core has complex inputs and a

data valid signal to validate the inputs, while the Sine Cosine IP core has a phase

input and a phase valid signal to validate the phase input as shown in Figure. 4.7.

Both the cores are configured to operate in the optimal pipeline mode and word

serial fashion to compromise between speed and resources. The IO width is 16

bit and rounding mode is chosen as truncation, though 8 bit and 12 bit precisions

were tested and evaluated. The phase output from the Translate core goes directly

to the Sine Cosine core while the output valid signal feeds the philogic block. The

40

Figure 4.7: CORDIC IP Core in Translate (T) and Sine Cosine Generation (R)
mode.

real output from the Translate core is subjected to a sign correction logic as the

core produces only the absolute value at its output. The corrected output is fed

back to the core again through the Multiplexer. The modules involved in correc-

tion logic at the input and the output of the core are depicted in Figure. 4.8.

SignCorr block gets the quadrant information of the input element by comput-

ing its sign and feeds the OutCorr block to apply the quadrant correction. The

xlmcmp and xlsigncorrect blocks in SignCorr and OutCorr components are re-

alized as System Generator MCode blocks.

PE1 PE2 and PE3 include the following common blocks namely the lfifo and

lxsel as shown in Figure. 4.9. lfifo block houses the FIFOs to hold the Cholesky

factors and the Multiplexers to switch between the initial values and updated

values as seen expanded in Figure. 4.10. Whereas the lxsel houses the data inter-

leaving logic comprising of Multiplexers and Multipliers realizing the appropriate

regularization of Cholesky factors and the Bin vectors as shown in 4.11. The

regularization is accomplished by a scaling operation with a Multiplier. The reg-

ularization of Bin vectors is absent in the second and the subsequent stages. PE2

has its own blocks like shimming delays, First Rotation Correction and the Matrix

41

Figure 4.8: Correction logic for the Translate core.

Figure 4.9: Common blocks of PE1 PE2 and PE3.

42

Figure 4.10: lfifo block expanded.

Figure 4.11: lxsel block expanded.

43

Multiplier blocks. Shimming Delays namely TD and RD as shown in Figure. 4.12

are to compensate for the pipeline delays encountered in the Translate and Sine

Cosine CORDIC IP cores respectively. First Rotation Correction block gathers

Figure 4.12: Shimming Delays.

the outputs from the Matrix Multiplier after the first rotation and computes the

actual output with the help of an adder and subtracter as shown in Figure. 4.13.

It also has Multiplexers which decide the inputs to the Matrix Multiplier during

the first and second rotation. The Matrix Multiplier block has 8 real Multipliers in

parallel followed by 4 real Adder/Subtracter circuits in parallel to perform a 2× 2

Complex Matrix Multiplication. The Sine Cosine CORDIC core from PE1 pro-

vides the cos theta sin theta data along with the enable signal (enab) to perform

the Matrix Multiplication. The outputs from the Matrix Multiplication block go

to First Rotation Correction block (uzsel frcorr) as well as the Cholesky factor

FIFO block (lfifo). Figure. 4.14 shows the Matrix Multiplier block as realized

in the System Generator environment. The Processing Element PE3 has all the

blocks of PE1 except for the control logic (philogic) and Sine Cosine CORDIC IP

core (R) blocks.

44

Figure 4.13: First Rotation Correction.

Figure 4.14: Matrix Multiplication.

45

4.2.2.2 Systolic Array for Back-Solve Process

The Systolic Array for Back-Solve Process has 12 stages with each stage having

two major blocks except the last stage. The major blocks present in all the eleven

stages are a Solver block and a Substitution block. The last stage has only the

Solver block. This block computes the elements of the intermediate vector one

after the other at each stage as depicted in the Figure. 3.7 in Chapter 3. The

elements obtained from each Solver block are used in the Substitution block of

the same stage to propagate the solution to the subsequent stages.

The Solver block comprises of two Division functions, an intermediate FIFO to

hold the diagonal real elements of the updated Cholesky factor and the necessary

control logic to govern the operations and flow of data. Two Division blocks are

required to handle the division of complex steering vector in parallel. The Division

function is realized using the Xilinx Divider Generator block version 4.0 [15] with

additional logic to combine the integer and fractional quotient as shown in Figure.

4.15. The Divider is configured to use the radix-2 algorithm with a fractional

width of 8 which decides the latency automatically. The integer width is chosen

to be 16 to cater for a wider range of the inputs. The FIFO is similar to the one in

the Cholesky factor update array. The Solver and Substitution blocks in the first

stage also houses the Steering vector ROMs in addition to the above resources.

The control signals used in the Solver block are derived from some of the output

signals from the Cholesky factor update array like the data output valid from the

Sine Cosine CORDIC IP core (dovalid), write enable (wren) and the data select

(ivsel) signals generated from the lfifologic. The control logic block generates

the read and write enable signals for the intermediate FIFO (rdfifo & owren) as

well as a select signal (oivsel) to update the intermediate FIFO with either the

new Cholesky factor update or the old factor. In addition to these signals the

control logic block in the first stage also generates the address for the steering

vector ROMs as shown in the Figure. 4.16. The Substitution block comprises of a

46

Figure 4.15: Division Function.

Figure 4.16: Control Logic for Solver Block & Steering vector ROMs.

47

set of complex Multipliers and Subtracters with additional control logic besides the

intermediate FIFOs to hold the updated lower triangular off-diagonal elements of

the Cholesky factors. The number of Multipliers and Subtracters come down by 1

at each stage and hence the last stage doesn’t have any. Besides the intermediate

vector elements from the Solver block, control signals like the read and write

enable signals for the intermediate FIFO (rdfifo & owren) as well as the select

signal (oivsel) are routed to this block to handle read and write operations of

FIFOs. The intermediate vector element is routed to all the Complex Multipliers

in parallel where it gets multiplied by the Cholesky factor elements of that stage

and passed on to the set of Subtracters in parallel where it gets subtracted from the

outputs obtained from a similar operation in the previous stage. In the first stage,

the Steering vectors form the previous stage output. The Multipliers are realized

using the System Generator Complex Multiplier block as shown in Figure. 4.17.

The control logic generates the address for the Steering vector ROMs (stvadr)and

enable signal for Subtracters (suben) housed in this block. It also generates a

ready signal for the next stage (nxtrdy) to begin its process. The control logic

in the Substitution block of subsequent stages generate only the ready signal for

the next stage. Other signals are absent. The output data valid signal from the

Complex Multipliers drives the enable signal of the Subtracters in the subsequent

stages. The control logic for both the blocks have been realized using the System

Generator Black Box template.

4.2.2.3 Power computation

As and when the elements of the intermediate vector becomes ready they are fed

to a magnitude generation block at each stage and gets added up to the output of

magnitude generation block in the previous stage resulting in the magnitude of the

intermediate vector as a whole at the last stage. The magnitude function blocks

are realized using Xilinx standard Multiplier and Adder blocks with appropriate

48

Figure 4.17: Complex Multiplier.

scaling as shown in Figure. 4.18. The magnitude of the intermediate vector is fed

Figure 4.18: Magnitude Function.

to a Division block similar to the one discussed in the Systolic Array for Back-Solve

process subsection. The Division block generates the reciprocal of the magnitude

which is the estimate of power associated with a bin. It is fed to an accumulator

which is realized as a system generator black box as shown in Figure. 4.19 to get

the power estimate in a beam. The hardware for the weights computation has

49

Figure 4.19: Accumulator Function.

not been dealt here because it requires only an additional Back-Solve Array in

cascade with the existing array with additional routing of the Cholesky factors to

the appropriate nodes in the array.

4.3 Simulation Results

The critical component of the MVDR wide-band beamformer namely Power Com-

putation module was synthesized on a Xilinx Virtex6 FPGA platform. The target

device was chosen as xc6vlx240t-3ff784, which has about 300K logic cells, Con-

figurable logic blocks in the from of 37680 slices and approximately 4000Kbits of

distributed RAM and DSP48E1 slices about 768 in number. Moreover the device

has enough memory in the form of block RAM blocks with 416 36Kbit blocks.

The device can handle user IOs upto 720 in number.

4.3.1 Resource Utilization Summary

The operational modes of CORDIC IP core used to realize the system namely

the Translate and Sine Cosine Generation modes consume the least amount of

resources among other modes when configured in word serial architecture and

50

optimal pipeline mode.

The system has about 312 FIFOs (FIFOs in both the Systolic Arrays) of depth

32 words and 24 ROMs (Steering vector ROMS) of depth 256 words which are

of size 16 bits leading to a total memory size of about 258 Kbits. The number of

IOs in the system add up to 600 including outputs which have been drawn out of

the system for debugging. Idealy the Device chosen has more resources than what

is required in some fronts. The actual estimate regarding the resource utilization

by other hardware blocks in the system after synthesis also shows the same as is

evident from the Device Utilization summary in Table. 4.1.

Logic Utilization Used Available Utilization
Number of Slice Registers 47668 301440 15%

Number of Slice LUTs 44260 150720 29%
Number of fully used LUT-FF pairs 38457 53471 71%

Number of Block RAM/FIFO 123 416 29%

Table 4.1: Device Utilization Summary

4.3.2 Timing Summary

The timing summary after synthesis of the design is as shown in the Table. 4.2.

Minimum period 3.156ns (MaximumFrequency : 316.827MHz)
Minimum input arrival time before clock 1.418ns

Maximum output required time after clock 0.378ns
Maximum combinational path delay No path found

Table 4.2: Timing Summary

The latency associated with the first and second rotation in the Cholesky factor

update array is 28 cycles each for 16 bit precision. So the rate at which an update

becomes available at the output for bin after bin is 84 cycles. From the timing

summary table, going by the maximum frequency possible, each update would

take ≈ 252ns(84× 3.15ns). Therefore the time taken to update 28 bins would be

≈ 7µs. Whereas the FFT snapshot interval as per the specification in the case

study is 10.67ms which is too high compared to the time taken to update all the

51

bins. The architecture is so designed that it can handle multiple apertures just by

increasing the FIFO size retaining the other modules. Moreover it is quite evident

from the Resource Utilization summary that there is enough memory resources

left in the form of block RAMs/FIFOs on the device after the design was synthe-

sized for a single Aperture. So the requirement of handling 32 apertures can be

easily met. An increase in Aperture size will increase the size of the array, which

in turn could have implications on the maximum frequency due to allocation and

placement of additional resources. This in turn can bring down the number of

Apertures that can be handled. Figures. 4.20 and 4.21 provide an idea of the rate

at which updates are performed.

5th Stage update completes at
79950th cycle

Figure 4.20: Stage 5 Output of the Cholesky factor update array.

In the Back-Solve array, the Division function is pipelined and the complex Multi-

plication and Subtraction that follow together contribute to a latency of 40 cycles.

Each element of the intermediate vector used in computing the power associated

with a bin is generated at this rate. As per the architecture, as and when the el-

52

6th Stage update completes at
80030th cycle which is 80 cycles
more than the previous stage

Figure 4.21: Stage 6 Output of the Cholesky factor update array.

ements of the intermediate vector become available their magnitude is calculated

and passed to the next stage. Therefore in every 40 cycles the magnitude of the

intermediate vectors associated with each bin becomes available to the reciprocal

circuit. The reciprocal circuit which is again a Divider also has a latency of 40

cycles. So the power associated with each bin in a given look angle will be avail-

able at every 40 cycles. The time taken to compute the total power will be then

≈ 3.5µs(28× 40× 3.15ns). Though there is an initial delay of twelve stages, the

output power of every look angle gets computed at the above mentioned rate. The

total time taken to compute the power associated with all look angles in a given

aperture will be ≈ 32µs(9× 3.5) which is very small compared to the averaging

period of 512ms. Figure. 4.22 gives an idea of the number of cycles consumed to

compute the power. An equal amount of time will be sufficient to calculate the

weights as well thus achieving the target of reducing the time taken to compute

the adaptive weights.

53

Last Stage Output

Input to the Reciprocal Circuit

Accumulator Input

Accumulator Output

Figure 4.22: Accumulator Output.

4.3.3 Evaluation for various Precision

The Choleky factor update was evaluated for various precisions before synthesis

and the mean error and mean square error are tabulated as in Table. 4.3

Precision Format Mean Error Mean Square Error
8 bit 8 6 0.007 8.2e-05
12 bit 12 10 5e-04 3.4e-07
16 bit 16 14 3e-05 1.4e-09

Table 4.3: Performance of Design with various precisions

4.3.4 Simulation Waveforms

The system was simulated with two cases. The first case was a 2KHz tonal injected

along the 4th Look Angle or -1.667 degrees away from the MRA of the Aperture

at an SNR of -8db. The output as obtained from the Accumulator block of the

system was plotted in Matlab as is shown in Figure. 4.23. The second case was

54

1 2 3 4 5 6 7 8 9
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Figure 4.23: System Output: Case 1

a 1KHz tonal injected along the MRA or the 5th Look Angle at an SNR of -8db.

The Output waveform is shown in Figure. 4.24.

55

1 2 3 4 5 6 7 8 9
0.85

0.9

0.95

1

Figure 4.24: System Output: Case 2

56

4.3.5 Summary & Scope for Future

A Systolic Array based approach with reduced latency and not compromising

much on the resources, was adopted to realize the MVDR wide-band Beamformer

and was implemented using the Xilinx System Generator tool. Though the design

has been tested for -8db SNR, it needs to be tested for adverse SNR conditions

specified for a given application. Similarly an analysis on the optimum word

length in Fixed precision, meeting these adverse SNR requirements also needs to

be carried out.

57

CHAPTER 5

REFERENCES

[1] W.M.Gentleman and H.T.Kung, “Matrix Triangularization by Systolic Ar-
ray,” Proc. SPIE, Real-Time Signal Processing IV, 1981.

[2] N.L.Owsley, “Systolic Array Adaptive Beamforming,” NUSC Technical Re-
port, 1987

[3] J.G.McWhirter and T.J.Shepherd, “Systolic Array Processor for MVDR
Beamforming,” IEE Proceedings, Vol 136, April 1989.

[4] J.E Hudson and T.J.Shepherd, “Parallel Weight Extraction by a Systolic
Least Squares Algorithm,” Proc. SPIE, Advanced Algorithms and Architec-
tures for Signal Processing IV, 1989.

[5] T.J.Shepherd, J.G.McWhirter and J.E Hudson, “Parallel Weight extraction
from a Systolic Adaptive Beamforming,” Mathematics in Signal Processing
II, 1990.

[6] W.Givens, “Computation of Plane Unitary Rotations Transforming a Gen-
eral Matrix to Triangular Form,” J. Soc. Ind. App. Math., 1958.

[7] C.M.Rader, “VLSI Systolic Arrays for Adaptive Nulling,” IEEE Signal Pro-
cessing Magazine, 1996.

[8] C.F.T.Tang, K.J.R.Liu and S.A.Tretter, “A VLSI Algorithm and Architec-
ture of CRLS Adaptive Beamforming,” Proc. of the Conf. on Information
Sciences and Systems, March, 1991.

[9] E. N. Frantzeskakis and K. J. R. Liu, “A Class of Square Root and Division
Free Algorithms and Architectures for QRD-Based Adaptive Signal Process-
ing,” IEEE Transactions on Signal Processing, Vol. 42, No. 9, September,
1994.

[10] J. Gotze and U. Schwiegelshohn, “A square root and division free Givens
rotation for solving least squares problems on systolic arrays,” SIAMJ. Sci.,
Statist. Comput., Vol. 12, No. 4, July 1991.

[11] Chris Dick, Fred Harris, Miroslav Pajic and Dragan Vuletic, “Real-Time
QRD-based Beamforming on an FPGA Platform,” 2006.

[12] A.H.Sayed,“Adaptive Filters”, 2008.

[13] Xilinx,“LogicCORE IP Fast Fourier Transform v7.1 Datasheet, DS260,”
2011.

[14] Xilinx,“LogicCORE IP CORDIC v5.0 Datasheet, DS858,” 2011.

[15] Xilinx,“LogicCORE IP Divider Generator v4.0 Datasheet, DS819,” 2011.

59

	 ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction
	Motivation
	Objective
	Thesis organisation

	MVDR Wide-Band Beamformer
	Adaptation
	Computational Analysis
	Flow Diagram
	Computational Requirements
	Case Study

	Robust Inverse Free Square Root Algorithm
	Inverse Free Method
	Cholesky Factorization of CSD Matrix
	Adding Robustness
	Cholesky Factor Update

	Beamformer on various Platforms
	DSP based approach
	GPU based approach

	why FPGA based approach

	Design Philosophy
	Systolic Array based Design
	Existing Architecture
	Features
	Desired Features

	Architecture for Cholesky factor update
	Architecture 1
	Concept
	Analysis

	Architecture 2
	Concept
	Analysis

	Architecture 3
	Concept
	Analysis

	Architecture for Back-Solve Process
	Concept
	Analysis

	Implementation and Simulation Results
	Tools used
	Implementation
	Bin Vector Generation
	Signal Generator
	Input Buffer
	FFT Core
	Bin Storage

	MVDR Beamformer Power Computation module
	Systolic Array for Cholesky Factor Update
	Systolic Array for Back-Solve Process
	Power computation

	Simulation Results
	Resource Utilization Summary
	Timing Summary
	Evaluation for various Precision
	Simulation Waveforms
	Summary & Scope for Future

	REFERENCES

